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Notational Conventions

Suppose that we have a relational structure (think of a relational structure as being very similar
to a relational database) M := (M, . . .) where M is the domain of definition of M’s predicates
(also called universe of M). Now we would like to interpret ϕ in the structure M. As mentioned
in Handout 17, ϕ may contain free variables that we can interpret via an environment/look-up
table (the later naming convention explains this parallel we mentioned with relational databases) l
that would assign an of the domain of interpretation M to every free variable. If ϕ is closed (all
its variables are bounded by quantifiers), we may omit l as all of our variables in this case are
interpreted: remember that the quantifiers assign meaning to these variables by ”searching” for
interpretation in M .
For an arbitrary wff ϕ we may therfore write:

M, l |= ϕ (1)

if and only if ϕ is semantically valid in M.
Now this notation is a little cumbersome as it does not explicitly show how we are assigning values
to these free variables. Instead we will stick to one of the following conventions:

Conventions. Assuming ϕ has 3 free variables (you may generalize this to any constant number
of variables), in order to simplify our understanding of this look up table we may write:

Convention 1. M,a1, a2, a3 |= ϕ(x1, x2, x3) (2)

Which means that l assigns to each free variable xi an assignment ai, i.e. l(xi) := ai.

We can further write the following if we so wish to do so:

Convention 2. M |= ϕ[a1, a2, a3] (3)

to say the same thing.

Note. You should keep in mind that these assignments ai could very well be numerical assign-
ments depending on M : if M := N then we could pick ai to be say 10.
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Definable Problems in FOL

Now that we have formally defined the syntax, the semantics and the overall conventions of FOL
we would like to see what kind of meaningful problems we can express in this language. We will
mainly be dealing in this section with notions such as ”<” that you have probably used all your
life. Of course we can generally express much more complicated things in FOL. But as we will soon
see, even with such simple problems, the expressiveness of First Order Logic will draw us to the
limits of not only this order of logic but also of what it is that we can answer in computer science
and mathematics general.

In this section we will stick to dealing with the structure :

N := (N, .=, SN , ON ) (4)

where SN is a unary successor function, 0N is a constant (in terms of algebraic structures, ON is
the additive identity element of N ) and

.
= is the equality symbol.

Case of a finite subset of naturals

We can define any finite subset of naturals in FOL. Take A = {2, 3, 5} for example:

{2, 3, 5} = {n ∈ N | N , n |= (x = SS0 ∨ x = SSS0 ∨ x = SSSSS0)} (5)

Case of predecessor function

Take the following unary function:

pred(n) =

{
n− 1 if n > 0

0 if n = 0

which basically defines for any natural number n its predecessor n− 1 (By convention we will take
the predecessor of 0 to be 0.).

Notice that we can think of this function as a set of pairs (n, pred(n)) of inputs and outputs:
in our case {(0, 0), (1, 0), (2, 1), (3, 2), (4, 3), . . .}. The set formed by these pairs will represent what
we call the graph of that function.

Rather than directly defining pred(n), we will define graph(pred(n)) as this will be prove to be
much easier to define in FOL (i.e. reduce the problem of defining pred(n) in FOL to the problem
of defining graph(pred(n)) in FOL). An important assumption that we are making is that we can
fully and uniquely specify a function in terms of its graph. A proof of this is however not too
difficult.The graph of pred(n) can be defined as :

graph(pred) = {(m,n) ∈ N× N | N ,m, n |= (x = 0 ∧ y = 0) ∨ (x = Sy)} (6)

The wff defining the set is only satisfied for pairs (x, y) which satisfy the property pred(y) = x.
This function is therefore first order definable. (Nomenclature: We call m,n witnesses.)
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Case of the ”<N” operator

Now take the less than operator defined by the set

<N= {(m,n) ∈ N× N|m <N n} (7)

Is this is first order definable ?

Note that the expression written in (7) is not the one we are looking for: we are looking for a
wff which only uses the operator defined for the structure N (4). In some sense, the structure N
set the rules of the blocks which we can use in the game of finding a wff which defines what we’d
like to express.

This question proves to be much harder to answer than the previously mentioned examples: N
does not allow us to use the successor function an arbitrary number of times: for every specific
hardwired pair of numbers, say (4, 5), we might be able to define <N (4, 5). But the problem now is
that we will have to define this operator for each pair of numbers in N and there are infinitely many.

However if we extend the structure N with the addition operator ”+”, we just might be able
to fix this issue. So take the structure:

N1 := (N,=, S,+, 0) (8)

Then:
ϕ<(x, y) := ∃z (¬(z = 0) ∧ (x + z = y)) (9)

Notice that the existential quantifier looks for a z in our domain N such that ”(¬(z = 0)∧ (x+ z =
y))” holds by first trying and checking if this formula holds for S0 (i.e. if ”(¬(S0 = 0)∧(x+S0 = y))”
holds), if not then trying it for SS0, if not then trying it for SSS0 and so on. In other words, for
each pair (x, y) ϕ<(x, y) checks if such a z exists.

Case of the ”−N” operator

Now lets see if subtraction is first order definable: We know that the minus is defined over the
following domain and range:

− : N× N→ N (10)

i.e. the operator check if for a triple (m,n, p) the following holds ”m − n = p”. Now if we would
like to look at this operator as in previous examples in terms of its graph then we will define:

−(m,n) =

{
m− n if m ≥ n

0 if m < n

(Nomenclature: This is also called a monus function.)
The graph of this function allows us to define the operator in the following manner:

ϕ (x, y, z) := (ϕ<(x, y)→ z = 0) ∧ (¬ϕ<(x, y)→ x = y + z) (11)

Notice how we used our pre-defined wff ϕ<: In general, its good practice to make our formulas
modular as it allows what we write to become much more readable.
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Further questions of Definability

Several questions arise from the examples we have seen:

Can we for example get rid of S and define it only in terms of +? The short answer
is NO: How would we be able to generate any specific number using only addition and 0N . We will
need to define 1N , the first non zero element (and even if we have 1, it is hard to show why this is
possible).
The graph of the successor function will the look like this:

ϕs(x, y) := (x + 1 = y) (12)

Provided that I have 1N , I can get rid of S and get the following structure: N1 := (N,=,+, 0, 1).

can we get rid of the 1N all together? Notice that the only element for which x+x = x
is 0: 0 + 0 = 0 :

ϕ0(x) := (x + x = x) (13)

what about ϕ1(x) ? Can we design a FOL formula which defines the element 1 using only the
building block found in N1? This questions proves to be quite the challenge. We really could not
decided this question in class given the amount of time we have.

Is ”+” definable from ”S”? addition is defined as:

∀m,n, p ∈ N,m + n = S(. . . S(m) . . .)︸ ︷︷ ︸
n times

= p (14)

This is not valid syntax in FOL as we do not possess the necessary ”blocks” needed in order to
write down the fact that we need to apply the successor function an arbitrary number n of times
(for a fixed n, say 10 + 2, we can ”hardwire” this value. But, again, we cannot simply hardwire all
possible pairs values as there are infinitely many).

What happens if with extend N1 and add multiplication ? If we add multiplica-
tion to our structure, we gain in power and can express anything that a Turing Machine can (more
formally any Turing computable function). Just remember that all what your PC needs is + and ×.

Decidability and the limits of what is answerable

When we added multiplication into the picture, we actually reach certain limits of what we can
answer: We cannot decide on whether or not certain wff are satisfiable or valid in structure which
include multiplication (among other operators). The reason behind this is that we do not have a
systematic way of checking if these wffs are satisfiable (and specifically checking for wffs expressing
the membership of certain elements in sets). In other words we have no algorithm for checking
if such wff are satisfiable. FOL is proving to be too powerful. Can we remove certain things from
FOL and not have to encounter such problematic situations ? There are certain sets called ”semi-
decidable” and also called ”recursively enumerable” for which we can enumerate all their members
in systematic way. Now ultimately you could just enumerate all members of these sets and just
output yes if you find the element you are looking for. But it is very possible for you to wait forever
if the element turns out not to be in the set you are working with.
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Now what if you were given a subset of the naturals and were told that both the set and its
complement are semi-decidable (aka. recursively enumerable). Given these two facts, then we can
actually decide membership in X by generating in parallel X and the complement of X: sooner or
later our element will appear in one of the two lists in a finite amount of time.

Notation found in the Handouts

n � p designates exponentiation, i.e. np, and pr(x) designates checking if x is a prime number.
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