Limits of Formal Modeling in Propositional Logic and First-Order Logic

April 19, 2017

Tian Zhang

(These lecture notes are **not** proofread and proof-checked by the instructor.)

1 Two Kinds of Limits

- Complexity limits
- Expressiveness limits

2 The Pigeon Hole Principle

For more detail about The Pigeon Hole Principle, back to handout "Formal Modeling with Propositional Logic".

The Pigeon Hole Principle

For every natural number n > 2, the Pigeon Hole Principle (PHP) states: If n pigeons sit in (n-1) holes, then some hole contains more than one pigeon. We want to formalize PHP in propositional logic (PL). There are different ways of doing this, but perhaps the most natural is:

Use propositional atom $P_{i,j}$ to indicate that pigeon *i* is in hole *j*, where $1 \le i \le n$ and $1 \le j < n$. With this formal representation of *pigeon i is in hole j* we can formalize PHP with the following PL formula φ :

$$\varphi \triangleq \bigvee_{1 \leq i \leq n} \left(\bigwedge_{1 \leq j < n} P_{I,J} \right) \to \bigvee_{1 \leq k \leq n} \left(\bigvee_{1 \leq j < n} (P_{i,j} \land P_{k,j}) \right)$$
(1)

where \bigvee and \bigwedge are shorthand notation to write long sequences of conjunctions and disjunctions, respectively.

We now want a first-order sentence Ψ in the signature $\sum = R$, where R is a binary relation symbol and c is a constant symbol, such that:

Every structure Mn of the form $(\{1, 2, ..., n\}, R^{\mathcal{M}_n}, c^{\mathcal{M}_n})$ is a model of Ψ and the interpretation of Ψ in Mn expresses PHP_n.

Here is a possible first-order formulation of Ψ :

$$\Psi \triangleq (\forall x \exists y R(x, y)) \land (\forall x \neg R(x, c)) \rightarrow \exists v \exists w \exists y (\neg (v \doteq w) \land R(v, y) \land R(w, y))$$
(2)

where v, w are distincitive variables.

e.g we can use graph to present the above formulation

Figure 1:

Exercise: Translate Ψ into a propositional WFF n which depends on an additional parameter n > 2. (Ψ represents an infinite family of propositional WFFs, one ψ_n for every n > 2.)

Hint: Consider replacing every \forall by a \bigwedge and every \exists by a \bigvee .

$$\psi_n \triangleq (\bigwedge_{1 \leq i \leq n} \bigvee_{1 \leq j < n} \mathcal{P}_{ij}) \land (\bigvee_{1 \leq i \leq n} \neg \mathcal{P}_{in}) \to (\bigvee_{1 \leq i \leq n} \bigvee_{1 \leq j \leq n} \bigvee_{1 \leq k \leq n} (\mathcal{P}_{ik} \land \mathcal{P}_{jk}))$$
(3)

For The Pigeon Hole Principle, in particular, for the case n = 3, we get:

$$\varphi_3 \triangleq (\mathcal{P}_{11} \land \mathcal{P}_{12}) \lor (\mathcal{P}_{21} \land \mathcal{P}_{22}) \lor (\mathcal{P}_{31} \land \mathcal{P}_{32}) \rightarrow (\mathcal{P}_{11} \land \mathcal{P}_{21}) \lor (\mathcal{P}_{12} \land \mathcal{P}_{22}) \lor (\mathcal{P}_{11} \land \mathcal{P}_{31}) \lor (\mathcal{P}_{12} \land \mathcal{P}_{32}) \lor (\mathcal{P}_{21} \land \mathcal{P}_{31}) \lor (\mathcal{P}_{22} \land \mathcal{P}_{32})$$

By comparing φ_n and Ψ_n , we can get the following facts:

- A resolution proof of φ_n or Ψ_n is possible but does not help More precisely, any resolution proof of φ_n or Ψ_n has size at least Ω(2ⁿ)
- There are proofs of φ_n and Ψ_n using what is called extended resolution (not covered this semester) which have size $\mathcal{O}(n^4)$.
- : There are Hilbert-style proofs (not covered this semester) of φ_n and Ψ_n which have size at most $\mathcal{O}(n^{20})$.

3 How strong is first-order logic?

Two similar first-order sentences:

$$\theta_1 \triangleq \forall x \exists y (x < y \land prime(y) \land prime(y+2))$$
(4)

$$\theta_2 \triangleq \forall x \exists y (\neg (x \doteq 0) \to (x < y) \land (y \leqslant 2 \times x) \land prime(y))$$
(5)

both to be interpreted in the structure $\mathcal{N} \leq (\mathcal{N}; \times, +, 0, 1)$ and where prime() is a unary predicate that tests whether its argument is a prime number.prime() is first-order definable in \mathcal{N} .

 θ_1 formally expresses the *Twin-Prime Conjecture*, a long-standing open problem.

 θ_2 formally expresses the Bertrand-Chebyshev Conjecture, which was shown to be true by hand, before digital computers were invented

Bertrand-Chebyshev Conjecture (Cite from Wikipedia)

Bertrand's postulate is a theorem stating that for any integer n > 3, there always exists at least one prime number p with

$$n$$

Another formulation, where p_n is the *n*-th prime, is for $n \ge 1$

$$p_{n+1} < 2p_n \tag{7}$$

This statement was first conjectured in 1845 by Joseph Bertrand (18221900). Bertrand himself verified his statement for all numbers in the interval $[2, 3 \times 10^6]$. His conjecture was completely proved by Chebyshev (18211894) in 1852 and so the postulate is also called the BertrandChebyshev theorem or Chebyshev's theorem. Chebyshev's theorem can also be stated as a relationship with $\pi(x)$, where $\pi(x)$ is the prime counting function (number of primes less than or equal to x:

$$\pi(x) - \pi(\frac{x}{2}) \ge 1$$
, for all $x \ge 2$, (8)

Theorem: Skolem-Lowenheim

1. If φ is a first-order sentence such that, for every ≥ 1 , there is a model of φ with at least n elements, then φ has an infinite model.

First-order logic cannot enforce finiteness of models.

2. If φ is a first-order sentence which has a model (i.e., φ is satisfiable), then φ has a model with a countable universe.

First-order logic cannot enforce uncountable models.

Theorem

There is no first-order WFF $\psi(x, y)$ with two free variables x and y, over the signature $\{R, \doteq\}$ where R is a binary predicate symbol, such that for every graph model $\mathcal{M} = (M, R_{\mathcal{M}})$ and every $a, b \in \mathcal{M}$, it holds that:

$$|\mathcal{M}, a, b| = \psi \text{ iff there is a path from } a \text{ to } b$$
 (9)

Reachibility in graphs is not first-order definable.