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1 Two Kinds of Limits

• Complexity limits

• Expressiveness limits

2 The Pigeon Hole Principle

For more detail about The Pigeon Hole Principle, back to handout ”Formal Modeling with Propo-
sitional Logic”.

The Pigeon Hole Principle

For every natural number n > 2, the Pigeon Hole Principle (PHP) states: If n pigeons sit
in (n − 1) holes, then some hole contains more than one pigeon. We want to formalize PHP in
propositional logic (PL). There are different ways of doing this, but perhaps the most natural is:

Use propositional atom Pi,j to indicate that pigeon i is in hole j, where 1 6 i 6 n and 1 6 j < n.
With this formal representation of pigeon i is in hole j we can formalize PHP with the following
PL formula ϕ:

ϕ ,
∨

16i6n

(
∧

16j<n

PI,J)→
∨

16<k6n

(
∨

16j<n

(Pi,j ∧ Pk,j)) (1)

where
∨

and
∧

are shorthand notation to write long sequences of conjunctions and disjunctions,
respectively.

We now want a first-order sentence Ψ in the signature
∑

= R, cwhere R is a binary relation
symbol and c is a constant symbol, such that:

Every structure Mn of the form ({1, 2, ..., n}, RMn , cMn) is a model of Ψ and the interpretation
of Ψ in Mn expresses PHPn.
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Here is a possible first-order formulation of Ψ:

Ψ , (∀x∃yR(x, y)) ∧ (∀x¬R(x, c))→ ∃v∃w∃y(¬(v
.
= w) ∧R(v, y) ∧R(w, y)) (2)

where v, w are distincitive variables.

e.g we can use graph to present the above formulation

Figure 1:

Exercise: Translate Ψ into a propositional WFF n which depends on an additional parameter
n > 2. (Ψ represents an infinite family of propositional WFFs, one ψn for every n > 2.)

Hint: Consider replacing every ∀ by a
∧

and every ∃ by a
∨

.

ψn , (
∧

16i6n

∨
16j<n

Pij) ∧ (
∨

16i6n

¬Pin)→ (
∨

16i6n

∨
16j6n

∨
16k6n

(Pik ∧ Pjk)) (3)

For The Pigeon Hole Principle, in particular, for the case n = 3, we get:

ϕ3 , (P11 ∧ P12) ∨ (P21 ∧ P22) ∨ (P31 ∧ P32)→
(P11 ∧ P21) ∨ (P12 ∧ P22) ∨ (P11 ∧ P31) ∨ (P12 ∧ P32) ∨ (P21 ∧ P31) ∨ (P22 ∧ P32)

By comparing ϕn and Ψn, we can get the following facts:

• A resolution proof of ϕn or Ψn is possible but does not help
More precisely, any resolution proof of ϕn or Ψn has size at least Ω(2n)

• There are proofs of ϕn and Ψn using what is called extended resolution (not covered this
semester) which have size O(n4).

• : There are Hilbert-style proofs (not covered this semester) of ϕn and Ψn which have size at
most O(n20).

3 How strong is first-order logic?

Two similar first-order sentences:

θ1 , ∀x∃y(x < y ∧ prime(y) ∧ prime(y + 2)) (4)

θ2 , ∀x∃y(¬(x
.
= 0)→ (x < y) ∧ (y 6 2× x) ∧ prime(y)) (5)
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both to be interpreted in the structure N 6 (N ;×,+, 0, 1) and where prime() is a unary predicate
that tests whether its argument is a prime number.prime() is first-order definable in N .

θ1 formally expresses the Twin-Prime Conjecture, a long-standing open problem.

θ2 formally expresses the Bertrand-Chebyshev Conjecture, which was shown to be true by
hand, before digital computers were invented

Bertrand-Chebyshev Conjecture (Cite from Wikipedia)

Bertrand’s postulate is a theorem stating that for any integer n > 3, there always exists at least
one prime number p with

n < p < 2n− 2 (6)

Another formulation, where pn is the n-th prime, is for n ≥ 1

pn+1 < 2pn (7)

This statement was first conjectured in 1845 by Joseph Bertrand (18221900). Bertrand himself
verified his statement for all numbers in the interval [2, 3 × 106]. His conjecture was completely
proved by Chebyshev (18211894) in 1852 and so the postulate is also called the BertrandChebyshev
theorem or Chebyshev’s theorem. Chebyshev’s theorem can also be stated as a relationship with
π(x),, where π(x)is the prime counting function (number of primes less than or equal to x:

π(x)− π(x2 ) ≥ 1, for all x ≥ 2, (8)

Theorem: Skolem-Lowenheim

1. If ϕ is a first-order sentence such that, for every ≥ 1, there is a model of ϕ with at least n
elements, then ϕ has an infinite model.

First-order logic cannot enforce finiteness of models.

2. If ϕ is a first-order sentence which has a model (i.e., ϕ is satisfiable), then ϕ has a model
with a countable universe.

First-order logic cannot enforce uncountable models.

Theorem

There is no first-order WFF ψ(x, y) with two free variables x and y, over the signature {R, .=}
where R is a binary predicate symbol, such that for every graph model M = (M,RM) and every
a, b ∈M, it holds that:

M, a, b| = ψ iff there is a path from a to b (9)

Reachibility in graphs is not first-order definable.
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