Instructor: Assaf Kfoury

Herbrand Theory and Gilmore's Algorithm

April 4, 2017

Scribe: Johnson Lam

(These lecture notes are **not** proofread and proof-checked by the instructor.)

1 Herbrand Theory and Review

Please reference the Compactness and Completeness handout for a detailed proof.

- Lemma 21: If ϕ is a first-order sentence, then ϕ and $\theta_{pr,sk}(\phi)$ are equisatisfiable
- Lemma 28: If ϕ is a first-order sentence, then ϕ and the Herbrand expansion $GR_Expansion(\theta_{pr,sl}(\phi))$ are equisatisfiable.
- Theorem 32: If Γ is a set of first-order sentences, finite of infinite, and $\Gamma' = Gr_Expansion(\theta_{pr,sk}(\Gamma))$ is the corresponding set of quantifier-free sentences, then the following assertions are true:
 - 1. Γ and Γ' are equisatisfiable (first-order logic).
 - 2. If Γ is finitely satisfiable, then Γ' is finitely satisfiable (first-order logic).
 - 3. Γ' (first-order logic) and $\chi(\Gamma')$ (propositional logic) are equisatisfiable.
 - 4. Γ' (first-order logic) and $\chi(\Gamma')$ (propositional logic) are finitely equisatisfiable.

1.1 In-class Example

Let p be a unary predicate symbol and f be a unary function symbol and let f be written as the following:

$$f(x) := fx$$
$$f(f(fx)) := f^3x$$

The following is a universal first-order sentence:

$$\theta_{pr,sk}(\phi) \triangleq \forall x(p(x) \land \neg p(f(x)))$$

Prenex: $\forall x$ Matrix: $p(x) \land \neg p(f(x))$

To derive the Herbrand Expansion, We now generate the set of ground terms of ϕ , delete the prenex, and substitute the ground terms for variables in the matrix to obtain the ground expansion- we include a constant c because there is no constant in ϕ .

Let the ground terms be

$$Gr_Terms(\phi) = \{c, fc, f^2c, \ldots\}$$

Then the ground expansion will be the following

$$\begin{aligned} Gr_Expansion(\theta_{pr,sk}(\phi)) &= \\ Gr_Expansion(\phi) &= \\ &= \{p(c), \neg p(fc), p(fc), \neg p(f^2c), \ldots\} \cup \{t_1 = t_2 | t_1, t_2 \in Gr_Terms(\phi)\} \end{aligned}$$

To generate the propositional logic form, consider the following:

$$\begin{split} \chi(Gr_Expansion(\theta_{pr,sk}(\phi))) &= \\ \chi(Gr_Expansion(\phi)) &= \\ &= \{\chi_{p(c)}, \chi_{\neg p(fc)}, \chi_{p(fc)}, \chi_{p(f^2c)}, \ldots\} \end{split}$$

2 Gilmore's Algorithm

Goal: Test whether a first-order setence is valid Input: first order setence ϕ Output: true or false if ϕ is valid

1.
$$k = 0$$

2. repeat:
$$k = k + 1$$

$$\bigwedge_{1 \le i \le k} \theta i$$

3. return results

Note

- Gilmore's Algorithm terminates iff the input sentence ϕ is valid, making it a semi-decision procedure
- Gilmore's Algorithm is highly inefficient and it's performance depends on the order in which the θ_i 's are generated

2.1 In-class Example

Let t be a ground term:

$$rac{orall x\phi}{\phi[x=t]}$$
 or $rac{
eg \exists x\phi}{
eg \phi[x=t]}$

Let c be a fresh constant symbol:

$$\frac{\exists x\phi}{\phi[x=c]} \text{ or } \frac{\neg \forall x\phi}{\neg \phi[x=c]}$$

The following is a set of first order sentences:

$$\Gamma = \{ \forall x (\neg p(x) \land p(fx)), p(l), \neg p(f^2l) \}$$

The ground terms are:

$$Gr_Terms(\Gamma) = \{l, fl, f^2l, ...\}$$

The following tableaux tree, substituted with the ground terms, shows that the set Γ is unsatisfiable:

