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1 Preamble

I wrote the bulk of these notes for a one-semester seminar in Fall 1974, which I taught when I was
a postdoc at MIT shortly after I completed my PhD. I initially typed them using an IBM Selectric
typewriter at a time when electronic typesetting hardly existed. In the mid-1980’s, I re-typed them
using LaTeX (which was only developed in the early 1980’s). Over the years, I periodically referred
to them in courses I taught at different institutions, typically in various courses related to formal
methods in computer science. I also made slight adjustments, in particular in relation to books that
did not exist in the mid-1970’s and books that were later re-printed by new publishers (because
their original publishers had gone out of business). I used the notes again for a one-semester course
on mathematical logic in Fall 1995, in the Mathematics Dept at Boston University.

Certain concepts and results of mathematical logic have been viewed and used differently over the
years. Some have gained in importance, others have lost much of their centrality. The perspective
in these notes is very much from the 1970’s and 1980’s, which I learned from my own teachers in
graduate school. I did not try to change that pespective whenever I went back and re-read my notes,
partly because I wanted to avoid the effort of recasting the whole document and partly because 1
thought there is a value in showing how the field has shifted since the 1970’s and 1980’s — this will
be clear from a careful comparison with current presentations of formal proof systems for first-order
logic. At the end, even though the presentation in these notes may be obsolete or ‘old-fashioned’
in places, I believe much of the contents will remain part of the canon of mathematical logic.

I give a few examples of that shift in perspective:
1. Which comes first, compactness or completeness?

Many now view that compactness comes first, which is also my view. It used to be the other way
around. Additional comments on this reversal between compactness or completeness are in my
notes Compactness and Completeness of Propositional Logic and First-Order Logic (click here to
download).

2. What else is there to do of practical significance after the NP-completeness of propositional
satisfiability?

It turns there is plenty to do. Witness the explosion in research related to what are called SAT
Solvers and SMT Solvers in the last two or three decades. This is research that spans from the
very theoretical to the very practical.

3. Is it possible to do good research in mathematical logic without knowing anything about com-
puter science — and vice-versa, good research in computer science without knowing anything
about mathematical logic?

The two fields were always recognized as being somehow related, if only because most of the pioneers
of computer science in the 1950’s and 1960’s, and their precursors in the 1930’s and 1940’s when
there was no separate discipline called ‘computer science’, were trained as mathematical logicians.
But the relationship seemed similar to that between mathematics and engineering, say, in that the


http://www.cs.bu.edu/faculty/kfoury/UNI-Teaching/CS512/AK_Documents/First-order-logic/compactness+completeness.pdf

former simply provided the formulas and formalisms to do the latter. One can be an excellent
engineer without contributing anyting new to mathematics, and vice-versa. However, what has
gradually emerged in recent decades is that, in many core areas of computer science, good research
is in fact good research in mathematical logic. The integration between the two fields — at least in
such areas as foundations of programming languages, model checking, automated proof assistants,
and many others — is such that it is not possible to dissociate between the two. It is no longer an
external relationship, as it is between mathematics and engineering, but an increasingly organic
and mutually beneficial interaction. Additional comments on the deepening integration between
mathematical logic and computer sicence are in my article Mathematical Logic in Computer Science
(click here to download).


https://arxiv.org/abs/1802.03292

2 Hilbert-Style Proof Systems

A deductive calculus such as the one given in Enderton’s book, Section 2.4, is often called a Hilbert-
style proof (or ariomatic) system — or more simply, a Hilbert system. But there are many variations
of Hilbert systems, each defined by a collection of axiom schemes and a collection of inference rules.
It is a matter of taste and convenience how we choose axiom schemes and inference rules (so that
the resulting system is both sound and complete).

The system in Enderton’s book, as well as all the systems for first-order logic except for one (System
F) which we list below, include among the logical axioms “all generalizations of tautologies” or “all
closed tautologies” or “all tautologies”. A tautology means a substitution instance of a propositional
(or sentential) tautology, just as it is defined in Enderton’s, page 106. Propositional tautologies in
Enderton’s are defined semantically, page 34. But it is also possible to set up a Hilbert system for
propositional logic, which derives exactly all the propositional tautologies, i.e. so that the resulting
proof system is “sound” and “complete”. Enderton does not present any deductive calculus for
propositional logic and, therefore, he does not need to prove any soundness and completeness result
for it; he restricts his presentation of propositional logic to its semantics.

A Hilbert system for propositional logic
a, B and v denote arbitrary propositional wif’s.

o Aziom schemes

—(a=(B—a);
—((a=(B—=7) = (a=8) = (a=));
— (78— —a) = (=8 —=a) = ).

o Inference rules

« a—

8

— Modus Ponens:

The preceding proof system for propositional logic can be found in many texts, for example in [12].
It is not the only Hilbert system for propositional logic; others are given in Sections 1.10, 1.14, and
1.15 in [2], and in Section 19 in [9].!

We next list a few alternative formulations of Hilbert-style proof systems for first-order logic. We
start with a system which is very close to the system in Enderton’s book.

System A

Use the following convention: ¢(z) denotes any wiff which has no free variable other than =z, and
©(c) denotes the result of substituting the constant symbol ¢ for every free occurrence of x in (z).
a, ¥ and 0 denote arbitrary wif’s (satisfying whatever restrictions are added).

! Although the Hilbert system for propostional logic in [9] has relatively many axiom schemes, a total of ten, it
has the advantage that by omitting just one of them (corresponding to the law of “excluded middle”) the result is a
Hilbert system for intuitionistic propositional logic — more on this in later sections.



o Aziom schemes

A1l All closed tautologies;

A2 (Vo p(x)) = ¢(c) ;

A3 p(c) = (Fz p(2)) ;

A4 All generalizations of x ~ z ;

A5 All generalizations of x ~ y — (o — /), where « is atomic and o/ is obtained from «

by replacing zero or more occurrences of x by .

o Inference rules

0
A6 Modus Ponens: W ;
%
A7 Generalization: v elo) provided constant ¢ does not occur in ¢(z) nor in v;
¥ = (Vo o(x))
plc) = ¢

A8 Generalization:

provided constant ¢ does not occur in ¢ nor in 1.

Bz p(x)) = ¥

Note that the axiom scheme A2 above is more restrictive than the one on page 104 of Enderton’s
book, which is:

(Vx o) — of provided t is substitutable for z in «

where ¢ is not restricted to a constant symbol and, therefore, one has to worry about capture of free
variables in ¢ after substituting it for « in . Moreover, Enderton allows « to have free variables
other than x.



System B
System B is a variation on System A, but simpler, with the same notational conventions.

o Aziom schemes

B1 All closed tautologies;

B2 (Vz ¢(z)) = ¢(c) ;

B3 All generalizations of x =~ x ;

B4 All generalizations of z ~ y — (o — o), where « is atomic and o’ is obtained from «

by replacing zero or more occurrences of x by y.

o Inference rules

P P — 0
0

B5 Modus Ponens:

B6 Generalization:

p(c) > 4
(Fz p(x)) =

provided ¢ does not occur in ¢ nor in ¢ .

System C

System C is a variation on System B, exhibiting a useful symmetry for some arguments, with the
same notational conventions as before.

o Aziom schemes

C1 All closed tautologies;
C2 All generalizations of z =~ x ;
C3 All generalizations of z ~ y — (o — o), where « is atomic and o’ is obtained from «

by replacing zero or more occurrences of x by y.

e Inference rules

0
C4 Modus Ponens: 4 ;Z) - :
C5 Generalization: p(c) = ¥ ;
(Vo o(z)) = ¢
C6 Generalization: E @(Cz )—> ¥ 7 provided ¢ does not occur in ¢ nor in 1) .
T plx)) —

System D

System D is a variation on System C, with the same notational conventions. But note that System
D does not include Modus Ponens as one of its inference rules.



o Aziom schemes

D1 All closed tautologies;
D2 All generalizations of x ~ z ;
D3 All generalizations of x ~ y — (o — ), where « is atomic and o’ is obtained from «

by replacing zero or more occurrences of x by .

o Inference rules
(Ve o(z)) = ¢(c) = ¢
(G

((Fz p(x)) = ©(c)) = ¢
(8

D4 Generalization:

Y

provided ¢ does not occur in ¢ nor in .

D5 Generalization:

Reference: Without the axiom schemes for the equality symbol =, Systems A, B, C, and D are
basically the systems given in Chapter VIII of [15]. In [15], all the logical connectives {—, V, A, —}
and both quantifiers {3,V} are included as primitive symbols in the syntax of wil’s, in contrast
to Enderton who includes only {—, —,V} as primitives, leaving the other symbols {V, A, 3} as
abbreviations.

Exercise 1: Show that (i) the proof system in Enderton’s book, in Section 2.4, is equivalent to
System A, (ii) System A is equivalent to System B, (iii) System B is equivalent to System C, and
(iv) System C is equivalent to System D. Thus, all of these 5 formal proof systems are equivalent,
i.e. everything deducible in one is deducible in the other and vice-versa.



System E

System E is again very close to the system in Enderton’s book. ¢ and ¢ are arbitrary wff’s, x and
y arbitrary variables, and ¢ an arbitrary term.

o Axiom schemes

E1 All tautologies;

E2 (Vz (¢ = v¢)) = (¢ — (Yx ¢)) provided variable x is not free in ¢ ;

E3 (Vz ¢) — ¢f provided t is substitutable for z in ¢ ;

F4 z~x;

E5 x =~y — (t = t'), where ¢’ is obtained from ¢ by replacing one occurrence of = by vy ;
E6 z ~ y — (p = ¢'), where ¢ is atomic and ¢’ is obtained from ¢ by replacing one

occurrence of z by y ;

o Inference rules

E7 Modus Ponens: w ;
(4
C P
E8 Generalization: ———
(Vz @)

Reference: System E is the system in Chapter 1 of [3]. The primitive symbols in [3] are {—, A, V},
so that (¢ — 1) (in the axiom schemes and inference rules) is the usual abbreviation for (¢ A —1)).

Exercise 2: Show the proof system in Enderton’s book, in Section 2.4, is equivalent to System E.



System F

By comparison to the preceding systems, System F has fewer axiom schemes but more inference
rules. Its single propositional axiom scheme and its many inference rules make it very different
from the preceding Hilbert systems, and in fact quite close to a Gentzen system (more on this in
Section 4).

o Aziom schemes

F1 —aVa;
F2 of — (3 «), provided ¢ is substitutable for x in «;
F3rz~==z

F4d (xi=y1 = (= (en = yn = fr1-2n = fy1---yn) -+)) , where f is any function
symbol of arity n > 1 ;

F5 (1 = y1 —» (- = (xn = yp — (Pr1---2y = Py1---yn))---)) , where P is any
predicate symbol of arity n > 1.

o Inference rules

F6 Expansion: «
BV«
V
F7 Contraction: ava ;
o
V(pV
F8 Associativity: M :
(aVB)Vy
V -V
F9 Cut Rule: avp avy ;
BV
: o= B : :
F10 F-Introduction Rule: ———— provided = does not occur free in 5.
(Fx a) = B

Reference: System F is basically the system in Chapter 2 of [14]. The primitive symbols in [14]
are {—,V, 3}, so that (o — ) is the usual abbreviation for (—a V 3).

Exercise 3: Show the proof system in Enderton’s book, in Section 2.4, is equivalent to System F.



3 Tableaux Systems, Gentzen Systems, Natural Deduction

There are formal proof systems other than Hilbert-style for classical logic, whether propositional,
first-order, or higher-order. Among these alternatives are tableauz, Gentzen, and natural deduction
systems. None of these are discussed in Enderton’s book.

In a Hilbert system, finding a derivation for a wif may be a tricky business, as one has to guess
which axiom and which inference rule to use without systematic reliance on the syntax of the given
wif. In tableaux, Gentzen, and natural deduction systems, there is less of this kind of guesswork,
and derivations (or refutations) are largely syntax-directed. In particular, these alternative systems
are more suitable for automatic theorem-proving? and allow for elegant presentations of intuition-
istic logic®. One distinctive feature of these systems, not shared by Hilbert systems, is that they
systematically and more efficiently produce a formal proof for a given wif — if it is indeed a valid
wif, and if it is not, these systems will sometimes (but not always!) produce a counterexample to
its validity. (Of course, we can also use a Hilbert system to produce a formal proof for a valid
wif, typically by some exhaustive listing of all possible derivations, but this is not efficient at all!)
Actually, in some variants of these alternative proof systems, it becomes very clear that a formal
proof is basically a record of “an unsuccessful attempt to produce a counterexample”. This is a
simple idea, but it seems to be an insight of considerable importance in many applications.*

Not to give the wrong impression, there have been attempts to do automatic theorem-proving as
well as presentations of intuitionistic logic based on Hilbert systems (of one form or another), but
these are generally ill-suited for a computational task and often seem to obscure it by syntactic
details. Of course, there are also subjective considerations (e.g. personal taste, familiarity, etc.)
in choosing an appropriate proof system to work with. Moreover, although Hilbert systems are
“inefficient and barbarously unintuitive”,® they have advantages. First, the simplicity of their
relatively few inference rules makes them suitable for encoding into arithmetic.® Second, it is
relatively easy to tamper with the axiom schemes of Hilbert systems in order to adapt them to
non-classical logics.”

Concerning tableaux systems, Smullyan gives a particularly lucid presentation in [15] (where
tableaux are called “analytic tableaux”) for classical logic, both propositional and first-order. Bell
and Machover in [2], and then more recently Nerode and Shore in [12], also give presentations of
classical logic and intuitionistic logic, both propositional and first-order, based on tableaux.

I will not say anything more about tableaux systems, in part because they are really duals of
Gentzen systems: Whereas a Gentzen system systematically searches for a formal proof in tree
form, a tableaux system systematically searches for a refutation in upside-down tree form. A node
in a Gentzen proof tree corresponds to a branch in a tableau (more or less), and the Elimination
Theorem for tableaux corresponds to Gentzen’s Hauptsatz — for a definition of all these concepts,
see the forementioned references (in relation to tableaux sysems) and the references in Section 4
(in relation to Gentzen systems). One of the best expositions of the relationship between tableaux

2 Automatic theorem-proving is a very active research area in computer science, where the “resolution” methods
are essentially based on Gentzen systems or tableaux systems. For further reading on this, see [6] or [13] or [4].

3Intuitionistic logic is important in several foundational areas of computer science, notably in relation to typed
A-calculi and programming language theory.

“Further elaboration on this last point can be found in Chapter 14 of [13].

®Direct quote from [8], page 32.

SWithout arithmetization of syntax we cannot reach Gédel’s Incompleteness Theorem. See Ch. 3 in Enderton’s.

"One such logic is intuitionism, for which we nevertheless prefer to use a proof system based on natural deduction.
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and Gentzen systems can be found in [15]. The view that tableaux are just a variant of Gentzen
systems is discussed in some detail in [16].

Section 4 and Section 5 present a Gentzen system and a natural-deduction system, respectively, for
classical logic.

Section 6 will be devoted to intuitionistic logic. Formal proof systems for intuitionism can be of
the Hilbert, or tableaux, or Gentzen, or natural-deduction variety. However, as already indicated,
Hilbert systems are the least capable of revealing the computational aspects of the logic and its
connections with typed A-calculi.® By the “computational” aspects we mean this: When confronted
with a sentence o, instead of asking “when is o true?” or “when is o derivable?”, we ask “what is
a proof of o7”. While tableaux and Gentzen systems are better adapted to the task than Hilbert
systems, the simplest way to consider this computational content of intuitionism is to use natural
deduction. In particular, using natural deduction, it is easy to exhibit the so-called Curry-Howard
isomorphism between intuitionistic logics and typed A-calculi (“wff’s and types are the same, proofs
and A-terms are the same”). More can be found in the early chapters of [7] on the beneficial effects
of natural deduction.

The proof system in Section 6 will therefore be the natural-deduction system in Section 5 appro-
priately restricted to intuitionistic logic, both propositional and first-order.

8 A presentation of Hilbert systems for intuitionism can be found in Sections 9.8 and 9.9 of [2], or in Sections 19
and 23 of [9]. One advantage of the presentation in [9] is that it is extendable to a Hilbert system for classical logic
by adding just one axiom scheme, namely (—-—a — a) or (—a V @), the law of “excluded middle” — see Section 6.
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4 Gentzen Systems

We need some preliminary definitions. A sequent is a pair of finite (possibly empty) sequences of
wif’s, say T' = 71,...,7 and A = 61,..., 0y, which we write as T'|A or as y1,...,7|d1,. .., dm.
The first part I" is the antecedent of the sequent, and the second part A the succedent. If T' is
empty, we write |A for the sequent; if A is empty, we write I'|; and if both are empty, we write |.

For an intuitive understanding of the axiom scheme and inference rules below, keep in mind the
following: If ¢,m > 1, the sequent 71,...,7¢|d1,...,d, will have the same meaning as the wif
YA Ay = 01V. ..V . More precisely, given an interpretation (2, s), i.e. a structure 2 together
with a valuation of the variables s: V — ||, (2, s) satisfies the sequent ~v1,...,7v¢|01,. .., 0 iff

2A,8) E mA-Avw—=01V...Vin

This extends to the case when £ = 0 or m = 0: If £ = 0, the conjunction 1 A -+ Ay is viewed
as “true” and the sequent is equivalent to d1 V...V &, if m = 0, the disjunction d; V...V &, is
viewed as “false” and the sequent is equivalent to =(y1 A+ A7) or =y V-V =y if £ =m =0,
the sequent | is unsatisfiable.

About notation

In Kleene’s presentation [9], on which this section is based, as well as in many other presentations
of Gentzen systems (e.g. see [6] or [15]), a sequent is written as '=A (with a boldface arrow)
and our arrow “—” (not boldface) is the same as their “2”. To avoid confusion with our “—”, we
use “|” (boldface bar) instead of “—” in sequents. The notation is this section is similar (but not
quite identical) to Dummett’s [5], which uses another symbol yet, namely “:”, to separate the two
parts of a sequent. (We cannot use “:” as the sequent separator because we will need it for another
purpose when we consider intuitionistism and its connection to typed A-calculi.)

In recent years, some people have started to use “” to separate the two parts of a sequent (e.g.
see Chapter 5 in [7]). This has been a common practice, for example, when a type-inference system
is set up for a typed A-calculus, where an expression of the form “A + M : 7”7 can be viewed as a
sequent. This is perhaps unfortunate — or, in any case, it goes against the traditional practice of
reserving “I”, a symbol outside the syntax of formal expressions, to assert that a formal expression
can be derived using axioms and inference rules. What is a convenient shorthand to say that a
“sequent with antecedent I" and succedent A is derivable”? In our notation, we write + I'|A | and
in Kleene’s - T'—A . But it is clearly confusing to write = I'F A | where the two occurrences of
F mean two different things.

The symbol “|” is not in the syntax of wif’s, but in the syntax of sequents. The rules of the Gentzen
system below transform formal expressions that are sequents into other such formal expressions.

It is easier to see the organization of a Gentzen system by first considering the simpler case of
propositional logic. We later point out how to extend the system for the case of first-order logic.

Propositional logic

I', A, ©, and A range over finite sequences of zero or more wif’s. «, 5, v and § range over the set
of wif’s. There is only one axiom scheme, and many inference rules. The latter are divided into

12



logical and structural. All logical rules are “introduction” rules, in the sense that they introduce
one of the logical connectives —, A, V, =, on the left or on the right of a sequent, and they are thus
given the suggestive names (—|), (A|), (V]), (=]) (introduction on the left) and (| =), (|A), (|V),
(]=) (introduction on the right).

o Aziom scheme «a | «
e Logical inference rules

— introduction of —

AlAa BT|6O a,T | 0,3

a5 BAT| A6 =1 Y (1=)

— introduction of A

a,T'| © BT |6 rie,a T]0,53

aANB,T | © (D) aANB,T | © (D) I'|6,anp (1)

— introduction of V

a, | © g,T|© I'| e« r|e,gs
\/ e — s —
aVvpT|e r|e,avp r|e,avp

— introduction of —

LI “T1o 5
-a,T | © ) r'| e « )

o Structural inference rules

— weakening
L L
%I e I'|e,y
— contraction
7,7 T | © |6,y
—F (C]) ——— ([0)
v, | © r|e,y

13



— exchange

A6,v,T | © I'|A~,6,0

E _ E
Av,6,T | © €D I'| AG,Y,0© (%)

— cut

AlAy ~T]6
AT |A©

(Cut)

Let Gy denote the Gentzen system described above for propositional logic. In the examples to follow,
a double line in a derivation (with the citation of a rule) stands for zero or more applications of
the weakening, contraction, and exchange rules (following the application of the cited rule).

Example 1. For arbitrary wff’s o and 3, the following is a valid derivation in Gg:

Example 2. For an arbitrary wif «, the following are valid derivations in Gy:

ol ol
[ o e <f> [ o e <ﬁ|>
V - —
| oV -« -—a | «
| —a — « (|_>)

First-order logic

The system for propositional logic is extended by adding rules for the quantifiers and, if an equality
symbol ~ is included in the syntax of wif’s, axiom schemes and/or rules for equality. The simplest
here, for purposes of comparison with the systems in Section 2 and Section 5, is to have only axiom
schemes for equality.” As in Section 2 and Enderton’s book (page 105), of is the wff obtained from
wif o by substituting every free occurrence of x by the term ¢, provided the substitution is legal
(i.e. no free variable in ¢ is captured by a quantifier in «). Note the proviso “y not free in I" and
©” in the (|V) and (3|) rules.

°In [9] the equality symbol in not included in the syntax of wff’s. The axiom schemes we choose for equality here
are basically those in [6], Section 6.3.

14



e Inference rules for quantifiers

— introduction of V

af, T'| © | I C %
———— D) —— (V)

(Vza),I' | © I'| e, (Vra)
(y not free in I and ©)

— introduction of 3

al,T| e I'|6,q
——— @D —— (|9
(Izxa),T | © | e, (za)

(y not free in I and ©)

e Axiom schemes for equality
- | zrx

— TIRYL, e, T DYy | friooxn = fyrcyn
(for every function symbol f of arity n > 1)

— TIRYL, ey Tn X Yn, Priooxn | Pyrccyn
(for every predicate symbol P of arity n > 1)

Let G denote the Gentzen system described above for first-order logic.

Exercise 1. Show that without the proviso “y not free in I' and ©” in (|V) and (3]) the system
is inconsistent, i.e. there is a derivation in G for the unsatisfiable sequent | .

15



Example 3. For an arbitrary wif «, the following is a valid derivation in G:

ay | . (Fz o) | (Fz )
ay | 3z a) 9 (Fz a),~(Fz ) | D

(Cut)

In the next theorem, the symbol “g” is for derivability relative to one of the Hilbert systems in
Section 2 (which all derive precisely the same set of wif’s), and “I5” is for derivability relative to
G. T is an arbitrary finite (possibly empty) sequence of wff’s and a an arbitrary wif.

Theorem 1. I' gy « ifand only if Fg T |«

Proof. Both directions are straightforward, if somewhat tedious, inductions on derivations. The
details are in Section 77 of Kleene’s book [9]. Kleene uses a specific Hilbert system, page 82 in [9],
which is not the same as any of the systems in Section 2, but which is readily shown to be equivalent
to System E in Section 2 (and therefore equivalent to all the systems in Section 2). O

Theorem 1. I' by « ifand onlyif ¢ T | «

Proof: Both directions are straightforward, if somewhat tedious, inductions on derivations. The
details are in Section 77 of Kleene’s book [9]. Kleene uses a specific Hilbert system, page 82 in [9],
which is not the same as any of the systems in Section 2, but which is readily shown to be equivalent
to System E in Section 2 (and therefore equivalent to all the systems in Section 2). B

If I’ in Theorem 1 is a finite sequence of wff’s 71,...,7, then, by repeated use of the Deduction
Theorem (Enderton’s, page 111), 'y a iff Fy v — -+ = v, — a. By repeated use of (E|)
and (| —), we also have that F¢ T'|la iff g | 1 — -+ — 7, — «. Hence, in this case,

b= s a1 g [m— e — e —a,
which makes the symbol “|” appear redundant, and justifies the practice of some people to discard
the symbol “Fg” altogether (as asserting derivability) and use “¢” instead of “|” (as sequent

separator) for complete notational symmetry between the Hilbert and Gentzen systems.

It is clear that every derivation D in G can be organized in the form of a tree, with a sequent inserted
at every node of the tree. The root sequent, i.e. the one inserted at the root of the derivation tree,
is the sequent derived by D. Let us say that two derivations Dy, and D¢ in G are equivalent if Dy
and D¢ have the same root sequent. Let G~ denote the system obtained from G by omitting the
rule (Cut).

Theorem 2 (Gentzen’s Hauptsatz'?). Every derivation in G can be effectively transformed into
an equivalent derivation in G~

1ONothing mysterious about this name: Hauptsatz means “main theorem” in German.
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Proof. When there is no equality symbol ~ in the language and no axiom schemes for equality, a
proof can be found in [9], Section 78, or in [15], Chapter XII. In the presence of ~, a proof is given
in [6], Chapter 6.1 O

Theorem 2 (Gentzen’s Hauptsatz'2, or cut-elimination theorem). Every derivation in G can be
effectively transformed into an equivalent derivation in G~ .

Proof: When there is no equality symbol ~ in the language and no axiom schemes for equality, a
proof can be found in [9], Section 78, or in [15], Chapter XII. In the presence of ~, a proof is given
in [6], Chapter 6.13 W

Example 4. The following is a derivation in G~, which is also equivalent to the derivation in G
of Example 3:

ap,—(3z a) |

-(3z @) | —~aj
=3z a) | (Vz —a)

| 2(Fz a) = (Vz —a)

There are several important applications of Gentzen’s Hauptsatz in first-order logic, none discussed
in Enderton’s book. For example, it can be used to establish Craig’s Interpolation Theorem, which
in turn is used to establish Beth’s Definability Theorem and Robinson’s Joint Consistency Theorem
(for statements of these theorems and proofs based on cut-elimination, see [6], Chapter 6, or [15],
Chapter XV, or [2], Section 9.12). It is worth noting that these three theorems can be established
just as elegantly using model-theoretic techniques, without recourse to the syntactic transformation
of Gentzen’s Hauptsatz (see [3], Section 2.2, or [11], Chapter 22). But more important is the use
of Gentzen’s Hauptsatz in investigations of consistency results — more on this below.

Restrictions for intuitionism

A Gentzen system for intuitionistic propositional logic (resp. first-order logic) is obtained by
omitting just two rules from Gy (resp. G): (|—) and (|W).

"' Warning: There are several variants of Gentzen systems in [9], [15] and [6], sometimes with minor differences
introduced for reasons of efficiency and/or clarity of exposition. What we here call G is exactly the system G1 in [9],
and essentially (but not exactly) the system G* in [15], in both cases without any of the parts related to ~. In [6]
there is no less than a dozen systems, and among these, LK. is exactly our G.

12Nothing mysterious about this name: Hauptsatz means “main theorem” in German.

13 Warning: There are several variants of Gentzen systems in [9], [15] and [6], sometimes with minor differences
introduced for reasons of efficiency and/or clarity of exposition. What we here call G is exactly the system G1 in [9],
and essentially (but not exactly) the system G* in [15], in both cases without any of the parts related to ~. In [6]
there is no less than a dozen systems, and among these, LK. is exactly our G.
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Example 5. The derivation in Example 1 is acceptable intuitionistically, but none of the deriva-
tions in Examples 2, 3 and 4, is, because each of the latter uses rule (|-).

An equivalent restriction of G for intuitionism is given in the next exercise.

Exercise 2. Show that omitting (|-) and (|W) from G is equivalent to requiring that the succedent
of every sequent has at most one wif, i.e. every sequent is restricted to be of the form I'| or the
form T'|3. (Hint: Consider the easier case of G first. Show by induction that if = T'|B1,. .., Om
without (|=) and (|W), as well as without (=), then m = 1 — and if without just (|—) and (|W),
then m < 1. For the opposite implication, show by induction on derivations that every use of (|-)
or (|W) can be eliminated.)

Let G denote the system obtained from G by omitting the two rules (|-) and (|W), and let G
denote the system obtained from G by omitting in addition the rule (Cut).

Theorem 3 (Gentzen’s Hauptsatz for intuitionistic logic).  Every derivation in G can be effec-
tiwely transformed into an equivalent derivation in G .

Proof: When there is no equality symbol ~ in the language and no axiom schemes for equality, a
proof can be found in [9], Section 78. W

Gentzen’s Hauptsatz and consistency results

For Gentzen, the Hauptsatz was a tool he used to establish the consistency of a particular ax-
iomatization of number theory, commonly called Peano arithmetic. Moreover, Gentzen wanted to
establish this consistency by proof-theoretic means, without appeal to semantic considerations.

Let P denote Peano arithmetic. The axioms of P are the finitely many axioms of Ay (in Section
3.7 of Enderton’s book) in addition to the following induction axiom scheme:

©(0) = (Voui (p(v1) = @(Sv1))) — (Vo1 p(v1))

representing infinitely many axioms, one for each wif ¢ with no free variable other than vy, in the
language of the standard model of arithmetic 91. An instance of the induction axiom scheme is an
induction axiom.'

Recall that a set I' of wff’s is consistent if I" does not derive any contradiction, i.e. if for every
wif « it is the case that T' I/ (o A —«). Typically, it is not easy to verify such a condition by
proof-theoretic means. It is often easier to check the satisfiability of I' instead which, by soundness
and completeness, is equivalent to its consistency.

For example, the finite set Ay is consistent because we recognize that the standard model Dt satisfies
every axiom in Ajs, thus avoiding the hard work of proving directly that Aj; does not derive a
contradiction. The same can be said of P, by our understanding of induction over the natural
numbers. In fact, based on our common knowledge of the underlying operations and relations of
N, ie. <, +, -, etc., we are willing to declare the axioms of Ap; are “obviously true” in 91. If

1Peano arithmetic is not discussed in Enderton’s book. It is listed in the Index with a reference to page 183, but
“Peano arithmetic” is nowhere mentioned on page 183! The induction axiom scheme is mentioned in Exercise 3.1.1
of Enderton’s, page 183, but it is restricted to the language of the reduct s, and we do not make such a restriction
here.
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taken to task, we can of course be more rigorous by applying the methods of Section 2.2 to check
that M = Ajps, and with a little extra work we can also check that 91 = P, but again this uses
unformalized set-theoretic reasoning.

This is a common situation: Semantic methods involve a certain amount of set-theoretic as well
as intuitive reasoning outside formal proof systems. As a consequence, in relation to questions of
consistency, it is sometimes argued that semantic methods are uninformative, or in any case do
not provide the right kind of information, or are too precarious to serve as a basis for consistency
proofs. It is even argued that, short of a formal proof-theoretic verification, the consistency of a
set of wif’s should be taken as an explicit unproved assumption.'®

My own bias is to accept the consistency of P (or any other set of axioms) based on semantic, i.e.
unformalized set-theoretic and intuitive reasoning. There are criteria of rigor for such reasoning
and there is no need to formalize them. But this does not mean that establishing the consistency
of P by formal proof-theoretic means is without value, because additional information about P
beyond its consistency is also obtained in this way. And perhaps this is the real value of Gentzen’s
demonstration of the consistency of P.

It is towards this goal that Gentzen developed the sequent calculus and then proved the Hauptsatz.
After Gentzen’s formal proof of the consistency of P, there were other formal proofs following
the same general ideas. Godel’s Second Incompleteness Theorem (in Enderton’s book, Section
3.6) can be adapted to say: If P is consistent, then no wff asserting the consistency of P (by
some appropriate encoding) is derivable from P. By Godel’s result, starting from P as non-logical
axioms, the rules of G (or any formal system equivalent to GG) are not strong enough to formally
prove the consistency of P. Thus, in one way or another, the proof system has to be extended to
a more powerful deductive calculus, for example by including inference rules with infinitely many
premises or by allowing transfinite induction. However extended, the Hauptsatz remains the key
technical result in establishing the consistency of P. Further discussion of these issues can be found
in [9], Section 79, and in the Appendix of [10].

'5Shoenfield says that “the main trouble with [a consistency proof for P by means of the standard model] is that
it is so uninformative. ... It does not increase our understanding, since nothing goes into it which we did not put
into it in the first place” [14], page 214.

Mendelson says that, by using semantic methods, “we have not proved in a rigorous way that the axioms of P are
true under the standard interpretation, but have taken it as intuitively obvious” [10], page 107.

Kleene says that “giving a model for the axioms [of P] in intuitive arithmetical terms does not establish beyond
all doubt that no contradiction can arise in the theory deduced from the axioms, unless it can also be demonstrated
that the reasonings in the theory can be translated into intuitive arithmetical reasonings in terms of the objects used
in the model” [9], page 475. The proviso in the excerpt from Kleene applies to Aas, and therefore the consistency
of Aps using a restricted form of semantic reasoning, i.e. using what is called “finitary set-theoretic methods”, is
acceptable to Kleene, but the proviso does not apply to P because showing the satisfiability of any induction axiom
in the standard model requires “non-finitary set-theoretic methods”. A discussion of “finitary” vs. “non-finitary”
methods is also found in Shoenfield’s book [14], page 214.
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5 Natural Deduction

The “feeling” of natural deduction is very different from that of Hilbert-style proof systems. It is
closer to Gentzen-style systems, but there are several differences too. (Natural deduction was also
first formulated by Gentzen. So, it isn’t entirely proper to reserve the name “Gentzen” only for
the sequent calculi of Section 4.) In particular, in natural deduction there are no axiom schemes
and only inference rules. To compensate for the lack of axioms, natural deduction allows the
introduction of wif’s as hypotheses at any stage of a derivation. Moreover, while a Gentzen system
has only introduction rules, natural deduction uses both introduction and elimination rules.

The presentation in this section is based on [18]. We can restrict the rules of the system to
the logical connectives of a functionally complete set, say {—, L}, leaving the other connectives
{V,A,—, <>} to be defined in terms of the first two. (The symbol L stands for false.) However, we
prefer to include rules for all the connectives, with the understanding that we can always revert
to a system restricted to rules for only {—, L} to simplify an argument (typically an induction on
the length of derivations). The inclusion of rules for all the logical connectives not only makes the
system more user-friendly, but gives more situations to illustrate the dual mechanism of introducing
and cancelling hypotheses. Moreover, when we restrict the system for intuitionism, it will not be
possible to define all the connectives in terms of only {—, L}.

We start with the simpler case of propositional logic, and later add the necessary rules for first-
order logic. For propositional logic, there are introduction and elimination rules for each of the 5
connectives: A, V, —, <>, =, but not for L.
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Propositional logic

p, ¥ and o range over the set of all wif’s. By including rules for all of the 6 connectives, we get a
total of 15 (one of them, —E, can be recognized as Modus Ponens).

1. One introduction rule, called AI, and two elimination rules, both called AE, for “A”:

e oA N
- AI AE

AP ® (0

NE

2. Two introduction rules, both called VI, and one elimination rule, called VE, for “Vv”:

@ 0 oV o o
VI Vas VE
oV oV o

3. One introduction rule, called —I, and one elimination rule, called —E, for “—”:

]

ib o Y
- I - E
® = (0

4. One introduction rule, called <+I, and two elimination rules, both called <E, for “<”:

¥ o o oo R R

5. One introduction rule, called —I, and one elimination rule, called —E, for “=":

]

1 ® -
-1 —— -E
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6. Two rules for “1”, the first called L and the second RAA:

Note that the rules for “1” are the only rules not exhibiting a symmetry between “introduc-
tion” and “elimination”.

Several of the rules above allow for a hypothesis ¢ to be cancelled (or discharged) which is indicated
by enclosing ¢ between square brackets, i.e. by writing “[¢]”. RAA stands for reductio ad absurdum,
which formalizes the principle of a “proof by contradiction”: If we can derive a contradiction, i.e.
1, from —¢p then we can derive ¢ (without the hypothesis —¢). A few examples will make precise
these notions.

Let Ny denote the above system of rules for propositional logic.

Example 1. A derivation according to the rules of Ny:

[o A )t [p A )t
—  AE -  AE
(0 ® AT
YA
—I4

(pAY) — (bAp)

Note how we pair off the hypothesis ¢ A ¢ with the rule —I that cancels it, by attaching the same
index “1” to both the cancellation brackets and the corresponding rule, i.e. by writing [ ]! and
—I;. 1

Example 2. Another derivation in Ny:

[e]> [e— L]
1
(p—1)— L

—E

—I

—I9
= ((p—=1)—1)

There are two cancellations in this example, for two different hypotheses, thus the two indexes, “1”
and “2”. N
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Example 3. A more interesting derivation in Ny:

[ A ]t B
[ A ]! @ [p = (¢ = 0)]?
— AE E
(0 Y=o
E
(o2
(eANY) =0 o

—19

(=W —0)) = (pAY) = 0)

There are two cancelled hypotheses in this example, with two occurrences of the first and one
occurrence of the second. N

It should be clear that any derivation using the rules of natural deduction can be organized in the
form of a tree, with one wif attached to every node of the tree. The wif’s at the leaf nodes are the
hypotheses used in the derivation (some or all of them cancelled), and the single wff at the root
node is the conclusion of the derivation. For the derivation in Example 3 the resulting tree is:

hypothesis

hypothesis hypothesis

conclusion

Given a set I' of wif’s and a wif ¢, we write I' I ¢ iff there is a derivation of the conclusion ¢ from
uncancelled hypotheses that are all in I'. Thus, for the derivations shown in Examples 1, 2, and 3,
we have:

Flenyg) = Whe), Fe=((e=1)—=1), Fle=@—=0)=>(eAy)—0),

respectively, and in all three cases we take I' = &. Although not shown in these examples, we do
not require that I' be exactly the set of all uncancelled hypotheses: I' may contain many (even
infinitely many) wff’s that do not appear at all in the derivation.
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The 5 rules that allow cancellation of hypotheses are: VE, —I, <+I, —I, and RAA, which are called
accordingly cancellation rules. These require some care, as they can be used in a more liberal
fashion than suggested by the notation. When we use one of these rules:

o A wff enclosed in | |, in the statement of the rule, does not mean
that this wff has to actually appear as a hypothesis in the derivation.

Hence, in particular, when we use —I, =I and RAA (but not VE and <»I) which introduce in their
conclusion a wif ¢ (or —¢) not mentioned among their premises, it is even possible that this ¢ (or
—p) appears nowhere in the derivation. This is illustrated in the next example.

Example 4.
o Ayt o Ayt
—— AE —— AE
(G ©
NI
YA
—I
(enY) = (WA

—Io

o = (pAY) = (P Ap)

The last use of — I, with index “2”, does not cancel any hypothesis occurrence and, moreover,
introduces a fresh wif o into the derivation. W

Moreover, when we use one of the cancellation rules:

e Even if a wff enclosed in | | actually appears as a hypothesis
in the derivation, not all of its occurrences have to be cancelled.

This is justified as there is no harm in adding redundant hypotheses in a derivation. For example,
we can cancel only one of the two occurrences of p A 9 in Example 4, resulting in:

eNY F o = (pAY) = (Y Ap))

or we can cancel neither of the two occurrences, resulting again in:

oAy F o = (pAY) = (Y Ap))

or we can cancel the two occurrences separately (by using the rule —I twice), resulting in:

Fo = (pAY) = (eAY) = (@A)
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We define one more book-keeping device, before turning to first-order logic. Let D be a derivation
viewed as a tree. Consider a node in D, more precisely the wif ¢ attached to this node in D, which is
obtained by the use of a cancellation rule. For definiteness, let this rule be —I and its use instance
be —I, (an index n gets attached to it when used in a derivation) so that, in particular, ¢ must
be of the form o — 7. We use the term parcel, or parcel of hypotheses, to refer to all occurrences of
o enclosed in | ]". If we need to be more specific, we may say the “parcel with index n” or “parcel
n”. A parcel consists therefore of finitely many (possibly none) occurrences of the same hypothesis
that are discharged together by one of the rules in {VE, —I,<«I,—I,RAA}. Our convention, already
used in the preceding examples, is to uniquely identify a parcel of hypotheses by an index n € N.

Example 5.
[o A 9]t B [0 A ) B
4 VI [0]2 VI v VI [0]4 VI
[(pAp)Val® pVo pVao [(pAp)Val®  ¢Vo Vo
Y VEq2 Vo VE3 4
L AT

(pVa)A(PVoa)
(pAD)Va = (Vo)A (Y Vo)

—15

In this derivation there are 5 parcels. Each use of VE cancels two distinct parcels (parcels 1 and 2,
parcels 3 and 4), whereas the use of —I cancels only one parcel (parcel 5). W
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First-order logic

The system for propositional logic, Ny, is extended by adding rules for the quantifiers and, if an
equality symbol ~ is included in the syntax of wff’s, by adding rules for equality too. ¢ and ¥
range over the set of wff’s, x, y and z over variables, and ¢ over terms. Call N the resulting system.

1. One introduction rule, called VI, and one elimination rule, called VE, for “v”:

olz) vrelr) o

Va ¢(x) o(t)

where in VI the variable 2 does not occur free in any hypothesis on which ¢(z) depends, i.e.
in any uncancelled hypothesis in the derivation of ¢(x), and in VE the substitution of ¢ for x
is legal, i.e. no free variable in ¢ is captured by a quantifier in ¢.

2. One introduction rule, called 3I, and one elimination rule, called JE, for “3”:

o0 3z () ) .

Az p(z) 0

where in I the substitution of ¢ for x is legal, i.e. no free variable in ¢ is captured by a
quantifier in ¢, and in JE the variable x does not occur free in ¢ nor in any uncancelled
hypothesis (other than ¢(x)) on which ¢(x) depends, i.e. in any uncancelled hypothesis in
the subderivation with conclusion .

3. The rules for equality simulate the axioms for equality, used in Hilbert systems (Section 2)
or in Gentzen systems (Section 4). There is no symmetry here between “introduction” and
“elimination” rules, in contrast to rules for the logical connectives and the quantifiers. In
EQ4, f is an arbitrary function symbol of arity n > 0, and in EQ5, P is an arbitrary predicate
symbol of arity n > 0.

T Ry TRy y ~ z
EQ1 — EQ2 EQ3
T~ Yy R T T Nz
1 = Y1 - Tpn = YUn Ty R Y o Ty XY, Prieeex,
EQ4 EQ5
fev-an = fyroyn Pyy - yn
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Example 6. A derivation in V:

[V (p(@) A () vE vz (p(z) A ()]
p(x) A(x) E p(x) Ap(z)
() 1 ¥(x)
Va ¢(x) Vo (z) AT
(Ve o(z)) A (Vo P(x)) L1
vz (o(x) Ap(x) = (Vo o(z)) A (Vo P(z))
Example 7. Another derivation in N:
()] - [v(x))? -
Az () T Jz 1p(x)
[o(a) V(@) (B p@) v (3 ¥(x)) (Fz p(x)) v (3z P(z))
Bz (p(a) v ¢ (2)))* (Fz () vV (Fz P(z))

3E,

Bz p(x)) v Gz ¢(2))

—I4
Jz ((z) Vo(z)) — Tz @(z) Vv (EFr ()

The symbol “Fg” is for derivability relative to one of the Hilbert systems in Section 2 (which all
derive precisely the same set of wif’s), and “tx” is for derivability relative to the rules of natural
deduction. For comparisons with systems in previous sections, take 1 as an abbreviation for aA—-q,
for some fixed but otherwise arbitrary wif a.

Theorem 1. For an arbitrary set of wff s I' and an arbitrary wff o, U' g @ if and only if T Fxn .

Proof: A proof can be found in [16], pp 148-159. A sketch of a proof, with useful comments, is
also in [8], pp 26-32. Another proof is to first show: I' by ¢ iff Fg T'|¢ (with the restriction that T’
is finite), and then invoke Theorem 1 of Section 4. For the equivalence between natural deduction
and a Gentzen system (when both are restricted to the intuitionistic case), there are proofs in [16],
pp 168-186, and in [7], Ch. 5. W

Restrictions for intuitionism

A natural-deduction system for intuitionistic propositional logic (resp. first-order logic) is obtained
by omitting just one rule from Ny (resp. N): RAA.

All the derivations so far, in Examples 1 to 7, are acceptable intuitionistically, because none uses
the rule RAA.
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Example 8. Here is a derivation which is not allowed intuitionistically:

[Fo]t [ — L]

—E
1
— RAA
L —I
2
(rp—=1)—=op

If we take —p as an abbreviation for ¢ — L, then we have here:

which is certainly accepted classically. A subtle point: With the forementioned abbreviation, the
derivation in Example 2 shows that

F o = o
which is acceptable intuitionistically. There is no contradiction here: Intuitionism does not take ¢

and ——p as equivalent wif’s. W

Normalization

A fundamental result has to do with the elimination of superfluous parts in derivations. The
motivation is best given by examples.

Example 9.
o o— @
—E .
@ [4/]
NI
AP
AE
®

— I

Y=

The conjunction ¢ A ¢ is introduced only to be immediately eliminated. It is clearly more efficient
to write instead:

Y=
The consecutive uses of AT and AE are now removed. N
Example 10. The following is a more interesting derivation:
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[0 A p]? . [0 A g]? E
A 9 A\
@ [p — ] o
—E —I;
P Y=o
—E
o
— I
(p =) =0
—)Ig

(@n@) = (¢ =9) = o0)
More efficiently, we can write the following derivation:

[0 A)?
— AE
e
Got) o

(enp) = ((p—Y) —0)

—I3

We have cut out the consecutive uses of —I (with index 1) and —E. W

A derivation in which an introduction is never followed by an elimination is called normal.

Theorem 2 (Normal Form Theorem). FEvery derivation D is equivalent to a normal derivation
D', i.e. if D is a deriwation of ¢ from T' then there is a normal derivation D' of ¢ from T.

A reduction step consists in the removal of a superfluous introduction followed by an elimination.
Theorem 3 says that the process of going from D to D’ in Theorem 2 can be carried out effectively.

Theorem 3 (Normalization Theorem). For every derivation D there is a finite sequence of reduc-
tion steps that reduces D into a normal derivation D' equivalent to D.

An even stronger result than the preceding two is the strong normalization theorem.

Theorem 4 (Strong Normalization Theorem). FEvery sequence of reduction steps applied to a
derivation D terminates in a normal derivation D' equivalent to D.
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6 Additional Remarks on Intuitionism

A distinctive feature of intuitionism is that it will not accept proofs that are not constructive. What
is a constructive proof? The best answer is given by examples: Below are three non-constructive
proofs of well-known results. After the proofs, we point out what makes them non-constructive.
These examples are often used when intuitionism is first introduced.

Theorem 1 There are solutions of x¥ = z with x and y irrational numbers and z rational.

Proof. We know /2 is irrational. Moreover, \@ﬁ is either rational or irrational. If it is rational,
let © = v/2 and Yy = \/5, making z = z¥ a rational number. If ﬁﬂ is irrational, let z = \/5\/§ and
y =2, so that z = 2¥ = (\@\/i)‘/§ = (v/2)? = 2, which is again a rational number. W O

Theorem 2 (Konig’s Lemma) Every infinite, finitely branching, tree T has an infinite path.

Proof. Using induction, we define an infinite sequence of nodes xg, x1, ..., forming an infinite path
in 7. At stage 0 of the induction, let xg be the root of 7, which has infinitely many successors by the
hypothesis that 7 is infinite. At stage n > 1, assume we have already selected nodes zg, 1, ..., Tn_1
so far, forming a path of length n— 1, such that z,,_1 has infinitely many successors. By hypothesis,
T is finitely branching, which implies x,,—1 has only finitely many immediate successors. Hence,
one of the immediate successors of x,,_1, say y, must have infinitely many successors. Define x,,
to be y, which has infinitely many successors in 7, and proceed to stage n + 1 of the induction.

| O

Another way of stating Konig’s Lemma (KL) is to say: If a finitely branching tree has arbitrarily
long finite paths, then it has an infinite path. Stated this way, it evokes some connection with the
compactness theorem in classical logic: If a set I of wif’s is finitely satisfiable, then I is satisfiable.
This is indeed the case, as it can be shown that KL and the compactness theorem basically assert
the same thing.'¢

Another connection with the compactness theorem in logic is the Bolzano-Weierstrass (BW) the-
orem in real analysis. There are different formulations of this theorem. We give one which makes
plain the non-constructive nature of the proof. (Another formulation is given in Exercise 5, page
173, in Enderton’s book.)

16To see the connection in the case of propositional logic, consider the collection of all truth assignments to the

propositional variables A1, As, ..., A,,..., organized as a single infinite full binary tree, call it 7, i.e. at the n-th level
of T a left (resp. right) branch corresponds to assigning T (resp. F) to variable A,. Given a set ¥ of propositional
wit’s, we define another binary tree T+ from T: Given infinite path m = ti1t2---t, --- in T, where each t,, is T or

F, let k be the smallest integer (if any) such that the truth assignment corresponding to m does not satisfy some
wif in ; if such a k exists, delete from 7 all paths extending the finite path titz - - -¢x. The resulting 7+ contains
some finite paths (possibly none) and some infinite paths (possibly none). Now, ¥ is finitely satisfiable iff T+ has
arbitrarily long finite paths (equivalently, which is easier to see, there is an unsatisfiable finite subset of X iff there is
a finite bound on the length of all paths in 7F) and X is satisfiable iff 7F has an infinite path.
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Theorem 3 (Bolzano-Weierstrass) Every infinite subset S of the closed interval [a,b] of real num-
bers contains a convergent infinite sequence.'”

Proof. We construct an infinite nested chain of intervals [a,, b,], each containing infinitely many
elements of S, by induction on n > 0. First, let ap = a and by = b. Proceeding inductively, for
arbitrary n +1 > 1:

(1) If [ap, (an + by)/2] contains infinitely many elements, let a,+1 = a,, and by+1 = (an + by) /2.

(2) If [an, (an, + by)/2] contains finitely many elements, let a,+1 = (a, + by)/2 and by, 41 = by,.

This is a strict nested chain of intervals with a non-empty intersection. (It is “strict” in the sense
that no two consecutive intervals are equal.) Let = be an element in this intersection. The sequence
ag,a1,...,0n,... or the sequence by, b1,...,b,,... must contain infinitely many distinct elements,
and both converge to z. N O

The three preceding proofs show the existence of something without providing the means to find it.
In the first proof, one of two specific solutions of the equation is shown to be true, but no effective
method is given to determine which.

In the proof of KL, we prove by induction that a disjunction is true, but because we do not
determine which immediate successor node has infinitely many nodes below it, we do not actually
have a construction for (i.e. an algorithm to generate) the infinite path we prove to exist.

The proof of BW seems to specify a construction, but because it does not provide a way of deciding
whether case (1) or case (2) holds, such a construction cannot in fact be carried out.

In all three cases, what pushes the argument through to its conclusion is an appeal to the law of
excluded middle, which says that for every assertion A, either A is true or —A is true, even though
there may be no effective way of deciding which. This is why we say that these proofs are not
constructive.

From an intuitionistic point of view, this invalidates the three preceding proofs as well as many
other proofs in classical mathematics. It also invalidates many proofs in classical logic, such as the
proofs of compactness,'® completeness, and many other results at the foundation of classical logic.
There are issues of compactness and completeness in intuitionism, to be sure, but these have to be
understood differently and established differently.

Note that the notion of a constructive proof is not restricted to intuitionism and makes perfect
sense in the context of classical mathematics too. The distinction between constructive and non-
constructive proofs naturally arises in classical mathematics whenever we want to prove an exis-
tential statement or a disjunctive statement. A constructive proof of the same theorem, or what
may be perceived as the same theorem (more on this below), is generally more informative than a
non-constructive one: Not only the existence of something is established, but an effective method
(an algorithm) is provided to determine it.

171f you had a course in analysis, you will recall this is equivalent to the property that the real numbers form a
compact space. And, indeed, it can be shown this is the same phenomenon encountered in the compactness theorem
in logic.

18This should be clear from the connection indicated earlier between the compactness theorem and KL and BW.
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The preceding suggests that intuitionistic logic, as a system of reasoning, ought to be favored over
classical logic. Indeed, if constructive proofs are more informative, why should we ever content
ourselves with non-constructive proofs? The answer would be “never” if intuitionism were a clear
winner in all respects — but it isn’t, as something is often lost by abandoning some of the tenets
of classical logic (such as the law of excluded middle and others). For one thing, intuitionism
is not a single system of reasoning: There are variations within intuitionism, each advocating a
different way of relaxing restrictions imposed by the rejection of the law of excluded middle. These
should not preoccupy us here, as they become quite technical and result in different approaches to
constructive mathematics (e.g. see [17]).

Moreover, a constructive proof of the same fact can be considerably more complicated. For example,
concerning the first theorem above, there is a constructive proof for it, but which requires a deeper

study of the numbers V2 and \/i\/5 (In fact it can be shown that \/5\/§ is irrational.lg)

What about constructive proofs for KL and BW? This points to another difficulty: A rejection of
non-constructive proofs comes together with a different interpretation of formal statements. Both
KL and BW mention an “infinite” object in their statements. In classical logic, we assume the
existence (or pre-existence) of infinite sets as finished (or completed) entities. Intuitionism rejects
this view and qualifies a set X as “infinite” only if there is a way of effectively generating the
members of X without ever having to stop, and it allows operations (themselves required to be
constructive) on X only if they can be carried out without ever having to list (or presume the
existence of) all the members of X. The set N of natural numbers can be viewed infinite in this
sense, and classical logic can go along with intuitionism in this case.?’ But the infinity of the set
R of reals has to mean two different things for classical and intuitionistic logic. What is “infinite”
intuitionistically is “infinite” classically, but not necessarily the other way around.

Hence, it is not only a matter of choosing between a constructive proof and a non-constructive
proof of the same theorem, but also of interpreting formal statements differently. Although the
intuitionistic interpretation of a formal statement may convey more information than the classical
one, it is this extra information packed into the same concept that often entails a more complicated
and less transparent definition of that concept. For example, in relation to the concept of “equality
between real numbers”, Kleene points out the following (page 53 in [9]):

In the intuitionistic theory of the continuum, we cannot affirm that any two real numbers
a and b are either equal or unequal. Our knowledge about the equality or inequality
of @ and b can be more or less specific. By a # b, it is meant that a = b leads to a
contradiction, while a # b is a stronger kind of inequality which means that one can
give an example of a rational number which separates a and b. Of course a # b implies
a # b. But there are pairs of real numbers a and b for which it is not known that either
a=boras#bora+#b. Itisclear that such complications replace the classical theory
of the continuum by something less perspicuous in form.

Back to the question of whether there are constructive proofs for KL and BW: Understood con-
structively, both KL and BW fail. For the first counterexample below, note there are 2% binary
trees (why?) but only Ry of them can be effectively generated (why?).

9More generally, it can be shown constructively that if a ¢ {0, 1}, a algebraic, and b irrational algebraic, then a®
is irrational. See page 8 in [17] and appropriate references therein.

29The effective enumerability of N is the starting point of recursion theory and all logicians, whether classical or
intuitionistic, are comfortable with it.
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Constructive counterexample for KL: There is an effectively generated binary tree which con-
tains infinite paths but none of its infinite paths can be effectively generated.>!

The next counterexample mentions “computable” real numbers. This is a restriction on the classical
definition of real numbers that makes the notion acceptable intuitionistically. Basically, a real
number 7 is said to be computable (or also recursive) if there is an effective procedure to generate
the numerals (read from left to right) in the decimal expansion of 7.

Constructive counterexample for BW: There is an effectively generated, strictly increasing
sequence of rationals in the interval [0, 1] which does not converge to any computable real number.??

Exercise 1. For simplicity, restrict attention to binary trees. The contrapositive of KL is sometimes
called the Fan Theorem (FT) which asserts: Every well-founded binary tree is finite.?> Classically,
KL and FT are equivalent, but not intuitionistically. In fact, F'T is accepted intuitionistically, even
though KL is not. What is the explanation for this apparent inconsistency? (Not every form of
taking the contrapositive is rejected by intuitionism, so you have to be careful in your answer.) W

21This is a paraphrase of a more precise result in recursion theory: There is a primitive recursive tree R such that
(1) for every total recursive function f : N — {0,1} there is n € N such that f(n) € R, and yet also (2) for every
n € N there is a path t of length n such that t € R. Take a “path” to be a binary string, a “binary tree” to be a
prefix-closed set of binary strings, and f(n) to denote the string f(0)f(1)--- f(n). A proof of this result can be found
in [1], Ch. IV, Section 5. A discussion of the same is also in [17], Ch. 4, Section 7.

22There is a more general result asserting the existence of the so-called “Specker sequences”, which implies the
result here. The proof along with appropriate definitions can be found in [1], Ch. IV, Section 4, or in [17], Ch. 5,
Section 4.

23 A well-founded tree is one without infinite paths.
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