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Before we can resort to an automated tool (to test or verify a property, to analyze the behavior software
or hardware system, etc.), we have to do some formal modeling, i.e., formally represent a system and
its properties in the syntactic conventions that the tool understands and can process. Sometimes this
formal modeling is straightforward; sometimes it is not; and, most typically, there are several ways of
doing it for the same application and with the same tool (which can greatly affect the performance of
the latter).

1 The Pigeon Hole Principle

For every natural number n > 2, the Pigeon Hole Principle (PHP) states: “If n pigeons sit in (n− 1)
holes, then some hole contains more than one pigeon.” We want to formalize PHP in propositional
logic (PL). There are different ways of doing this, but perhaps the most natural is:

• Use propositional atom Pi,j to indicate that pigeon i is in hole j, where 1 6 i 6 n and 1 6 j < n;
i.e., Pi,j is true if pigeon i is in hole j, and Pi,j is false if pigeon i is not in hole j.1

With this denotation of “pigeon i is in hole j” we can formalize PHP with the following formula ϕn:

ϕn :=
∧

16i6n

( ∨
16j<n

Pi,j

)
→

∨
16i<k6n

( ∨
16j<n

(Pi,j ∧ Pk,j)
)

where
∧

and
∨

are shorthand notation to write long sequences of conjunctions and disjunctions,

respectively. Note that we have formalized PHP with a separate ϕn for every n > 2. Informally, the
part of the formula ϕn to the left of ‘→’ says:

“for every pigeon i, there is a hole j, such that i is in j,”

and the part of ϕn to the right of ‘→’ says:

“there are two distinct pigeons i and k, and there is a hole j, such that i and k are in j.”

It is worth remembering that the logical connectives ‘
∧

’ and ‘
∨

’ correspond to, respectively, universal

quantification (“for all . . .” or “for every . . .”) and existential quantification (“there is . . .” or “there
are . . .” or “there exists . . .”). This is an important correspondence, and there is much more to it than
meets the eye. We will come back to it when we take up various forms of quantificational logic.

For the case n = 3, the formula ϕn reads as follows:

ϕ3 = (P1,1 ∨ P1,2) ∧ (P2,1 ∨ P2,2) ∧ (P3,1 ∨ P3,2)→
(P1,1 ∧ P2,1) ∨ (P1,2 ∧ P2,2) ∨ (P1,1 ∧ P3,1) ∨ (P1,2 ∧ P3,2) ∨ (P2,1 ∧ P3,1) ∨ (P2,2 ∧ P3,2)

which formally translates the following assertion in plain English:

1I use interchangeably the expressions ‘propositional atom’, ‘propositional variable’, ‘Boolean atom’, and ‘Boolean
variable’ – although it is sometimes better to use ‘variable’ than ‘atom’ in order to emphasize there is another quantity
(a function) whose values depend on varying propositional/Boolean arguments, which are naturally called ‘variables’,
just as it is sometimes natural to use ‘Boolean’ instead of ‘propositional’ because there is some connection to be made
with a Boolean algebra.
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“if there are 3 pigeons and 2 holes, then there are two pigeons in the same hole.”

Unless we know what each Pi,j stands for, we cannot say that ϕ3 is a formal translation of the preceding
assertion in English – and it may indeed be a formal translation of some other assertion.

Exercise 1 Let f be a total function from {1, . . . , n} to {1, . . . , n−1}, and use the same propositional
atoms Pi,j used in the formalization of PHP, to define PL formulas αn and βn such that:

1. αn is satisfiable iff f is a total function on {1, . . . , n},
2. βn is satisfiable iff f is not one-to-one.

Another way of formalizing PHP in PL is to define the formula ψn := αn → βn, which says “if f is a
total function from {1, . . . , n} to {1, . . . , n− 1}, then f cannot be one-to-one.” (You can take f as a
binary relation which is said univalent or right-unique.) �

Exercise 2 We noted that we have formalized PHP with a separate ϕn for every n > 2. Can you
write a single WFF Φ of propositional logic which is a formal representation of PHP for all n > 2? If
‘yes’, write the details of your proposed Φ; if ‘no’, justify your answer in a few lines. �

Exercise 3 This is an implementation exercise. The WFF ϕn that formalizes PHP is not only
satisfiable, but also valid (or a tautology), i.e., all valuations of the atoms Pi,j should satisfy ϕn. Use
your preferred SAT solver off-the-shelf, or any automated proof-assistant of your choice (Isabelle, Coq,
Alloy, etc.), to establish that ϕn is valid. Do the implementation for at least two cases, n = 3 and
n = 4. Do you notice any difference in the execution times? How would you handle the case n = 10?
�

2 Graph Problems

There are many problems on graphs that can be formally translated into WFF’s of propositional logic.
The satisfiability of such a WFF ϕ (some truth-value assignment makes ϕ true) or its validity (every
truth-value assignment makes ϕ true) can be then translated back into a solution of the corresponding
graph-theoretic problem.

2.1 Paths in Directed Graphs

We make two simplifying assumptions about directed graphs, in order to make our formal modeling a
little easier. We assume that in all our graphs:

(i) there are no self-loops, and

(ii) there is at most one edge between any two vertices.

With (i) and (ii), given a graph G = (V,E) where V is the set of vertices and E is the set of edges,
we can take E as:

E ⊆ { 〈v, w〉 | v, w ∈ V and v 6= w }.

These two assumptions do not fundamentally affect the analysis below, which is easily adjusted for
the case when self-loops and/or multi-edges are allowed.
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To simplify the notation a little, we write v w to denote 〈v, w〉, the directed edge from vertex v to
vertex w. Given a graph G = (V,E), we need to associate pieces of G with propositional atoms, before
we can translate properties of G into WFF’s of propositional logic. The simplest and natural way is
to introduce a propositional atom Avw for every ordered pair 〈v, w〉 ∈ V ×V , which is then set to true
or false depending on whether v w is or is not an edge of G.

Let A = {Avw | v, w ∈ V } denote the set of all propositional atoms, which is finite if V is finite and
infinite if V is infinite. Every graph G = (V,E), finite or infinite, induces a truth-value assignment
σG : A → {true, false} as follows:

σG(Avw) =

{
true if v w ∈ E,
false if v w 6∈ E.

Given a propositional WFF ϕ over A, instead of writing σG |= ϕ, which is the standard way of
indicating that σG satisfies ϕ, we can write more conveniently G |= ϕ, i.e., G |= ϕ iff σG |= ϕ, in
words: “the graph G satisfies ϕ iff the truth-value assignment σG induced by G satisfies ϕ.”

Let Γ = {ϕi }i∈I be a set of propositional WFF’s over A, indexed with i ∈ I. The index set I
may be finite or infinite, allowing for the possibility that the graph G may be infinite. We write
G |= Γ to mean that G |= ϕi for every ϕi ∈ Γ. If I is finite, then G |= Γ is equivalent to the assertion

G |=
∧

i∈I
ϕi where

∧
i∈I
ϕi, also written as

∧
Γ, is now a single propositional WFF; using conjunction,

the satisfaction of every ϕi in Γ is thus transformed into the satisfaction of a single propositional WFF.

Similarly, if I is a finite set, we can write G |=
∨

i∈I
ϕi where

∨
i∈I
ϕi, also written as

∨
Γ, is now a

single propositional WFF, in order to assert that some ϕi in the set Γ is satisfied by G. This kind of
transformation from a set Γ of propositional WFF’s to a single propositional WFF is not possible if
the set Γ is infinite.

Example 4 Let G = (V,E) be a directed graph without self-loops and without multi-edges, according
to our standing assumptions (i) and (ii). Suppose we want to test whether G is acyclic, i.e., whether
G contains no cycles. The existence of one or more cycle in G makes G cyclic.

There are several good algorithms for detecting the existence of a cycle in such a graph, and they
can do this in low-degree polynomial time – provided G is a finite graph. For example, using the
well-known fact that a directed graph G is acyclic iff G can be topologically sorted, we can first try
to topologically sort G in time O(

∣∣V ∣∣+
∣∣E∣∣); if we succeed, then G is acyclic.2

But the point of this example is to write a propositional WFF, or a set ΓG
dag of propositional WFF’s,

such that: G is a directed acyclic graph (or DAG) iff G |= ΓG
dag.

Let ~v be a sequence of k > 2 distinct vertices in G, say, ~v = (v1, v2, . . . , vk). The sequence ~v corresponds
to a cycle in G iff each of the following vertex pairs are edges of G:

v1 v2 , v2 v3 , v3 v4 , . . . , vk v1

This is equivalent to saying that the propositional WFF ϕ~v defined by:

ϕ~v := Av1v2 ∧ Av2v3 ∧ Av3v4 ∧ · · · ∧ Avkv1

2Look up the definition of topological sorting, and its time complexity, in any standard text on graph algorithms.
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is made true by the truth-value assignment σG. Hence, the sequence ~v corresponds to a cycle in G iff
G |= ϕ~v. Define now the set ΓG

dag,k of propositional WFF’s as follows:

ΓG
dag,k :=

{
¬ϕ~v

∣∣∣ ~v is a sequence of k > 2 distinct vertices in G
}
.

Note the negation ‘¬’ in the WFF ‘¬ϕ~v’ which is thus satisfied iff the sequence ~v does not correspond
to a cycle in G. Hence, G contains no cycle with k distinct vertices iff G |= ΓG

dag,k. If we define the

set ΓG
dag by:

ΓG
dag := ΓG

dag,2 ∪ ΓG
dag,3 ∪ ΓG

dag,4 ∪ · · · ,

then G is acyclic iff G |= ΓG
dag. If G = (V,E) is finite, with

∣∣V ∣∣ = n > 2, then ΓG
dag,k = ∅ for all

k > n, in which case ΓG
dag = ΓG

dag,2 ∪ · · · ∪ ΓG
dag,n. �

Exercise 5 This is a continuation of Example 4. The set ΓG
dag of propositional WFF’s is finite or

infinite depending on whether G = (V,E) is finite or infinite, respectively.

1. Suppose G = (V,E) is finite, with
∣∣V ∣∣ = n > 2. Write a single propositional WFF ϕG

dag which
is equivalent to the set ΓG

dag, i.e., G |= ϕG
dag iff G |= ΓG

dag. What is the size of ϕG
dag as a function

of n? Count only the number of propositional atoms in ϕG
dag.

2. Suppose G = (V,E) is infinite. In this case, we cannot write a single propositional WFF ϕG
dag

which is equivalent to the set ΓG
dag. Nonetheless, how do you propose to use the infinite set ΓG

dag

to test the acyclicity of G? �

Exercise 6 Read Example 4 and Exercise 5 before attempting this exercise.

Let ~v be a sequence of k > 2 distinct vertices in G, say, ~v = (v1, v2, . . . , vk). The sequence ~v corresponds
to a path in G iff each of the following vertex pairs are edges of G:

v1 v2 , v2 v3 , v3 v4 , . . . , vk−1 vk

Call such a sequence a k-path. This is equivalent to saying that the propositional WFF ψ~v defined by:

ψ~v := Av1v2 ∧ Av2v3 ∧ Av3v4 ∧ · · · ∧ Avk−1vk

is satisfied, i.e., made true, by the truth-value assignment σG. Note the difference between ψ~v here
and ϕ~v in Example 4. Satisfaction of ϕ~v implies satisfaction of ψ~v, but not the other way around.
Hence, the sequence ~v corresponds to a k-path in G iff G |= ψ~v.

1. For every k > 2, your task is to define a set ΓG
path,k of propositional WFF’s over A such that:

there is ψ ∈ ΓG
path,k such that G |= ψ iff G contains a k-path.

Let the set ΓG
path be defined by:

ΓG
path := ΓG

path,2 ∪ ΓG
path,3 ∪ ΓG

path,4 ∪ · · · .

2. Let G = (V,E) be finite, with
∣∣V ∣∣ = n > 2. Your task is to select the smallest subset ∆ ⊆ ΓG

path,
where ΓG

path is defined in Part 1, so that: There is a Hamiltonian path in G iff G |=
∨

∆.3 �
3A Hamiltonian path in a graph is a path that visits each vertex exactly once. In these notes, a Hamiltonian graph

is one where there is a Hamiltonian path. (Some use a more restrictive definition: A graph is Hamiltonian if there is a
Hamiltonian cycle, not just a path, in the graph.)
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In preparation for Exercises 7 and 8, we mention additional facts about DAG’s. Let G = (V,E) be a
finite DAG with n > 2 vertices, and consider a topologically sorting of G. Suppose the resulting linear
ordering of V is ~v, with:

~v := (v1, v2, . . . , vn).

In general, the sequence ~v does not correspond to a path in G, i.e., one or more of the vertex pairs in
the following list:

v1 v2 , v2 v3 , . . . , vn−1 vn

are not edges in E. Call the preceding sequence ~v a quasipath in the DAG G. If we define another
graph G′ = (V ′, E′) by setting V ′ := V and:

E′ := E ∪ { v1 v2 , v2 v3 , . . . , vn−1 vn },

then G′ is a DAG, of which G is a subgraph,4 where the preceding sequence ~v now forms a path in G′,
not just a quasipath in G′. Hence, the sequence ~v defines a Hamiltonian path in the supergraph G′,
but not in the subgraph G.

To conclude, if G = (V,E) is a DAG, it does not necessarily mean that G is Hamiltonian, but it does
mean there exists another graph G′ = (V ′, E′) such that:

• G′ is Hamiltonian, and

• G′ is a supergraph of G.

Exercise 7 Read Example 4, Exercises 5 and 6, and the preceding comments about DAG’s, before
attempting this exercise.

1. Suppose G = (V,E) is a graph and G′ = (V ′, E′) a supergraph of of G. Think of G as being
fixed, while G′ varies over all supergraphs of G. The set of propositional atoms associated with
G is A = {Avw | v, w ∈ V }, and the set associated with G′ is X = {Xvw | v, w ∈ V ′}. We
use the letter ‘X’ to suggest that these are Boolean variables, rather than fixed Boolean atoms,
ranging over the values of the different supergraphs G′. The truth-value assignment induced
by G is σG : A → {true, false}, the truth-value assignment induced by a supergraph G′ of G
is σG′ : X → {true, false}. We define a combined assignment σG,G′ : A ∪ X → {true, false} by
setting:

σG,G′(Z) :=

{
σG(Avw) if Z = Avw ∈ A,
σG′(Xvw) if Z = Xvw ∈ X .

Based on the preceding, your task is to write a set ΓG,G′
subgraph of propositional WFF’s over A∪X

such that:

G is a subgraph of G′ iff σG,G′ |= ΓG,G′
subgraph.

The set ΓG,G′
subgraph is finite or infinite depending on whether G is finite or infinite, respectively.

4G = (V,E) is a subgraph of G′ = (V ′, E′), and G′ = (V ′, E′) is a supergraph of G = (V,E), if V = V ′ and E ⊆ E′;
in words, G and G′ have the same set of vertices, but G omits some (possibly none, possibly all) of the edges of G′.
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2. Let G = (V,E) be finite, with
∣∣V ∣∣ = n > 2. Write a single propositional WFF ϕG,G′

subgraph over

A ∪ X which is equivalent to the set ΓG,G′
subgraph in Part 1. �

Exercise 8 Read all of the preceding exercises and accompanying comments in this section before
tackling this exercise.

Let G = (V,E) be a directed graph with V = {v1, v2, v3, . . .}, which may be finite or infinite. Define
the following finite subsets of V :

V1 := { v1 }, V2 := { v1, v2 }, V3 := { v1, v2, v3 }, . . .

It follows that V1 ⊆ V2 ⊆ V3 ⊆ · · · ⊆ V and
⋃

k>1 Vk = V . In this exercise, we consider two graphs G

and G′, and we use the set ΓG,G′
subgraph of WFF’s defined in Exercise 7, according to which:

G is a subgraph of G′ iff σG,G′ |= ΓG,G′
subgraph.

The set of propositional atoms associated with G and G′ are A and X , respectively. Corresponding
to each Vk, define the sets Ak and Xk of propositional atoms by:

Ak := {A v w | v, w ∈ Vk and v 6= w },

Xk := {X v w | v, w ∈ Vk and v 6= w }.

A1 = X1 = ∅ since
∣∣V1

∣∣ = 1, and Ak = Xk = k · (k − 1) for every k > 2, since
∣∣Vk∣∣ = k. Thus, every

Ak and Xk is finite. We also have:

A1 ⊆ A2 ⊆ A3 ⊆ · · · ⊆ A and X1 ⊆ X2 ⊆ X3 ⊆ · · · ⊆ X ,

with
⋃

k>1Ak = A and
⋃

k>1Xk = X .

1. For every k > 2, your task is to define a set ∆G′
path,k of propositional WFF’s over Xk such that:

there is θ ∈ ∆G′
path,k such that G′ |= θ iff G′ contains a k-path over the vertices in Vk.

Note the difference between the definition of ΓG
path,k in Exercise 6 and ∆G′

path,k here, when V is

an infinite set of vertices: the set ΓG
path,k is infinite because A is infinite, while the set ∆G′

path,k is
finite because Xk finite, even though V and X are infinite.

Since ∆G′
path,k is a finite set, we can define the single propositional WFF by the disjunction

∨
∆G′

path,k.

In Parts 2 and 3 below, we use the combined truth-value assignment σG,G′ defined in Exercise 7, and
assume that V is an infinite set of vertices.

2. For every k > 2, define a set Θk of propositional WFF’s which is satisfied by some σG,G′ iff:

– G is a DAG, and

– there is supergraph G′ of G which is a DAG, and

– there is a k-pseudopath in G, which is a k-path in G′, over the vertices in Vk = {v1, . . . , vk}.
Prove that, if the given G is a DAG, then Θk is always satisfied by some σG,G′ .

3. Define a set Θ of propositional WFF’s which is satisfied by some σG,G′ iff:
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– G is a DAG, and

– there is supergraph G′ of G which is a DAG, and

– there is an infinite pseudopath in G, which is a path in G′, over the full set V .

In Part 3, we do not ask you to show that: if the given G is a DAG, then Θ is always satisfiable. This
is indeed the case, but more difficult to prove. Interestingly, it shows that a familiar fact about finite
DAG’s, namely, ‘every finite DAG can be topologically sorted ’, can be extended to infinite DAG’s. �

2.2 Coloring of Undirected Graphs

We make the same simplifying assumptions, (i) and (ii), about undirected graphs as in Section 2.1.
Given a graph G = (V,E), every edge in E is a two-vertex set, i.e.:

E ⊆
{
{v, w}

∣∣∣ v, w ∈ V and v 6= w
}
.

Again here, assumptions (i) and (ii) do not fundamentally affect the analysis below, but they make
its presentation easier. We still denote an edge by writing ‘ v w ’, which now denotes the two-vertex
set {v, w}, not the ordered pair 〈v, w〉.

In this section we consider questions of colorability of undirected graphs. For simplicity, suppose we
are interested in 4-colorability: N (for navy blue), O (for orange), P (for purple), and R (for red).
The first thing we need to settle for a formal modeling with propositional logic is the selection of
propositional variables. For the four colors in question, it is natural to introduce the variables:

C := {Nv | v ∈ V } ∪ {Ov | v ∈ V } ∪ {Pv | v ∈ V } ∪ {Rv | v ∈ V }

A variable in C, say Rv, will be set to true or false depending on whether vertex v is colored red or not.
As in Section 2.1, we also introduce a propositional atom Avw for every two-vertex set {v, w} ⊆ V ,
which will be set to true or false depending on whether v w is or is not an edge of the given graph G.
The set A of all propositional atoms is:

A = {Avw | v, w ∈ V and v 6= w}.

All our propositional WFF’s in this section are written over A ∪ C. Satisfaction of any such WFF is
relative to a truth-value assignment σA,C : A ∪ C → {true, false}.

Exercise 9 Let G = (V,E) be an arbitrary undirected graph satisfying assumptions (i) and (ii).
Write a set ΓG

4-colorable of propositional WFF’s such that σA,C |= ΓG
4-colorable iff G is 4-colorable.

Hint 1 : For every vertex v, the set ΓG
4-colorable must include a WFF specifying that v is assigned

exactly one color in {N,O, P,R}.

Hint 2 : For every two distinct vertices v and w, the set ΓG
4-colorable must include a WFF specifying

that, if there is an edge connecting v and w, then v and w are not assigned the same color. �

Exercise 10 In this exercise we assume that G = (V,E) is a planar graph. The set ΓG
4-colorable

defined in Exercise 9 is finite or infinite, depending on whether V is a finite or infinite set.

1. Let V be finite. Show there is a truth-value assignment σA,C satisfying ΓG
4-colorable.
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Figure 1: Tic-Tac-Toe on a 4× 4 board after 6 moves, with 3 for each of the two players.

2. Let V be infinite. Show again there is a truth-value assignment σA,C satisfying ΓG
4-colorable.

Thus, whether V is finite or infinite, the planar graph G is always 4-colorable.

Hint 1 : For Part 1, you can invoke well-known facts about finite planar graphs – which are difficult
to prove, though their invocation is easy.

Hint 2 : Part 2 is not easy. You may get some inspiration by doing Exercise 8. �

3 A Two-Player Game: Tic-Tac-Toe

There are different ways, in different formal logics, of modeling Tic-Tac-Toe. If we only want to model
the starting configuration and the winning configuration in the game, then propositional logic (PL)
will suffice.

To make the game a little more interesting, consider Tic-Tac-Toe on a K ×K board where K > 3.
The game for K = 3 is the usual version. The game for K = 4 is shown in Figure 1, with a possible
configuration of the board after 6 moves.

The first thing we need to do is to choose the propositional atoms for our modeling. For convenience,
we write [K] to denote the set of indeces {1, 2, . . . ,K}. Here is a plausible choice:

• Use two-indexed propositional atoms, Pi,j and Qi,j with i, j ∈ [K], to identify the squares where
X and O are located on the board. Specifically,

Pi,j =

{
true if square 〈i, j〉 ∈ [K]× [K] contains X,

false if square 〈i, j〉 ∈ [K]× [K] does not contain X,

Qi,j =

{
true if square 〈i, j〉 ∈ [K]× [K] contains O,

false if square 〈i, j〉 ∈ [K]× [K] does not contain O.

The starting configuration is the configuration when no X and no O are yet placed on the board, which

9



can be modeled by:

ϕstart := (
∧

〈i,j〉∈[K]×[K]

¬Pi,j) ∧ (
∧

〈i,j〉∈[K]×[K]

¬Qi,j)

It should be clear that ϕstart is satisfied, i.e., made true, by the valuation that makes every Pi,j and
every Qi,j false. Thus, ϕstart is a formal way of asserting in plain English:

“for every position 〈i, j〉, X is not on 〈i, j〉, and for every position 〈i, j〉, O is not on 〈i, j〉.”

We next model a winning configuration for X. But what is a winning configuration for X when K > 4?
There are four possible ways in which the X-player can win:

• K occurrences of X are placed in the same row of the board,

• K occurrences of X are placed in the same column of the board,

• K occurrences of X are placed along the first diagonal of the board,

• K occurrences of X are placed along the second diagonal of the board.

Note the indeces of the first diagonal are {〈1, 1〉, 〈2, 2〉, . . . , 〈K,K〉}, while those of the second diagonal
are {〈1,K〉, 〈2,K − 1〉, . . . , 〈K, 1〉}. Although there are several ways of formally modeling a winning
configuration for the X-player, a particular simple one is the following formula:

ϕx-win :=
( ∨
i∈[K]

∧
j∈[K]

Pi,j

)
︸ ︷︷ ︸

all X’s in a row

∨
( ∨
j∈[K]

∧
i∈[K]

Pi,j

)
︸ ︷︷ ︸
all X’s in a column

∨
( ∧
i∈[K]

Pi,i

)
︸ ︷︷ ︸

all X’s in first diagonal

∨
( ∧
i∈[K]

Pi,K+1−i
)

︸ ︷︷ ︸
all X’s in second diagonal

We can define ϕo-win in a similar way, or in many other ways too.

Exercise 11 The O-player in Tic-Tac-Toe wins by preventing the X-player from reaching a winning
configuration. Define a propositional WFF ϕo-win which formally models a winning configuration for
the O-player by denying a winning configuration for the X-player. The desired WFF ϕo-win must
simultaneously model a winning configuration for the O-player and a non-winning configuration for
the X-player.

Hint 1 : A final configuration, when every position contains X or O, may have as sub-configurations
both a winning configuration for the X-player and a winning configuration for the O-player.

Hint 2 : A winning configuration for the O-player is not ‘symmetric’ to a winning configuration for the
X-player, i.e., the former cannot be obtained from the latter by replacing every Pi,j by Qi,j in ϕx-win.
�

Exercise 12 Generalize the notion of winning configuration for the X-player (and similarly for the
O-player) as follows:

• X-player wins iff K occurrences of X are placed in K contiguous squares on the board.
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Call the resulting game Tic-Tac-Toe*.

Two squares (or positions) of the board are contiguous iff they have a side in common. For example,
squares 〈2, 3〉 and 〈2, 4〉 are contiguous, but squares 〈2, 4〉 and 〈3, 3〉 are not contiguous. In this version
of the game, K occurrences of X in the same row (or in the same column) is a winning configuration,
just as it is in the usual Tic-Tac-Toe, but in contrast to the usual game, K occurrences of X along the
first or the second diagonal is not a winning configuration.

Write a propositional WFF ψx-win which is satisfied iff ψx-win represents a winning configuration for
the X-player in Tic-Tac-Toe*. �

4 A One-Player Game: Yashi

An instance of the Yashi game is specified by a n×n integer grid for some n > 2, on which p > 2 nodes
are placed. A solution of the game consists in drawing horizontal and vertical segments, satisfying the
following conditions:

(♦1) Every segment connects two and only two nodes.

(♦2) No two segments overlap.

(♦3) No two segments cross each other.

(♦4) The segments form a tree, i.e., they form a graph without cycles. Put differently still, for every
two nodes a and b there is exactly one path between a and b.

(We do not need the two first conditions, because (♦2) implies (♦1) and (♦3) implies (♦2). We
include them here for clarity. Conditions (♦3) and (♦4) suffice for the definition of a solution.)

You can find out more about this game from the website Yashi. Given an instance G of Yashi, we can
consider different versions of the game:

Version 1. Decide if there is a solution for G. If there is, return one solution.

Version 2. Decide if there is a solution for G. If there is, return the number of solutions.

Version 3. Decide if there is a solution for G. If there is, return a minimum-length solution.

The usual Yashi game corresponds to Version 1 above. In these three versions, if there is no solution,
there is nothing else to do. More elaborate versions require that something be done, if there is no
solution. For example, Version 4 below is an extension of Version 3 that requires further action:

Version 4. Decide if there is a solution for G.

1. If there is, return a minimum-length solution.

2. If there is not, determine the least number k of new nodes to be placed on the grid in order
to induce a solution.

3. If there is not, and k is the least number of new nodes to be placed on the grid in order to
induce a solution, place k new nodes so that a minimum-length solution is induced.

We illustrate the preceding definitions and the different versions with two small examples – small
enough that we can inspect the existence and non-existence of solutions by inspection (not relying on
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programming or automation of any kind).

We identify a node on a n × n grid by its horizontal-vertical coordinates 〈i, j〉 with 0 6 i, j 6 n. A
segment connecting node 〈i, j〉 and node 〈k, `〉 is represented by a two-element pair

(
〈i, j〉, 〈k, `〉

)
.

Example 13 The top row in Figure 2 shows a 6×6 grid with 6 nodes. This is an instance of the Yashi
game; call it G1 for later reference. There are 4 possible non-overlapping segments {X1, X2, X3, X4}:

X1 =
(
〈1, 1〉, 〈1, 5〉

)
, X2 =

(
〈2, 2〉, 〈2, 4〉

)
, X3 =

(
〈5, 3〉, 〈5, 5〉

)
, X4 =

(
〈1, 5〉, 〈5, 5〉

)
A solution is a subset of {X1, X2, X3, X4} satisfying conditions {(♦3), (♦4)}. By inspection, it is easy
to see there is no solution for this instance of Yashi. For Version 1, Version 2, and Version 3, the
answer is “no” and there is nothing else to do.

For Version 4, it is easy to see that placing one new node on the grid induces several solutions. Three
of these are shown in the middle row in Figure 2. A possible answer for Version 4 of the game is to
return the leftmost grid in the middle row in Figure 2.

If we are to place two new nodes on the grid, we can induce a solution of shorter length, as shown
in the bottom row in Figure 2, but this corresponds to a different way of playing Yashi, according to
Version 5 defined next. �

Version 5. Decide if there is a solution for G.

1. If there is, return a minimum-length solution.

2. If there is not, determine the least number k of new nodes to be placed on the grid in order
to induce a solution.

3. If there is not, and k is the least number of new nodes to be placed on the grid to induce a
solution, place k+ ` new nodes so that a minimum-length solution is induced, where ` > 0.

Parts 1 and 2 are the same as in Version 4; in part 3, we are allowed to place k+ ` new nodes,
where ` > 0, instead of just k as in Version 4.

Example 14 Figure 3 shows a 12× 12 grid with 12 nodes. Call this is an instance of the Yashi game
G2 for later reference. There are 14 possible non-overlapping segments {X1, . . . , X14}:

X1 =
(
〈2, 1〉, 〈6, 1〉

)
, X2 =

(
〈6, 1〉, 〈8, 1〉

)
, X3 =

(
〈6, 5〉, 〈9, 5〉

)
, X4 =

(
〈0, 7〉, 〈2, 7〉

)
,

X5 =
(
〈2, 7〉, 〈4, 7〉

)
, X6 =

(
〈4, 7〉, 〈6, 7〉

)
, X7 =

(
〈6, 7〉, 〈9, 7〉

)
, X8 =

(
〈6, 9〉, 〈8, 9〉

)
,

X9 =
(
〈2, 1〉, 〈2, 7〉

)
, X10 =

(
〈6, 1〉, 〈6, 5〉

)
, X11 =

(
〈6, 5〉, 〈6, 7〉

)
, X12 =

(
〈6, 7〉, 〈6, 9〉

)
,

X13 =
(
〈8, 1〉, 〈8, 9〉

)
, X14 =

(
〈9, 5〉, 〈9, 7〉

)
.

This instance of Yashi has many solutions; two are shown in Figure 3.

By inspection, it is easy to see that the segments in {X1, . . . , X14} form 5 simple cycles, i.e., cycles
without repeated nodes. We can represent these cycles by the following sequences (starting with the
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Figure 2: An instance of the Yashi game, a 6×6 grid with 6 nodes. The initial grid is in the top row,
showing all possible horizontal and vertical segments, and has no solution. In the middle row, there
are three grids, showing that placing one new node (denoted �) induces a solution, of different length
in each case (from left to right: 13, 14, and 15, respectively). In the bottom row, the grid shows that
if we place two new nodes, we can induce a solution of shorter length 12.
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leftmost horizontal segment in each case and traversing the cycles in a clockwise direction):

X5 X6 X11 X10 X1 X9

X5 X6 X7 X14 X3 X10 X1 X9

X5 X6 X12 X8 X13 X2 X1 X9

X8 X13 X2 X10 X11 X12

X7 X14 X3 X11

A solution is a subset of {X1, . . . , X14} which excludes these 5 cycles as well as all the crossings. In
this example, there are two crossings, represented by the following pairs: {X3, X13} and {X7, X13}. �

4.1 How to Automate the Yashi Game?

One approach to solving the Yashi game is to write a program that will exhaustively search for
a solution. Let’s call it the programming approach. Specifically, given an instance G of Yashi
(assumed to contain no crossings for a simpler preliminary case), proceed as follows:

1. Use an efficient algorithm to decide whether G is connected as a graph. If it is, proceed to the
next step. If it is not, stop and report there is no solution.

2. Use an efficient algorithm to compute a minimum spanning tree of G as a plane graph. The
minimum spanning tree thus computed is a solution for G.

If G contains crossings, the situation is a bit more delicate. It requires a pre-processing step in which
some of the segments involved in crossings have to be removed, before continuing with step 1 and step
2 above. This pre-processing is related to the problem of deleting the smallest number of edges in a
graph in order to turn it into a plane graph; this has been studied by others in the research community.

As outlined above, the programming approach handles Version 1 and Version 3 of the Yashi game.
Further complications arise, however, if we want to extend the programming approach to Version 2,
Version 4, or Version 5. Such extensions are possible, though they require hard work to analyze,
design, and implement without errors. We do not delve into these complications and turn instead our
attention to an alternative approach, which we call the constraint-solving approach.

In the constraint-solving approach, we first write constraints that model the conditions for a Yashi
solution, and then let a constraint solver do all the computation for us – thus avoiding the hard and
error-prone work of programming. The constraints we want to write must reflect the following:

Fact 15 Let G be an instance of the Yashi game with p > 2 nodes, and let X be the set of all non-
overlapping horizontal and vertical segments connecting two nodes of G. Then G has a solution iff:

there is a subset Y ⊆ X of exactly (p− 1) segments satisfying two conditions:

1. no two segments in Y cross each other, and

2. no subset of Y form a cycle.
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Figure 3: An instance of the Yashi game, a 10× 10 grid with 12 nodes. Top grid shows all possible
horizontal and vertical segments. Bottom left grid shows a solution of length 30. Bottom right grid
shows a solution of length 27.
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Fact 15 characterizes what makes a susbet Y of X a solution for the Yashi instance G, but this requires
a little proof because the definition of a Yashi solution in the opening paragraph of Section 4 says
nothing about the number of segments in Y (here specified to be p− 1).

Exercise 16 Show that if Y is a solution for the Yashi instance G, then there are (p− 1) segments in
Y. Conversely, show that if Y contains (p−1) segments satisfying conditions 1 and 2 in the statement
of Fact 15, then Y is a solution for G.

Hint : From your course on graph theory or on design and analysis of algorithms, the spanning tree of
a simple graph with p nodes is a subset of the edges of G of size (p− 1). �

4.2 Using SAT Solvers

One possible formulation of the Yashi constraints is to use the segment names X = {X1, X2, . . .} as
Boolean variables and then write propositional formulas over X that enforce the selection of a subset
Y ⊆ X of size (p − 1) satisfying conditions 1 and 2 in the statement of Fact 15. The idea is that if
Boolean variable Xi is assigned truth-value true (resp. false), then the corresponding line segment Xi

is included (resp. excluded) from the solution.

Moreover, since we want to use a SAT solver to solve the constraints, it is better if these propositional
formulas are in CNF, though this is not essential.

Following this proposal we need to write three propositional wff’s in CNF:

• ϕtree, which is satisfied by a truth-value assignment iff exactly (p − 1) of the Boolean variables
in X are assigned true.

• ϕno-crossings, which is satisfied by a truth-value assignment iff no two Boolean variables in X
representing a crossing are simultaneously assigned true.

• ϕno-cycles, which is satisfied by a truth-value assignment iff no subset of Boolean variables in X
representing a cycle are simultaneously assigned true.

Using a SAT solver, we can then decide whether the propositional wff Φ , ϕtree∧ϕno-crossings∧ϕno-cycles

is satisfiable. The existence of a model (or Boolean interpretation) for Φ solves Version 1 of the game,
and counting the number of models for Φ solves Version 2 of the game.

For Version 3, Version 4, and Version 5, which involve optimization, we need to do more to model
the problem and then use an SMT solver (not just a SAT solver).

For “small” instances G of Yashi, the approach outlined so far is feasible and manageable, but for
“large” instances it may not be. Specifically, the wff Φ may be too large to write by hand or for a
SAT solver to process in a timely fashion.

Exercise 17 Let G be an instance of Yashi as in the statement of Fact 15 and consider the wff
ϕtree whose satisfaction corresponds to the selection of exactly (p− 1) segments from the set X of all
segments. Suppose

∣∣X ∣∣ = q with q > p.

1. Show that if ϕtree is written in DNF, i.e., as a disjunction of conjuncts of literals, then ϕtree

contains
(

q
p−1

)
conjuncts.

2. Show that if ϕtree is written in CNF, i.e., as a conjunction of disjuncts of literals (or clauses),
then ϕtree contains 2q −

(
q

p−1

)
clauses.
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These numbers quickly become unmanageable. For example, if q = 14 and p = 12 (these are the
numbers in Example 14), then

(
q

p−1

)
=
(

14
11

)
= 364 and 2q −

(
q

p−1

)
= 214−

(
14
11

)
= 16384− 364 = 16020.

Certainly, ϕtree, whether in DNF or CNF, is not to be written by hand! �

What is the alternative, if we do not want to encode ϕtree as a propositional wff? Luckily, if a subset
Y ⊆ X satisfies the constraints no-crossings and no-cycles, we can enforce the requirement that Y is
a spanning tree of G differently. This alternative consists in writing wff’s that prevent cuts in Y. 5

Example 18 Consider the Yashi instance G2 in Example 14 again. We do not try to write ϕtree.
Instead, we formulate constraints that prevent cuts in any proposed solution Y, by examining G2 more
closely. These constraints specify enough of the structure of G2 so that a SAT solver can return an
answer quickly. But first, we write the wff’s ϕno-crossings and ϕno-cycles, both in CNF, which are fairly
simple:

ϕno-crossings , (¬X3 ∨ ¬X13) ∧ (¬X7 ∨ ¬X13)

ϕno-cycles , (¬X1 ∨ ¬X5 ∨ ¬X6 ∨ ¬X9 ∨ ¬X10 ∨ ¬X11)

∧ (¬X1 ∨ ¬X3 ∨ ¬X5 ∨ ¬X6 ∨ ¬X7 ∨ ¬X9 ∨ ¬X10 ∨ ¬X14)

∧ (¬X1 ∨ ¬X2 ∨ ¬X5 ∨ ¬X6 ∨ ¬X8 ∨ ¬X9 ∨ ¬X12 ∨ ¬X13)

∧ (¬X2 ∨ ¬X8 ∨ ¬X10 ∨ ¬X11 ∨ ¬X12 ∨ ¬X13)

∧ (¬X3 ∨ ¬X7 ∨ ¬X11 ∨ ¬X14)

For each node 〈i, j〉 we write a wff no-cut〈i,j〉 which must be satisfied in order that node 〈i, j〉 not be

cut from every proposed spanning tree (i.e., solution) for G2:

no-cut〈2,1〉 , X1 ∨X9

no-cut〈6,1〉 , X1 ∨X2 ∨X10

no-cut〈8,1〉 , X2 ∨X13

no-cut〈6,5〉 , X3 ∨X10 ∨X11

no-cut〈9,5〉 , X3 ∨X14

no-cut〈0,7〉 , X4

no-cut〈2,7〉 , X4 ∨X5 ∨X9

no-cut〈4,7〉 , X5 ∨X6

no-cut〈6,7〉 , X6 ∨X7 ∨X11 ∨X12

no-cut〈9,7〉 , X7 ∨X14

no-cut〈6,9〉 , X8 ∨X12

no-cut〈8,9〉 , X8 ∨X13

5Recall that a cut in a graph with set N of nodes is denoted by a pair (A,N −A) where A ( N . This is the cut that
removes all the edges connecting nodes in A with nodes in N −A. We call (A,N −A) the cut specified by A.
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Let N be the set of all nodes in G2. For every cut (A,N −A), we can write a wff no-cutA which must
be satisfied so that, in every proposed spanning tree, the nodes in A are reachable from the nodes in
(N −A).The following are examples of wff’s preventing two-node cuts:

no-cut{〈2,1〉,〈6,1〉} , X2 ∨X9 ∨X10

no-cut{〈6,1〉,〈8,1〉} , X1 ∨X10 ∨X13

no-cut{〈0,7〉,〈2,7〉} , X5 ∨X9

no-cut{〈9,5〉,〈9,7〉} , X3 ∨X7

no-cut{〈6,9〉,〈8,9〉} , X12 ∨X13

Some of the wff’s preventing three-node cuts:

no-cut{〈0,7〉,〈2,1〉,〈2,7〉} , X1 ∨X5

no-cut{〈0,7〉,〈2,7〉,〈4,7〉} , X6 ∨X9

no-cut{〈2,1〉,〈6,1〉,〈8,1〉} , X9 ∨X10 ∨X13

no-cut{〈6,1〉,〈6,5〉,〈8,1〉} , X1 ∨X3 ∨X11 ∨X13

Some of the wff’s preventing four-node cuts:

no-cut{〈0,7〉,〈2,1〉,〈2,7〉,〈4,7〉} , X1 ∨X6

no-cut{〈2,1〉,〈6,1〉,〈8,1〉,〈6,5〉} , X3 ∨X9 ∨X11 ∨X13

Some of wff’s preventing five-node and six-node cuts:

no-cut{〈2,1〉,〈6,1〉,〈8,1〉,〈0,7〉,〈2,7〉} , X5 ∨X10 ∨X13

no-cut{〈6,1〉,〈8,1〉,〈6,5〉,〈9,5〉,〈9,7〉} , X1 ∨X7 ∨X11 ∨X13

no-cut{〈6,7〉,〈6,9〉,〈8,9〉,〈9,5〉,〈9,7〉} , X3 ∨X6 ∨X11 ∨X13

no-cut{〈2,1〉,〈6,1〉,〈8,1〉,〈6,5〉,〈9,5〉} , X9 ∨X11 ∨X13 ∨X14

no-cut{〈2,1〉,〈6,1〉,〈8,1〉,〈0,7〉,〈2,7〉,〈4,7〉} , X6 ∨X10 ∨X13

no-cut{〈2,1〉,〈6,1〉,〈8,1〉,〈6,5〉,〈9,5〉,〈9,7〉} , X7 ∨X9 ∨X11 ∨X13

We can write other constraints of the form no-cutA, but the preceding already specify much of the
structural properties of G and suffice for a quick execution by a SAT solver that returns a correct
answer. 6

The script that encodes the preceding wff’s in the syntax of Z3 is shown in Figure 4. You can copy
this script into a file named yashi1, say, and then test it by executing the command ‘z3 yashi1’,
assuming you have installed Z3 on your computer. Or you can load the script into an on-line editor
and test it through your Web browser, by clicking here or here. �

6We purposely avoid writing a constraint no-cutA for every ∅ ( A ( N . If we did, we would have to write as many
as (212 − 2) = 4094 of them, since there are p = 12 nodes in this example. We have written enough of them to get a
correct answer which, true enough, we can check by hand in this example.
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4.3 Using SMT Solvers

If we want to play versions of Yashi other than Version 1, we cannot limit ourselves to SAT solving,
because the other versions involve some arithmetic. We need to use a SMT solver. We illustrate this
with the Yashi instance already considered in Examples 14 and 18.

Example 19 We use the same Yashi instance G2 as in Example 18. For Version 3 we need to
formulate a new constraint which, together with the constraints already formulated in Example 18,
require that a solution be of minimum-length.

Let Φ be the conjunction of all the wff’s defined in Example 18. These are written over variables
X = {X1, . . . , X14} of type Boolean. Call θ the new constraint that we need to formulate. We choose
to write θ over X and two new variables of type Integer, length and temp:

θ ,
(
eq length(

let temp =

(if X1 then 4 else 0) + (if X2 then 2 else 0) + (if X3 then 3 else 0) +

(if X4 then 2 else 0) + (if X5 then 2 else 0) + (if X6 then 2 else 0) +

(if X7 then 3 else 0) + (if X8 then 2 else 0) + (if X9 then 6 else 0) +

(if X10 then 4 else 0) + (if X11 then 2 else 0) + (if X12 then 2 else 0) +

(if X13 then 8 else 0) + (if X14 then 2 else 0)

in (minimize temp)
) )

We use two arithmetical primitive operations, ‘eq’ and ‘minimize’ in the following sub-wff’s of θ:

• ‘
(
eq length (minimize temp)

)
’ which returns true if the integer values assigned to length and

(minimize temp) are equal, and false otherwise.

• ‘(minimize temp)’ which minimizes the value of temp; specifically, it chooses an assignment of
truth-values to the Boolean variables in X that minimizes the integer assigned to temp.

Next, we invoke a SMT solver with arithmetic capabilities to solve the combined constraint Φ ∧ θ.

In Figure 5 we show how to encode θ in the syntax of Z3. To test it, you can create a new file named
yashi2, which extends the script (from Figure 4) encoding Φ by inserting the script (from Figure 5)
encoding θ, right after ‘(assert yashi-solution)’ and before ‘(check-sat)’. �

With the arithmetic already used in Example 19 to play Version 3 of Yashi, we can in fact considerably
simplify the wff Φ. This is illustrated in the next example.

Example 20 Once more we consider the Yashi instance G2. For Version 3 of Yashi we show that,
with a little arithmetic, we can replace the constraint Φ by a simpler constraint Φ′:

Φ′ , ϕno-crossings ∧ ϕno-cycles

where ϕno-crossings and ϕno-cycles are defined in Example 18. The wff Φ′, if satisfied, enforces the two
requirements: there are ‘no crossings’ and there are ‘no cycles’. It omits from Φ all sub-wff’s of the
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form no-cutA. According to Fact 15, to get a solution, it suffices to define a new wff, call it θ′, which
enforces the additional requirement that ‘11 segments are selected’.

We can write θ′ in the way θ is written in Example 19: θ′ counts the number of segments selected,
instead of the sum of their lengths, and is satisfied if that number is 11:

θ′ ,
(
eq 11(

let segment-count =

(if X1 then 1 else 0) + (if X2 then 1 else 0) + (if X3 then 1 else 0) +

(if X4 then 1 else 0) + (if X5 then 1 else 0) + (if X6 then 1 else 0) +

(if X7 then 1 else 0) + (if X8 then 1 else 0) + (if X9 then 1 else 0) +

(if X10 then 1 else 0) + (if X11 then 1 else 0) + (if X12 then 1 else 0) +

(if X13 then 1 else 0) + (if X14 then 1 else 0)

in segment-count
) )

Remark: This is not the most economical way of writing θ′; it is here written to show the similarity
with θ.

We now invoke a SMT solver with arithmetic capabilities to solve the combined constraint Φ′ ∧ θ ∧ θ′
for Version 3 of Yashi. (Note that we can also solve Φ′ ∧ θ′ for Version 1 of Yashi, in a much more
succint way than in Example 18.)

In Figure 6 we show an encoding of Φ′ ∧ θ ∧ θ′ in the syntax of Z3. To test it, you can create a new
file named yashi3, say, and then execute the command ‘z3 yashi3’. �

4.4 Using SMT Solvers with an API

For Version 2 of Yashi we have to count the number of solutions – which means that, if we encode
the Yashi constraints as propositional wff’s, we have to count the number of distinct models of such
wff’s, i.e., interpretations or truth-value assignments satisfying them. This is not a trivial problem.
In fact, a SAT or SMT solver is not well equipped to do this kind of counting.

One way of bypassing the difficulty is to use an API (Application Program Interface) which can
support model generation and keep a count of distinct models generated. The idea is to generate a
model, and then to add constraints in order to prevent the same model from being generated in a
subsequent satisfiability check. This process is iterated, with new constraints added after a new model
is generated at every iteration, until there are no more models.

https://stackoverflow.com/questions/13395391/z3-finding-all-satisfying-models

https://github.com/Z3Prover/z3/issues/934
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(declare-const X1 Bool) (declare-const X2 Bool)

(declare-const X3 Bool) (declare-const X4 Bool)

(declare-const X5 Bool) (declare-const X6 Bool)

(declare-const X7 Bool) (declare-const X8 Bool)

(declare-const X9 Bool) (declare-const X10 Bool)

(declare-const X11 Bool) (declare-const X12 Bool)

(declare-const X13 Bool) (declare-const X14 Bool)

(define-fun yashi-solution () Bool

(and (or (not X3) (not X13)) ; no crossing

(or (not X7) (not X13)) ; no crossing

(or (not X1) (not X5) (not X6) (not X9)

(not X10) (not X11)) ; no cycle

(or (not X1) (not X3) (not X5) (not X6) (not X7)

(not X9) (not X10) (not X14)) ; no cycle

(or (not X1) (not X2) (not X5) (not X6) (not X8)

(not X9) (not X12) (not X13)) ; no cycle

(or (not X2) (not X8) (not X10) (not X11) (not X12)

(not X13)) ; no cycle

(or (not X3) (not X7) (not X11) (not X14)) ; no cycle

(or X1 X9) ; no one-node cut

(or X1 X2 X10) ; no one-node cut

(or X2 X13) ; no one-node cut

(or X3 X10 X11) ; no one-node cut

(or X3 X14) ; no one-node cut

X4 ; no one-node cut

(or X4 X5 X9) ; no one-node cut

(or X5 X6) ; no one-node cut

(or X6 X7 X11 X12) ; no one-node cut

(or X7 X14) ; no one-node cut

(or X8 X12) ; no one-node cut

(or X8 X13) ; no one-node cut

(or X2 X9 X10) ; no two-node cut

(or X1 X10 X13) ; no two-node cut

(or X3 X7) ; no two-node cut

(or X5 X9) ; no two-node cut

(or X12 X13) ; no two-node cut

(or X1 X5) ; no three-node cut

(or X6 X9) ; no three-node cut

(or X9 X10 X13) ; no three-node cut

(or X1 X3 X11 X13) ; no three-node cut

(or X1 X6) ; no four-node cut

(or X3 X9 X11 X13) ; no four-node cut

(or X5 X10 X13) ; no five-node cut

(or X1 X7 X11 X13) ; no five-node cut

(or X3 X6 X11 X13) ; no five-node cut

(or X9 X11 X13 X14) ; no five-node cut

(or X6 X10 X13) ; no six-node cut

(or X7 X9 X11 X13) ; no six-node cut

))

(assert yashi-solution)

(check-sat)

(get-model)

Figure 4: Script yashi1 for Example 18.
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(declare-const length Int)

(define-fun temp () Int

(+ (ite X1 4 0) (ite X2 2 0) (ite X3 3 0) (ite X4 2 0)

(ite X5 2 0) (ite X6 2 0) (ite X7 3 0) (ite X8 2 0)

(ite X9 6 0) (ite X10 4 0) (ite X11 2 0) (ite X12 2 0)

(ite X13 8 0) (ite X14 2 0)

))

(minimize temp)

(assert (= length temp))

Figure 5: Portion of yashi2 for Example 19 – to be inserted after ‘(assert yashi-solution)’ in yashi1.
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(declare-const X1 Bool) (declare-const X2 Bool)

(declare-const X3 Bool) (declare-const X4 Bool)

(declare-const X5 Bool) (declare-const X6 Bool)

(declare-const X7 Bool) (declare-const X8 Bool)

(declare-const X9 Bool) (declare-const X10 Bool)

(declare-const X11 Bool) (declare-const X12 Bool)

(declare-const X13 Bool) (declare-const X14 Bool)

(define-fun yashi-solution () Bool

(and (or (not X3) (not X13)) ; no crossing

(or (not X7) (not X13)) ; no crossing

(or (not X1) (not X5) (not X6) (not X9)

(not X10) (not X11)) ; no cycle

(or (not X1) (not X3) (not X5) (not X6) (not X7)

(not X9) (not X10) (not X14)) ; no cycle

(or (not X1) (not X2) (not X5) (not X6) (not X8)

(not X9) (not X12) (not X13)) ; no cycle

(or (not X2) (not X8) (not X10) (not X11) (not X12)

(not X13)) ; no cycle

(or (not X3) (not X7) (not X11) (not X14)) ; no cycle

))

(assert yashi-solution)

(declare-const length Int)

(define-fun temp () Int

(+ (ite X1 4 0) (ite X2 2 0) (ite X3 3 0) (ite X4 2 0)

(ite X5 2 0) (ite X6 2 0) (ite X7 3 0) (ite X8 2 0)

(ite X9 6 0) (ite X10 4 0) (ite X11 2 0) (ite X12 2 0)

(ite X13 8 0) (ite X14 2 0) ))

(minimize temp)

(assert (= length temp))

(define-fun segment-count () Int

(+ (ite X1 1 0) (ite X2 1 0) (ite X3 1 0) (ite X4 1 0)

(ite X5 1 0) (ite X6 1 0) (ite X7 1 0) (ite X8 1 0)

(ite X9 1 0) (ite X10 1 0) (ite X11 1 0) (ite X12 1 0)

(ite X13 1 0) (ite X14 1 0) ))

(assert (= segment-count 11))

(check-sat)

(get-model)

Figure 6: Script yashi3 for Example 20.
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