First-Order Formulas

March 21, 2017
Justin Chen
(These lecture notes are not proofread and proof-checked by the instructor.)

1 Administrative

- Assignment 7 is posted and due March 31st.
- 3 new handouts have been posted

2 First-Order Relational Structures

2.1 Order

- Has to be over same signature over same vocabulary
- First-order structure aka first-order relational structure
- Signature is usually given with order
- Signature consists of predicate symbols, function symbols
e.g. $\mathcal{M}_{1}=\left(\mathbb{N}, \doteq \mu_{1}, \leq \mu_{1}, \ldots\right)$
contains a smallest element.
e.g. $\mathcal{M}_{2}=\left(\mathbb{Z}, \doteq \mu_{2}, \leq \mu_{2}, \ldots\right)$
does not contain a smallest element.
e.g. $\mathcal{M}_{3}=(\mathbb{R},=, \leq, \ldots)$
e.g. $\mathcal{M}_{4}=(\mathbb{C}, \doteq, \ldots)$
ordering on complex structures
e.g. $\mathcal{M}_{5}=(\mathcal{P}(s), \dot{=}, \subseteq, \cup, \cap, \emptyset)$

S is an arbitrary set. P is the power set.
e.g. $\mathcal{M}_{6}=(r \in \mathbb{R} \mid 0 \leq r \leq 1, \doteq, \leq,+,-, \cdot, /)$

Dense linear has a smallest and largest element. Brief digression:
Singleton: set with one thing
Doubleton: set with two things

Figure 1. Graphical representation of relationship between empty set, singletons, doubletons, and tripletons. Refer to slide titled Orders in Handout 18.

2.2 Graphs

- Algebras with two binary operations:
- Can interpret the "xor" symbols in the "structure" of M6
$\mathcal{G}=\left(V, \dot{=}, \mathcal{R}^{G}\right)$
e.g. binary relation $\mathcal{R}^{G}(a, b), \mathcal{R}^{G}(a, c), \neg \mathcal{R}^{G}(a, d)$, etc.

Figure 2. Refer to slide titled Graphs in Handout 18.
e.g. What does this say?
$\forall x \forall y(\neg(x \doteq y) \rightarrow(\mathcal{R}(x, y) \rightarrow \mathcal{R}(x, y)))$

Don't really need the premise above if you have formula $2 x(\neg \mathcal{R}(x, x))$ since it's redundant. There are no loops.
Structures in multiple domains(universes):
Capacitated Graph: $\mathcal{G}(V, \mathbb{R} ; \doteq, \mathbb{R}, c)$

- Domains are for V , and R sets of functions
- c - capacity function (upperbound)
- Disjoint sets of functions can't be subsets
- ; indicates separate universes
- Can't have multiple capacities
- Similar to Max-Flow
- $C: V \times V \rightarrow \mathbb{R}$
e.g.

Figure 3.
Successor function over the natural numbers

- 4 is simple induction
- phi(x) is your first-order formula/structure, your "property"
- phi (0) is the basis step
- thing to the right before arrow is induction step
- implicitely a larger parens around the expression to the left of arrow
- phi(x) is induction hypothesis
- phi(x) - i phi(Sx) is induction step
- right of outside most arrow says this proves for all phi(y)
- property must be first-order expressible, but not all properties are first-order expressible
- can add these formulas as axioms
- How do you know if you use this in your knowledge base, that it's a correct way of reasoning?
- Must show consistency, will explain more later

3 is not first-order because quantifying over ground-value, which is not in the universe.
Second-order formula: $\forall x \forall y(f(x, y) \leq c(x, y))$
e.g.Not a first-order relational structure
$\left(V, \mathbb{R},(R)^{V \times V}, \ldots\right)$

- Universals must precede existentials
- If e.g. $\exists y \forall x_{1} \forall x_{2}(\ldots)$ then $\rightarrow \exists x \exists y \exists z \ldots x \ldots y \ldots z . . x z \ldots$
- so drop $\exists x$ and replace x with constant c
- Herbrand Theory
- - Gives a unified framework
- - Each of above gives tools in first-order that you can implement
- - Tableaux
- - Resolution
- - SMT
- Compactness slide page 11
- - phi and phi1 are the same
- - prenex or prenex normal form
- - notice that quantifiers are in different positions
- ϕ_{1} factors the quantifiers out and places it to the left
- - in CNF, move logical and or logical or out and push logical negation in, and flip
- - DeMorgan's law
- - same happens with quantifiers universal and existential
- Prenex of conjuctive normal form: ϕ_{2}

2.3 Skolem

e.g. $\forall x \exists y(\ldots x, y, x, \ldots, y, \ldots)$

- $\forall x$ - adversary tries to falsify by choosing x
- $\exists y$ - agent tries to make satisfiable by choosing y

Agents move depends on what adversary does, by saying "depends" implies Skolem function Universal WFF:
$\forall x(\ldots x \ldots f(x) \ldots x \ldots f(x) \ldots)$
e.g.
$\forall x_{1} \forall x_{2} \exists y\left(\ldots x_{1} \ldots x_{2} \ldots y \ldots x_{1} \ldots y \ldots x_{2} \ldots y\right)$
$\forall x_{1} \forall x_{2}\left(\ldots x_{1} \ldots x_{2} \ldots f\left(x_{1}, x_{2}\right) \ldots x_{1} \ldots f\left(X_{1}, x_{2}\right) \ldots x_{2} \ldots f\left(x_{1}, x_{2} \ldots\right)\right.$

