(These lecture notes are **not** proofread and proof-checked by the instructor.)

- Miscellanea: Homework 7 due on Friday, Mar.31st. Homework 8 out on Thursday, Mar.30th.
- Readings: Handout 21, Handout 22
- $\mathcal{Z} = (\mathbb{Z}, =, <, +, \times, 0, 1)$
- $\varphi \triangleq \forall x \exists y (x + y \doteq 0)$ -Prenex normed form -not skolemized.
- If φ is true/satisfiable by \mathcal{Z} , we write $\mathcal{Z} \models \varphi$
- It is possible to refer to elements in the universe without "naming them".
 - 1. $0^{\mathcal{Z}}$ is zero
 - 2. $1^{\mathcal{Z}}$ is one
 - 3. $(1+1)^{Z}$ is two

We have expression to write all non-negative integers.

- for $\varphi \triangleq \forall x \exists y (x + y \doteq 0)$
 - 1. Skolemized $\varphi: \varphi' \triangleq \forall x(x + f(x) \doteq 0)$
 - 2. Ground terms:
 - $\begin{array}{l} \ 0, 1, 1 + 1, 1 * 1, (1 * 1) + 1 \\ \ f(0), f(1 + 1), f(1 * 1), f((1 * 1) + 1) \end{array}$
 - 3. Signature has been argumented with f()
 - 4. In here, f() maps x to -x
 - 5. $f(1+f(1)) = f(1+(-1)) = f(0) \to 0$

- $\mathcal{R} \triangleq (\mathbb{R}, =, <, +, \times, 0, 1)$ field*
- for $\exists ! x \varphi(x)$: there exist a unique x such that $\varphi(x)$ $\exists x (\varphi(x) \land \forall y (\neg (x \doteq y) \rightarrow \neg \varphi(y)))$
 - $\exists^{=3} x \varphi(x)$: there exists exactly 3
 - $\exists^{\geq 3} x \varphi(x)$: there exists at least 3
 - 1. $\mathcal{R} \not\models \forall x \exists ! y(y \times y \doteq x)$ Example: $2 \times 2 = 4$ and $-2 \times -2 = 4$
 - 2. $\mathcal{R} \not\models \forall x \exists^{=2} y(y \times y \doteq x)$) Example: if x < 0, there is no such y.
 - 3. $\mathcal{R} \models \forall x \exists^{=2} y (0 < x \rightarrow y \times y \doteq x)$
 - 4. $\mathcal{R} \models \forall x \exists ! y (0 < x \rightarrow (0 < y \land (y \times y \doteq x)))$
 - 5. Skolemized: $\varphi' \triangleq \forall x (0 < x) \rightarrow (0 < f(x) \land (f(x) \times f(x) \doteq x))$
 - (a) φ and φ' are equally satisfiable
 - (b) $\{f\} \bigcup \{=, <, +, \times, 0, 1\}$
 - (c) Considering the ground term, this is only for natural numbers and square roots of nature numbers.
- Consistency:
 - $-\Gamma$ is a set of WFFs,
 - Γ is consistent iff $\Gamma \not\vdash \bot$
 - if Γ is satisfiable, then Γ is consistent.