
CS 512 Formal Methods, Spring 2017 Instructor: Assaf Kfoury

First Order Tableau
Part II

April 13, 2017 Rawane Issa

(These lecture notes are not proofread and proof-checked by the instructor.)

Unification

Introduction

For more background on the history of unification, see first page Handout 27 . Note that unification
as an area is based on the work of computer scientist. The different variations of unification cover
the different complexity classes (you’ve probably already at least encountered problems which belong
to the class of polynomials: most of the search algorithms you know as a matter of fact!). The kind
of unification that we need for our purposes, i.e. first order unification, is however very limited
compared to other forms of unification that you may find in the literature.

What is the difference between unification and matching?

Unification deals with unifying terms, while matching is the problem of having two terms and
applying substitution to only one side in order to match both sides.

Preliminary Definitions

Most of the definitions you will find in this section are presented to you in Handout 27 page 4.

Regarding Substitutions. Before applying the algorithm which will unify your set of terms,
you should first note that substitutions are given to you in the form of a mapping from variables
to terms. You should however extend this mapping in order to get a mapping from terms to terms.

Definition: Unifier. A unifier is a substitution which, once applied to both sides of the term
gives syntactic equality.

Definition: MGU. A most general unifier (MGU in short) does the minimal amount of work
in order to unify a set of terms.

Rules for Unification.

You can find these rule in Handout 27 page 6.

1

http://www.cs.bu.edu/faculty/kfoury/UNI-Teaching/CS512-Spring17/Lecture/HD27.unification.pdf
https://en.wikipedia.org/wiki/Unification_(computer_science)
http://www.cs.bu.edu/faculty/kfoury/UNI-Teaching/CS512-Spring17/Lecture/HD27.unification.pdf
http://www.cs.bu.edu/faculty/kfoury/UNI-Teaching/CS512-Spring17/Lecture/HD27.unification.pdf

Algorithm Description. The algorithm for unification will work as follows: we will start
with a set of instances and we will have to put through a ”rewrite system”: The terms in this set
will be re-written according to a list of rules that will be presented to you in subsequent parts of
these notes. Once we are done applying these rules, we will either say that there are no unifiers or,
if we end without failure, say that we have a unifier.

Unification may be carried out according to 6 unification rules that we will briefly comment on
(please refer to Handout 27 page 6. for a more formal definition of each of these rules):

Figure 1: We are trying to unify x with a parse tree containing x as a leaf

1. Delete rule. if you have one of the equation such that a terms is ”
?
=” to itself, then it’s

redundant and you should delete it.

2. Decompose. if you have a function symbol applied to a set of terms, and the same func-
tion symbol applied to other terms, then you can get rid of the function and you unify its
arguments.

3. Conflict if you have a function symbol applied to a set of terms, and a different function
symbol applied to other terms, then you immediately fail and cannot unify.

4. Orient. if a terms is ”
?
=” a variable, then you can flip the equality and try to unify on the

resulting equation.

5. Eliminate. In this rule, you keep the equation you are dealing with. However, you then
apply a substitution to the rest of x with a non trivial binding which substitutes x with t.

6. Occurs check. If you reach a point where you can apply this rules then you automatically
get a failure. This rule applies when the equation you want to transform has a variable x on
the LHS (left hand side) and a term t on the RHS and x ∈ var(t) but t is not a variable (its
a parse tree): As you can see in Figure 1, This occurs when we are trying to unify x with
a parse tree which has x as a leaf. Whatever substitution you invent, you must apply it to
both sides of the equation and there is no way for the two sides to unify: you will have to do
it again on the leaf x in the parse tree, and both sides will never equalize. There is a kind of
a recursive situation that occurs here.

Example.

Suppose we have the following set of equations that we would like to unify:

S := {x ?
= f(a), g(x, x)

?
= g(x, y)} (1)

2

http://www.cs.bu.edu/faculty/kfoury/UNI-Teaching/CS512-Spring17/Lecture/HD27.unification.pdf

Then by applying the eliminate rule we get:

{x ?
= f(a), g(f(a), f(a))

?
= g(f(a), y)} (2)

We then apply a decompose rule and get:

{x ?
= f(a), f(a)

?
= f(a), f(a)

?
= y} (3)

Now we apply the delete rule in order to get ride of the redundant term:

{x ?
= f(a), f(a)

?
= y} (4)

Now orient finally gives us:

{x ?
= f(a), y

?
= f(a)} (5)

We have now arrived at a point where all the previously mentioned rule no longer apply. Since we
reached this state without previously reaching any failure then there must be a unifier/solution.
The unifier, as mentioned in class, must be ”staring us in the face”. If look carefully at equation
(5) we notice that the solution is actually:

σ := {x 7→ f(a), y 7→ f(a)} (6)

Time Complexity Considerations

Figure 2:

The algorithm that we have described is an adaptation, or rather a skeleton, of the Martelli
Montanari algorithm. As you may have already noticed, the time complexity we achieved in our

3

adaptation is exponential, while that of the Martelli-Montanari algorithm is polynomial: in order to
reach Martelli-Montanari O(n log(n)) time complexity, one would have to cleverly use and exploit a
particular kind of data structure that you may have already seen in one of your algorithm courses:
DAG’s.
In order to clearly see why our algorithm is exponential (and can easily ”blow up” in term of time
complexity), we will study the following example:

S := {x1
?
= f(x0, x0), x2

?
= f(x1, x1), x3

?
= f(x2, x2), . . . , xn

?
= f(xn−1), f(xn−1)} (7)

Applying the algorithm:

S
∗→ {x1

?
= f(x0, x0), x2

?
= f(f(x0, x0), f(x0, x0)), . . .} (8)

This can be seen as in the form presented in Figure 2.
We can already see that with an input of size O(n), we need O(2n) steps in order to produce the
output. In order to get ride of this exponential blow up then as previously mentioned, rather than
using trees, we can use DAGs.

Second Tableau Method: Free variables tableau

Figure 3:

In this section, we will describe how to use unification in order to get the second tableau method
that we’ve mentioned in previous sections.

You can think of any instance of tableau as a tree. Imagine now that in one instance of these
instance, there is a path π between literals A and ¬B, both of which are atomic. This scenario is
drawn for you in Figure 3. A and B could be of the form say A := Q(f(x, g(x, a)), z) (Q is a binary
predicate symbol) and B := Q(y, h(x)) (where h is a unary function). In such a scenario, we can
ask the following question: is there a substitution σ which is the MGU of A and B? If the answer
is yes, then close the branch/path π (only this path, not the whole tableau).

We will now provide a brief explanation of the ”Rule(σ)” found in Handout 28 page 9: If I have
a path π and would like to add a wff ϕ to it, then we append ϕ via T ⊕π ϕ (where T is the tableau
we have generated so far). This rule extends the tableau. (Xσ(v1) means that we closed the path
via the substitution σ applied to every v1 in the tree).

Soundness and Completeness

While we will not discuss this topic in full details, we will mention that the second tableau method is
also sound and complete (i.e. the extension of the method to first order does not violate soundness

4

http://www.cs.bu.edu/faculty/kfoury/UNI-Teaching/CS512-Spring17/Lecture/HD28.tableaux-for-FOL.pdf

and completeness). Soundness in this method means that If we can generate a closed tableau from
an initial set of sentences in PNF Γ, then Γ is unsatisfiable. Completeness in this method means
that if set of sentences in PNF Γ is unsatisfiable, then there exists a closed tableau generated from
Γ by these rules.

Comparison between First and Second Tableau methods

You can find an in-depth comparison of the two method Handout 28 pages 12 to 20. Notice that in
page 15, applying the ground method (with book keeping notation where for example 5 : 1 means
that the ID of the node is 5 and this node depends on node 1) will generate around 37 nodes. If
we however apply the second method then we gain alot: the tree will contain 5 nodes. We can
therefore already tell that there are certain scenarios (similar to the one on page 15) where we can
gain in efficiency if we apply one method rather than the other. There are many more strategies
and heuristics for using tableau in that you can find in the literature (we have only seen a very
small number of them).

That is all what we will mention regarding the topics of unification and tableau.

Introductory notes on Resolution in FOL

You will notice in this section that we have already done much of the work required in order to
extend resolution to FOL in the section on resolution in PL: All of the comments found in Handout
11 on resolution for PL will apply for FOL.

This section is based on Handout 29.

Resolution works (page 9) in the following manner: first we transform a wff into CNF, we then
skolemize it and get a universal sentence which is equi-satisfiable to our original sentence (Remem-
ber that skolemization will produce a sentence of the form ∀x1, . . . , xk ϕ, where ϕ is a quantifier
free matrix that we will turn into CNF).
We will then have something similarly to the dijunct C1 ∧ . . . ∧ Cn.

If we compare resolution in PL to resolution in FOL we notice that:

1. In PL C1 could be of the form C1 := {X ∨ Y ∨ ¬Z} also written as C1 := {X,Y,¬Z} for
convenience. In FOL C1 can be of the form C1 := {Q(f(x, z), z) ∨ ¬R(f(z))} also written in
the form of a set as C1 := {Q(f(x, z), z),¬R(f(z))}.

2. In PL, the resolution rule is applied to two literals which are the complements of one another.
In FOL, we will have the notion of a resolvent. however in the case of FOL the literals will
be atomic in this case and the resolution pair will be an atomic formula and another atomic
formula which are syntactical complements (via some unifier).

3. In FOL we will also have similar situations to PL where depending on the wff, either tableau
or resolution will work much better than the other method.

Assume now that we have two clauses C1 and C2 in FOL that are given to us in CNF. Also assume
that there are literals P (~s) ∈ C1 (where ~s = s1, . . . , sn)and ¬P (~t) ∈ C2 (where ~t = t1, . . . , tn).
Assume that there is a MGU for these two literals. This means that we can unify their respective

5

http://www.cs.bu.edu/faculty/kfoury/UNI-Teaching/CS512-Spring17/Lecture/HD28.tableaux-for-FOL.pdf
http://www.cs.bu.edu/faculty/kfoury/UNI-Teaching/CS512-Spring17/Lecture/HD11.resolution.pdf
http://www.cs.bu.edu/faculty/kfoury/UNI-Teaching/CS512-Spring17/Lecture/HD11.resolution.pdf
http://www.cs.bu.edu/faculty/kfoury/UNI-Teaching/CS512-Spring17/Lecture/HD29.resolution-for-FOL.pdf

arguments: MGU({s1
?
= t1, . . . , sn

?
= tn}). Then we can apply the rule:

C1 C2

(σ(C1)− {σP (~s)}) ∪ (σ(C2)− {σ¬P (~t)})
You might noticed that this idea is a generalization of what we did in PL.

6

