CS 512 Formal Methods, Spring 2017	Instructor: Assaf Kfoury
Soundness and completeness of first-order logic	
March 28,2017	Yinghao Wang

(These lecture notes are not proofread and proof-checked by the instructor.)

- Miscellanea:

Homework 7 due on Friday, Mar. $31^{\text {st }}$.
Homework 8 out on Thursday, Mar. $30^{\text {th }}$.

- Readings: Handout 21, Handout 22
- $\mathcal{Z}=(\mathbb{Z},=,<,+, \times, 0,1)$
- $\varphi \triangleq \forall x \exists y(x+y \doteq 0)$
-Prenex normed form
-not skolemized.
- If φ is true/satisfiable by \mathcal{Z}, we write $\mathcal{Z} \models \varphi$
- It is possible to refer to elements in the universe without "naming them".

1. $0^{\mathcal{Z}}$ is zero
2. $1^{\mathcal{Z}}$ is one
3. $(1+1)^{\mathcal{Z}}$ is two

We have expression to write all non-negative integers.

- for $\varphi \triangleq \forall x \exists y(x+y \doteq 0)$

1. Skolemized $\varphi: \varphi^{\prime} \triangleq \forall x(x+f(x) \doteq 0)$
2. Ground terms:

$$
\begin{aligned}
& -0,1,1+1,1 * 1,(1 * 1)+1 \\
& -f(0), f(1+1), f(1 * 1), f((1 * 1)+1)
\end{aligned}
$$

3. Signature has been argumented with $f()$
4. In here, $f()$ maps x to $-x$
5. $f(1+f(1))=f(1+(-1))=f(0) \rightarrow 0$

- $\mathcal{R} \triangleq(\mathbb{R},=,<,+, \times, 0,1)$ field*
- for $\exists!x \varphi(x)$: there exist a unique x such that $\varphi(x)$
$\exists x(\varphi(x) \wedge \forall y(\neg(x \doteq y) \rightarrow \neg \varphi(y)))$
- $\exists{ }^{=3} x \varphi(x)$: there exists exactly 3
$-\exists^{\geqslant 3} x \varphi(x)$: there exists at least 3

1. $\mathcal{R} \not \vDash \forall x \exists!y(y \times y \doteq x)$ Example: $2 \times 2=4$ and $-2 \times-2=4$
2. $\left.\mathcal{R} \not \vDash \forall x \exists^{=2} y(y \times y \doteq x)\right)$ Example: if $x<0$, there is no such y .
3. $\mathcal{R} \models \forall x \neq{ }^{2} y(0<x \rightarrow y \times y \doteq x)$
4. $\mathcal{R} \models \forall x \exists!y(0<x \rightarrow(0<y \wedge(y \times y \doteq x))$
5. Skolemized: $\varphi^{\prime} \triangleq \forall x(0<x) \rightarrow(0<f(x) \wedge(f(x) \times f(x) \doteq x))$
(a) φ and φ^{\prime} are equally satisfiable
(b) $\{f\} \bigcup\{=,<,+, \times, 0,1\}$
(c) Considering the ground term, this is only for natural numbers and square roots of nature numbers.

- Consistency:
$-\Gamma$ is a set of WFFs,
- Γ is consistent iff $\Gamma \nvdash \perp$
- if Γ is satisfiable, then Γ is consistent.

