CS 512 Formal Methods, Spring 2014 Instructor: Assaf Kfoury

Herbrand Theory and Gilmore’s Algorithm
April 4, 2017 Scribe: Johnson Lam

(These lecture notes are not proofread and proof-checked by the instructor.)

1 Herbrand Theory and Review

Please reference the Compactness and Completeness handout| for a detailed proof.
e Lemma 21: If ¢ is a first-order sentence, then ¢ and 6, s;(¢) are equisatisfiable

e Lemma 28: If ¢ is a first-order sentence, then ¢ and the Herbrand expansion G Rgxpansion(Op s(¢))
are equisatisfiable.

e Theorem 32: If T is a set of first-order sentences, finite of infinite, and T = Gr_Expansion (0, «(T))
is the corresponding set of quantifier-free sentences, then the following assertions are true:

1. T and I are equisatisfiable (first-order logic).

2. If ' is finitely satisfiable, then " is finitely satisfiable (first-order logic).

3. I" (first-order logic) and x(I") (propositional logic) are equisatisfiable.

4. T (first-order logic) and x(I") (propositional logic) are finitely equisatisfiable.

1.1 In-class Example

Let p be a unary predicate symbol and f be a unary function symbol and let f be written as the
following:

f(x) = fx
F(f(f2)) = fou

The following is a universal first-order sentence:

Opr sk (9) = Va(p(z) A —p(f ()

Prenex: Vz
Matrix: p(z) A =p(f(x))

To derive the Herbrand Expansion, We now generate the set of ground terms of ¢, delete the prenex,
and substitute the ground terms for variables in the matrix to obtain the ground expansion- we
include a constant ¢ because there is no constant in ¢.

Let the ground terms be
Gr_Terms(¢) = {c, fe, f2c,...}
Then the ground expansion will be the following

Gr_Expansion(0p, s1(4)) =
Gr_Expansion(¢) =

= {p(c), ~p(fe), p(fe), ~p(f2e),..} U{t, = ta|t1,ty € Gr_Terms(4)}


http://www.cs.bu.edu/faculty/kfoury/UNI-Teaching/CS512/AK_Documents_Past_Semesters/compactness.pdf

To generate the propositional logic form, consider the following:

X(Gr_Expansion(Op, si(¢))) =
X(Gr_Ezpansion(¢)) =

= {Xp(0)» X=p(f)> Xp(fe)> Xp(f2c)> -}

2 Gilmore’s Algorithm

Goal: Test whether a first-order setence is valid
Input: first order setence ¢
Output: true or false if ¢ is valid

1. k=0
2. repeat: k=k—+1
N i
1<i<k
3. return results

Note

e Gilmore’s Algorithm terminates iff the input sentence ¢ is valid, making it a semi-decision
procedure

e Gilmore’s Algorithm is highly inefficient and it’s performance depends ont he order in which
the 6;’s are generated

2.1 In-class Example

Let t be a ground term:

\A0) —dx¢
o

dr=1 " ~dlr=1

Let ¢ be a fresh constant symbol:
Jx¢ —Vx¢

oz =d * =ole =

The following is a set of first order sentences:

I = {Va(-p(z) Ap(fz)),p(1), -p(f?1)}

The ground terms are:
Gr_Terms(T) = {1, fl, f%1,...}

The following tableaux tree, substituted with the ground terms, shows that the set I' is unsatisfiable:



—p(l) Vp(fx)

p(f1)
|
=(f1) v p(f21)



	Background
	In-class Example

	Gilmore's Algorithm
	In-class Example


