# Limits of Formal Modeling in Propositional Logic and First-Order Logic 

April 19, 2017
Tian Zhang
(These lecture notes are not proofread and proof-checked by the instructor.)

## 1 Two Kinds of Limits

- Complexity limits
- Expressiveness limits


## 2 The Pigeon Hole Principle

For more detail about The Pigeon Hole Principle, back to handout "Formal Modeling with Propositional Logic".

## The Pigeon Hole Principle

For every natural number $n>2$, the Pigeon Hole Principle (PHP) states: If $n$ pigeons sit in $(n-1)$ holes, then some hole contains more than one pigeon. We want to formalize PHP in propositional logic (PL). There are different ways of doing this, but perhaps the most natural is:

Use propositional atom $P_{i, j}$ to indicate that pigeon $i$ is in hole $j$, where $1 \leqslant i \leqslant n$ and $1 \leqslant j<n$. With this formal representation of pigeon $i$ is in hole $j$ we can formalize PHP with the following PL formula $\varphi$ :

$$
\begin{equation*}
\varphi \triangleq \bigvee_{1 \leqslant i \leqslant n}\left(\bigwedge_{1 \leqslant j<n} P_{I, J}\right) \rightarrow \bigvee_{1 \leqslant<k \leqslant n}\left(\bigvee_{1 \leqslant j<n}\left(P_{i, j} \wedge P_{k, j}\right)\right) \tag{1}
\end{equation*}
$$

where $\bigvee$ and $\Lambda$ are shorthand notation to write long sequences of conjunctions and disjunctions, respectively.

We now want a first-order sentence $\Psi$ in the signature $\sum=R, c$ where $R$ is a binary relation symbol and $c$ is a constant symbol, such that:

Every structure Mn of the form $\left(\{1,2, \ldots, n\}, R^{\mathcal{M}_{n}}, c^{\mathcal{M}_{n}}\right)$ is a model of $\Psi$ and the interpretation of $\Psi$ in Mn expresses $\mathrm{PHP}_{n}$.

Here is a possible first-order formulation of $\Psi$ :

$$
\begin{equation*}
\Psi \triangleq(\forall x \exists y R(x, y)) \wedge(\forall x \neg R(x, c)) \rightarrow \exists v \exists w \exists y(\neg(v \doteq w) \wedge R(v, y) \wedge R(w, y)) \tag{2}
\end{equation*}
$$

where $v, w$ are distincitive variables.
e.g we can use graph to present the above formulation


Figure 1:
Exercise: Translate $\Psi$ into a propositional WFF n which depends on an additional parameter $n>2$. ( $\Psi$ represents an infinite family of propositional WFFs, one $\psi_{n}$ for every $n>2$.)

Hint: Consider replacing every $\forall$ by a $\Lambda$ and every $\exists$ by a $\vee$.

$$
\begin{equation*}
\psi_{n} \triangleq\left(\bigwedge_{1 \leqslant i \leqslant n} \bigvee_{1 \leqslant j<n} \mathcal{P}_{i j}\right) \wedge\left(\bigvee_{1 \leqslant i \leqslant n} \neg \mathcal{P}_{i n}\right) \rightarrow\left(\bigvee_{1 \leqslant i \leqslant n} \bigvee_{1 \leqslant j \leqslant n} \bigvee_{1 \leqslant k \leqslant n}\left(\mathcal{P}_{i k} \wedge \mathcal{P}_{j k}\right)\right) \tag{3}
\end{equation*}
$$

For The Pigeon Hole Principle, in particular, for the case $\mathrm{n}=3$, we get:

$$
\begin{array}{r}
\varphi_{3} \triangleq\left(\mathcal{P}_{11} \wedge \mathcal{P}_{12}\right) \vee\left(\mathcal{P}_{21} \wedge \mathcal{P}_{22}\right) \vee\left(\mathcal{P}_{31} \wedge \mathcal{P}_{32}\right) \rightarrow \\
\left(\mathcal{P}_{11} \wedge \mathcal{P}_{21}\right) \vee\left(\mathcal{P}_{12} \wedge \mathcal{P}_{22}\right) \vee\left(\mathcal{P}_{11} \wedge \mathcal{P}_{31}\right) \vee\left(\mathcal{P}_{12} \wedge \mathcal{P}_{32}\right) \vee\left(\mathcal{P}_{21} \wedge \mathcal{P}_{31}\right) \vee\left(\mathcal{P}_{22} \wedge \mathcal{P}_{32}\right)
\end{array}
$$

By comparing $\varphi_{n}$ and $\Psi_{n}$, we can get the following facts:

- A resolution proof of $\varphi_{n}$ or $\Psi_{n}$ is possible but does not help More precisely, any resolution proof of $\varphi_{n}$ or $\Psi_{n}$ has size at least $\Omega\left(2^{n}\right)$
- There are proofs of $\varphi_{n}$ and $\Psi_{n}$ using what is called extended resolution (not covered this semester) which have size $\mathcal{O}\left(n^{4}\right)$.
- : There are Hilbert-style proofs (not covered this semester) of $\varphi_{n}$ and $\Psi_{n}$ which have size at most $\mathcal{O}\left(n^{20}\right)$.


## 3 How strong is first-order logic?

Two similar first-order sentences:

$$
\begin{gather*}
\theta_{1} \triangleq \forall x \exists y(x<y \wedge \operatorname{prime}(y) \wedge \operatorname{prime}(y+2))  \tag{4}\\
\theta_{2} \triangleq \forall x \exists y(\neg(x \doteq 0) \rightarrow(x<y) \wedge(y \leqslant 2 \times x) \wedge \operatorname{prime}(y)) \tag{5}
\end{gather*}
$$

both to be interpreted in the structure $\mathcal{N} \leqslant(\mathcal{N} ; \times,+, 0,1)$ and where $\operatorname{prime}()$ is a unary predicate that tests whether its argument is a prime number.prime() is first-order definable in $\mathcal{N}$.
$\theta_{1}$ formally expresses the Twin-Prime Conjecture, a long-standing open problem.
$\theta_{2}$ formally expresses the Bertrand-Chebyshev Conjecture, which was shown to be true by hand, before digital computers were invented

## Bertrand-Chebyshev Conjecture (Cite from Wikipedia)

Bertrand's postulate is a theorem stating that for any integer $n>3$, there always exists at least one prime number $p$ with

$$
\begin{equation*}
n<p<2 n-2 \tag{6}
\end{equation*}
$$

Another formulation, where $p_{n}$ is the $n$-th prime, is for $n \geq 1$

$$
\begin{equation*}
p_{n+1}<2 p_{n} \tag{7}
\end{equation*}
$$

This statement was first conjectured in 1845 by Joseph Bertrand (18221900). Bertrand himself verified his statement for all numbers in the interval $\left[2,3 \times 10^{6}\right]$. His conjecture was completely proved by Chebyshev (18211894) in 1852 and so the postulate is also called the BertrandChebyshev theorem or Chebyshev's theorem. Chebyshev's theorem can also be stated as a relationship with $\pi(x)$,, where $\pi(x)$ is the prime counting function (number of primes less than or equal to $x$ :

$$
\begin{equation*}
\pi(x)-\pi\left(\frac{x}{2}\right) \geq 1, \text { for all } x \geq 2 \tag{8}
\end{equation*}
$$

## Theorem: Skolem-Lowenheim

1. If $\varphi$ is a first-order sentence such that, for every $\geq 1$, there is a model of $\varphi$ with at least n elements, then $\varphi$ has an infinite model.

First-order logic cannot enforce finiteness of models.
2. If $\varphi$ is a first-order sentence which has a model (i.e., $\varphi$ is satisfiable), then $\varphi$ has a model with a countable universe.

## First-order logic cannot enforce uncountable models.

## Theorem

There is no first-order WFF $\psi(x, y)$ with two free variables x and y , over the signature $\{R, \doteq\}$ where $R$ is a binary predicate symbol, such that for every graph model $\mathcal{M}=\left(M, R_{\mathcal{M}}\right)$ and every $a, b \in \mathcal{M}$, it holds that:

$$
\begin{equation*}
\mathcal{M}, a, b \mid=\psi \text { iff there is a path from a to } b \tag{9}
\end{equation*}
$$

Reachibility in graphs is not first-order definable.

