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In these notes I follow a recent trend of introducing and proving the Compactness Theorem before the
Completeness Theorem. Doing it this way, Completeness becomes a consequence of Compactness. The
other way around, which is standard in many textbooks on mathematical logic and formal methods,
invokes Completeness (as well as Soundness) to prove Compactness .1

There are good reasons for reversing the traditional approach. Perhaps the chief reason is to avoid
getting immersed in nitty-gritty details of a formal proof system and, thus, to also avoid the concern
of dealing with as many proofs of Completeness as there are proof systems (a welcome avoidance when
our study is to compare different proof systems for propositional logic and first-order logic).

Another reason, no less compelling, for starting with Compactness is didactic: It makes it easier to
grasp topological aspects of the notion (and the origin of its name). We can go deep in a topological
direction, by explaining Compactness purely in terms of notions such as ultrafilters, ultraproducts,
Hausdorff spaces, the finite-intersection property, and others, but that would take us further afield
from the focus of this course.2

I choose a watered-down topological approach. In the proof of Compactness in Section 1, we
construct a maximal satisfiable set of propositional WFF’s and avoid explicitly defined topological
notions, although some of these are lurking right under the surface.3

Another uncommon aspect in these notes is to reduce Compactness for first-order logic to Com-
pactness for propositional logic.4 Alternative and more common approaches to proving Compactness
for first-order logic – whether first and directly, or second and as a consequence of Completeness and
Soundness – do not need to invoke these properties in relation to propositional logic. By contrast, the
proof of Compactness for first-order logic in these notes (Section 5) requires an explicit invocation of
Compactness for propositional logic via what is called Herbrand theory (in Section 4).

1A typical example is the proof of the Compactness Theorem in Enderton’s book, A Mathematical Introduction to
Logic, at the end of Section 2.5. That proof invokes the Completeness Theorem, as well as the Soundness Theorem, to
prove Compactness. The book I recommended as a reference for this course (M. Huth and M. Ryan, Logic in Computer
Science, Second Edition, Cambridge University Press, 2004) omits altogether the proofs for Soundness and Completeness
(on page 96), and then invokes Completeness to prove Compactness as a consequence (on page 137).

2If you are interested in knowing more, search the Web for “topological proof of the compactness theorem in logic”.
3One such notion is the finite-intersection property : A collection A of subsets of a set X is said to have the finite-

intersection property if the intersection over any finite subcollection of A is nonempty.
4I do not claim originality for this approach. It originated with others. For example, this approach is implicit in R.M.

Smullyan’s book First-Order Logic, Springer-Verlag, 1968 (see the proofs of Theorem 6 at the end of Chapter VI and
Theorem 2 in Chapter VII). And it is explicit in G. Kreisel’s and J.L. Krivine’s book Elements of Mathematical Logic,
1967 (see their Finiteness Theorem, Theorem 12, in Chapter 2). However, it takes some doing to decode the notation in
these two books, somewhat different from that in more recent publications.
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An additional benefit of an excursion through Herbrand theory is that it has other important uses
outside these notes. It plays the role of a transfer principle by reducing many questions of first-order
logic to questions of propositional logic. In particular, it provides a unified framework for the study
of other topics later in the course, such as the tableaux and resolution methods for first-order logic.

As an intermediate stage facilitating the transition from propositional logic to first-order logic, I
also include (in Section 3) the reduction of Compactness for the logic of quantified Boolean formulas
(QBF’s) to Compactness for propositional logic.

1 Compactness for Propositional Logic

We say a set Γ of WFF’s is finitely satisfiable iff every finite subset of Γ is satisfiable. If Γ is a finite
set, then “finitely satisfiable” coincides with “satisfiable”.

We write models(Γ) to denote the set of models of Γ. In the propositional case, models(Γ) is the
set of all Boolean valuations of the propositional variables that satisfy every WFF in Γ. The next
lemma is a preliminary result for the Compactness Theorem.

Lemma 1. Let Γ be a set of propositional WFF’s and ϕ an arbitrary propositional WFF. If Γ is
finitely satisfiable, then Γ ∪ {ϕ} or Γ ∪ {¬ϕ} (or possibly both) is finitely satisfiable.

Proof. Suppose the conclusion of the lemma does not hold: Both Γ∪{ϕ} and Γ∪{¬ϕ} are not finitely
satisfiable. Hence, there are finite subsets Γ1 ⊆ Γ and Γ2 ⊆ Γ such that both Γ1 ∪ {ϕ} and Γ2 ∪ {¬ϕ}
are not satisfiable. Hence, both:

models(Γ1) ∩models(ϕ) = ∅ and models(Γ2) ∩models(¬ϕ) = ∅.

Hence, both models(Γ1) ⊆ models(¬ϕ) and models(Γ2) ⊆ models(ϕ). Hence,

models(Γ1 ∪ Γ2) = models(Γ1) ∩models(Γ2) ⊆ models(¬ϕ) ∩models(ϕ) = ∅.

Hence, the finite subset Γ1 ∪ Γ2 does not have models, i.e., is not satisfiable. Hence, Γ is not finitely
satisfiable, and the hypothesis of the lemma does not hold either.

Theorem 2 (Compactness for Propositional Logic). Let Γ be a set of propositional WFF’s. Then Γ
is satisfiable iff Γ is finitely satisfiable.

Proof. The left-to-right implication is immediate. The non-trivial is the right-to-left implication: If Γ
is finitely satisfiable, then Γ is satisfiable.

Let X = {x1, x2, x3, . . .} be the set of propositional variables, finite or countably infinite. Let
ϕ1, ϕ2, ϕ3, . . . be a fixed, countably infinite, enumeration of all the WFF’s of propositional logic over
X and the logical connectives. This enumeration of the ϕi’s is countably infinite. We define a nested
sequence of supersets of Γ as follows:

∆0 = Γ,

∆i+1 =

{
∆i ∪ {ϕi} if ∆i ∪ {ϕi} is finitely satisfiable,

∆i ∪ {¬ϕi} otherwise.

Clearly, Γ = ∆0 ⊆ ∆1 ⊆ ∆2 ⊆ ∆3 ⊆ · · · . By induction on i > 0, using Lemma 1, every ∆i is a finitely
satisfiable set of propositional WFF’s. We now define:

∆ =
⋃

i
∆i (the limit of the ∆i’s)

Two facts about ∆ follow from its definition:
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1. For every propositional WFF ϕ, either ϕ ∈ ∆ or ¬ϕ ∈ ∆, but not both.
This is why ∆ is said maximal finitely satisfiable, soon to be shown just maximal satisfiable.

2. Since every propositional variable xi is a WFF itself, either xi ∈ ∆ or ¬xi ∈ ∆, but not both.

We next define a Boolean valuation σ as follows:

σ(xi) =

{
T if xi ∈ ∆,

F if ¬xi ∈ ∆.

Claim: σ satisfies a propositional WFF ϕ iff ϕ ∈ ∆. We leave the proof of this claim as an (easy)
exercise.

Hence, σ is a valuation satisfying every WFF in ∆, i.e., σ ∈ models(∆). Hence, because Γ ⊆ ∆, it
it also the case that σ satisfies every WFF in Γ. Hence, Γ is satisfiable.

Exercise 3. Provide the details in the preceding proof showing that there is “a fixed, countably
infinite, enumeration of all the WFF’s of propositional logic over X”. Although not needed in the
proof, we can state a stronger assertion: The fixed enumeration of all the WFF’s of propositional logic
is computable, i.e., can be generated by an infinitely-running computer program. �

Exercise 4. In the definition of the nested sequence of ∆i’s in the preceding proof, we did not write:

∆i+1 =

{
∆i ∪ {ϕi} if ∆i ∪ {ϕi} is finitely satisfiable,

∆i ∪ {¬ϕi} if ∆i ∪ {¬ϕi} is finitely satisfiable.

Explain why. Hint : Exhibit a set Γ of WFF’s and a single WFF ϕ such that both Γ∪{ϕ} and Γ∪{¬ϕ}
are satisfiable. �

Exercise 5. Prove the claim in the proof of Theorem 2. There is no harm in simplifying the syntax
a little, by restricting the logical connectives to two, say, {¬,∨} or {¬,∧}. Hint : Use structural
induction on propositional WFF’s. �

Lemma 6. Let Γ be a set of propositional WFF’s and ϕ an arbitrary propositional WFF. Then Γ |= ϕ
iff Γ ∪ {¬ϕ} is unsatisfiable – or, equivalently, Γ 6|= ϕ iff Γ ∪ {¬ϕ} is satisfiable.

Proof. We have the following sequence of equivalences:

Γ |= ϕ iff models(Γ) ⊆ models(ϕ)

iff models(Γ) ∩models(¬ϕ) = ∅
iff models(Γ ∪ {¬ϕ}) = ∅
iff Γ ∪ {¬ϕ} is unsatisfiable,

which is the desired conclusion.

Corollary 7. Let Γ be a set of propositional WFF’s and ϕ an arbitrary propositional WFF. Then
Γ |= ϕ iff then there is a finite subset Γ0 ⊆ Γ such that Γ0 |= ϕ.

Proof. The right-to-left implication is immediate. For the left-to-right implication, we prove the
contrapositive. So, suppose Γ0 6|= ϕ for every finite subset Γ0 ⊆ Γ. We have the following equivalences:

Γ0 6|= ϕ for every finite Γ0 ⊆ Γ iff Γ0 ∪ {¬ϕ} satisfiable for every finite Γ0 ⊆ Γ (by Lemma 6)

iff Γ ∪ {¬ϕ} finitely satisfiable (by definition)

iff Γ ∪ {¬ϕ} satisfiable (by Theorem 2)

iff Γ 6|= ϕ (by Lemma 6) ,

which is the desired conclusion.
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Exercise 8. We can restrict the logical connectives of propositional logic to {¬,∨,∧}. Assume the
set X = {x1, x2, x3, . . .} of propositional variables is countably infinite. Suppose we extend this syntax
with two new connectives, denoted

∨∨∨
and

∧∧∧
, each taking as a single argument a countably infinite

set of previously defined WFF’s. The resulting syntax is one version of what is called the infinitary
propositional logic. If Γ is a countably infinite set of the form Γ = {ϕ1, ϕ2, ϕ3, . . .}, then:∨∨∨

Γ = ϕ1 ∨ ϕ2 ∨ ϕ3 ∨ · · · ,

and similarly for
∧∧∧

Γ. There are three parts in this exercise:

1. Define the syntax of the infinitary PL, preferably in an extended BNF (Backus-Naur form).

2. Define the semantics of the infinitary PL, by structural induction on the syntax in Part 1, starting
from an assignment σ of truth values to every member of X (for the base case of the induction).

3. Show that Theorem 2 does not hold, and therefore nor does Corollary 7, for the infinitary PL.
Hint : Define a countably infinite set Γ of WFF’s such that every finite Γ0 ⊆ Γ is satisfiable, but
Γ is not. Further Hint : Include the WFF ϕ =

∨∨∨
{¬x1,¬x2,¬x3, . . .} in your proposed Γ.

�

2 Completeness for Propositional Logic

The next lemma, which does not need Compactness for its proof, is a weaker form of the Completeness
Theorem. The Completeness Theorem in full generality is Theorem 10 whose proof uses Compactness
in an essential way (in the form of Corollary 7).

Lemma 9. Let ϕ1, . . . , ϕn, ψ be propositional WFF’s. If ϕ1, . . . , ϕn |= ψ then ϕ1, . . . , ϕn ` ψ.

Proof. This lemma is the Completeness Theorem as stated in the book [LCS], in Section 1.4.4; specif-
ically, this is the left-to-right implication in Corollary 1.39.5 Section 1.4.4 in [LCS] is entirely devoted
to the details of the proof.

The details of the preceding proof very much depend on the kind of proof system it is based on. So,
in the book [LCS], it depends on the system of natural deduction. But Lemma 9, or lemmas essentially
asserting the same thing, in fact hold again for all the finitary proof systems of propositional logic,
e.g., all the systems surveyed in earlier handouts (click here). The phrase “finitary proof system” here
is a bit loose, but you can take it to qualify a formal system that generates new finite expressions
(e.g., the sequents of propositional logic in natural-deduction style or the WFF’s of propositional logic
in Hilbert style) from previously generated ones by means of finitely many rules that require each
finitely many antecedents – without using any notion of “limit”, any notion of infinite sequence in its
formulation, and any notion of infinite set.6

Theorem 10 (Completeness for Propositional Logic). Let Γ be a set of propositional WFF’s (possibly
infinite), and ψ a propositional WFF. If Γ |= ψ, then Γ ` ψ.

Proof. If Γ |= ψ, then there is a finite subset Γ0 ⊆ Γ such that Γ0 |= ψ, by Corollary 7. By Lemma 9,
it follows that Γ0 ` ψ. Padding Γ0 with the redundant premises in (Γ− Γ0), we conclude Γ ` ψ.

5Michael Huth and Mark Ryan, Logic in Computer Science, Second Edition, Cambridge University Press, 2004.
6If you want to go deeper into what “finitary proofs” and “finitary proof systems” mean, search the Web for these

two expressions. Also search the Web for notions of “limit” in mathematics and how they are used.
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3 Compactness and Completeness for the Logic of QBF’s

We can prove Compactness for the logic of quantified Boolean formulas (QBF’s) in one of two ways:
either directly or by reducing it to Compactness for propositional logic. We choose the latter approach
in these notes because we have already done much of the preliminary work in Section 1 and as an
intermediate stage before studying Compactness for first-order logic in Section 5.

Lemma 11. Let Γ be a set (finite or infinite) of QBF’s. We can construct a set Γ′ of propositional
WFF’s such that:

1. Γ is finitely satisfiable iff Γ′ is finitely satisfiable.

2. Γ is satisfiable iff Γ′ is satisfiable.

The construction in the proof below establishes a stronger result: Γ and Γ′ are more than finitely
equisatisfiable and equisatisfiable; they are in fact equivalent. Specifically, for every QBF ϕ ∈ Γ there
is a propositional WFF ϕ′ ∈ Γ′ such that ϕ and ϕ′ are equivalent; and, similarly, for every propositional
WFF ϕ′ ∈ Γ′ there is a QBF ϕ ∈ Γ such that ϕ and ϕ′ are equivalent.

Proof. If ϕ is a propositional WFF, we write “ϕ[x := ⊥]” and “ϕ[x := >]” to denote the substitution
of ⊥ and >, respectively, for every occurrence of variable x in ϕ.

We define a transformation Θ( ) from QBF’s to propositional WFF’s by structural induction:

1. Θ(x) , x (for every propositional variable x)

2. Θ(¬ϕ) , ¬Θ(ϕ)

3. Θ(ϕ ∧ ψ) , Θ(ϕ) ∧Θ(ψ)

4. Θ(ϕ ∨ ψ) , Θ(ϕ) ∨Θ(ψ)

5. Θ(ϕ→ ψ) , Θ(ϕ)→ Θ(ψ)

6. Θ(∀x ϕ) , Θ(ϕ)[x := ⊥] ∧ Θ(ϕ)[x := >] (for every occurrence of x in Θ(ϕ))

7. Θ(∃x ϕ) , Θ(ϕ)[x := ⊥] ∨ Θ(ϕ)[x := >] (for every occurrence of x in Θ(ϕ))

Claim: For every QBF ϕ, the transformation Θ(ϕ) satisfies the following properties:

(a) Θ(ϕ) is a propositional WFF,

(b) FV(ϕ) are exactly all the propositional variables occurring in Θ(ϕ), and

(c) if X = FV(ϕ), then for every assignment σ of truth values to the members of X, it holds that
σ satisfies ϕ iff σ satisfies Θ(ϕ).

Part (c) in this claim shows that ϕ and Θ(ϕ) are not only equisatisfiable, but also equivalent. We
leave the proof of this claim as an exercise. Given an arbitrary (finite or infinite) set Γ of QBF’s, we
now define Γ′ by:

Γ′ ,
{
Θ(ϕ)

∣∣∣ ϕ ∈ Γ
}

By the preceding claim, we conclude that Γ′ is a set of propositional WFF’s, defined over the set of
variables X = FV(Γ), such that for every truth-value assignment σ for the variables in X:

• for every finite subset ∆ ⊆ Γ there is a finite subset ∆′ ⊆ Γ′ s.t. σ satisfies ∆ iff σ satisfies ∆′,

5



• for every finite subset ∆′ ⊆ Γ′ there is a finite subset ∆ ⊆ Γ s.t. σ satisfies ∆ iff σ satisfies ∆′,

• σ satisfies Γ iff σ satisfies Γ′.

We leave the missing details in the proof of the preceding three bullet points as an exercise.

Exercise 12. Prove the claim in the proof of Lemma 11. Hint : Use structural induction on QBF’s,
following the seven steps in the definition of the transformation Θ( ). �

Exercise 13. In the statement of Lemma 11 and its proof, the set Γ of QBF’s and the set Γ′ of
propositional WFF’s are equivalent. Specify:

1. Conditions under which
∣∣Γ∣∣ =

∣∣Γ′∣∣, and

2. Conditions under which
∣∣Γ∣∣ > ∣∣Γ′∣∣,

where
∣∣Γ∣∣ is the cardinality of the set Γ. Hint : Consider, for example, the case when all the QBF’s in

Γ are closed ; what is Γ′ in this case? �

Exercise 14. Supply the missing details in the proof of the three bullet points at the end of the proof
of Lemma 11. Hint : This is subtler than at first blush; do Exercise 13 before you attempt this one. �

Theorem 15 (Compactness for the Logic of QBF’s). Let Γ be a set of QBF’s. Then Γ is satisfiable
iff Γ is finitely satisfiable.

Proof. The left-to-right implication is immediate. The non-trivial is the right-to-left implication, i.e.,
we have to prove that if Γ is finitely satisfiable, then Γ is satisfiable. Let Γ′ be the set of propositional
WFF’s defined from Γ according to Lemma 11.

By Lemma 11, Γ is finitely satisfiable iff Γ′ is finitely satisfiable. By Theorem 2, Γ′ is finitely
satisfiable iff Γ′ is satisfiable. By Lemma 11 once more, Γ′ is satisfiable iff Γ is satisfiable. Hence, if Γ
is finitely satisfiable, then Γ is satisfiable, as desired.

For the next lemma and its corollary, review the formal semantics of QBF’s in Handout 13. The
meaning of “|=” for QBF’s depends on this formal semantics.

Lemma 16. Let Γ be a set of QBF’s and ϕ an arbitrary QBF. Then Γ |= ϕ iff Γ∪{¬ϕ} is unsatisfiable
– or, equivalently, Γ 6|= ϕ iff Γ ∪ {¬ϕ} is satisfiable.

Proof. Identical to the proof of Lemma 6, except that here Γ is a set of QBF’s and ϕ is a QBF.

Corollary 17. Let Γ be a set of QBF’s and ϕ an arbitrary QBF. Then Γ |= ϕ iff then there is a finite
subset Γ0 ⊆ Γ such that Γ0 |= ϕ.

Proof. Identical to the proof of Corollary 7, except that here Γ is a set of QBF’s and ϕ is a QBF.
Moreover, here we invoke Lemma 16 instead of Lemma 6, and Theorem 15 instead of Theorem 2.

Before turning to Completeness for the logic of QBF’s, review the proof rules for QBF’s in Handout
13. Although the proof rules in Handout 13 are in natural deduction style, Completeness holds for
any of the other available proof systems for the logic of QBF’s.

The next lemma is a weaker form of the Completeness Theorem for QBF’s, i.e., it is restricted
to a finite set of formulas {ϕ1, . . . , ϕn}. The Completeness Theorem for QBF’s in full generality is
Theorem 20.

Lemma 18. Let ϕ1, . . . , ϕn, ψ be QBF’s. If ϕ1, . . . , ϕn |= ψ then ϕ1, . . . , ϕn ` ψ.
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Proof. This lemma is proved in the same way as Lemma 9, following the steps of the proof of the
Completeness Theorem for propositional logic, as stated in the book [LCS], in Section 1.4.4; specifically,
this is the left-to-right implication in Corollary 1.39.7

Exercise 19. Write the details of the proof for Lemma 18. �

Theorem 20 (Completeness for the Logic of QBF’s). Let Γ be a set of QBF’s (possibly infinite), and
ψ a QBF. If Γ |= ψ, then Γ ` ψ.

Proof. Identical to the proof of Theorem 10, except that all formulas are now QBF’s, not just proposi-
tional WFF’s. Moreover, we need to invoke Corollary 17 instead of Corollary 7, and Lemma 18 instead
of Lemma 9.

4 Herbrand Theory

To prove Compactness for first-order logic, we want to use once more a reduction to Compactness for
propositional logic, but the situation is a little more complicated than it was for QBF’s in Section 3.
What we need is a lemma that is the counterpart of Lemma 11 extended to first-order WFF’s. This
requires some extra preliminary work, represented by what is often called Herbrand theory.8

A first-order WFF ϕ is in prenex normal form iff ϕ consists of a (possibly empty) string of quanti-
fiers followed by a quantifier-free WFF. The string of quantifiers is the prefix of ϕ, and the quantifier-
free WFF is the matrix of ϕ. This definition applies to both QBF’s and first-order WFF’s.

In Handout 13 on QBF’s, there is an inductive definition for the transformation of an arbitrary
QBF into an equivalent QBF in prenex normal form. Call this transformation Θpr( ). We can apply
Θpr( ) just as defined in Handout 13 to an arbitrary first-order WFF ϕ in order to obtain an equivalent
first-order WFF ϕ′ = Θpr(ϕ) in prenex normal form.

Given a first-order WFF ϕ in prenex normal form, the Skolemization of ϕ is a first-order WFF ψ
obtained by initially setting ψ to ϕ and then by repeatedly applying a three-step sequence to ψ:9

1. Find the leftmost ∃ in the quantifier prefix of ψ, which binds a variable x and appears as “∃x”,

2. Introduce a fresh function symbol fx of arity equal to the number of ∀’s to the left of “∃x”,

3. If the ∀’s to the left of “∃x” are “∀y1 · · · ∀yn”, then cross out “∃x” from the quantifier prefix
and replace all occurrences of x in the matrix of ψ by the term fx(y1, . . . , yn).

Applying these three steps once eliminates one existential quantifier from the quantifier prefix, and
applying them repeatedly eliminates all the existential quantifiers, finitely many of them. The final
WFF ψ is therefore in prenex normal form where the quantifier prefix consists of ∀’s only; i.e.,
Skolemizing a prenex normal form ϕ produces a universal WFF ψ.

Every time the three-step sequence is applied, a fresh function symbol fx is introduced. There are
as many new fresh function symbols as there are existential quantifiers in the prefix of the initial WFF
ϕ in prenex normal form. These fresh function symbols are called Skolem functions. Note that if the
leftmost “∃x” in the initial ϕ is not preceded by any ∀, the associated Skolem function fx has arity
= 0, i.e., fx is a constant symbol.

7Michael Huth and Mark Ryan, Logic in Computer Science, Second Edition, Cambridge University Press, 2004.
8Jacques Herbrand is a mathematician of the early twentieth century who laid out the foundation for this theory.
9The words Skolemize and Skolemization are derived from the name of the mathematical logician Thoralf Skolem. If

you want to find out more about the many uses of Skolemization, click here.
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We write Θsk(ϕ) to denote the Skolemization of the WFF ϕ in prenex normal form. If ϕ is an
arbitrary first-order WFF, not necessarily in prenex normal form, then we write Θpr,sk(ϕ) to denote
the two-stage transformation of ϕ – first, into prenex normal form and, second, into Skolemized form
– and we also call Θpr,sk(ϕ) the Skolemization of ϕ.

While ϕ and Θpr(ϕ) are logically equivalent, it does not make sense to talk about the equivalence
(or non-equivalence) of ϕ and Θpr,sk(ϕ) because the signature of the latter WFF is different from the
signature of ϕ. Nevertheless, we have the following result. Recall that a sentence ϕ is a closed formula,
i.e., FV(ϕ) = ∅.

Lemma 21. Let ϕ be an arbitrary first-order sentence. Then ϕ is satisfiable iff Θpr,sk(ϕ) is satisfiable.

Proof. We can assume that ϕ is already in prenex normal form. It suffices to show how the elimination
of the leftmost existential quantifier from the prefix of ϕ produces another prenex normal form ψ which
is equisatisfiable with ϕ, and then the same process can be repeated for the elimination of all the other
existential quantifers in the prefix of ϕ. Let then ϕ be of the form:

ϕ , ∀x1 · · · ∀xn∃y ϕ0

where n > 0 and ϕ0 is a a prenex normal form such that FV(ϕ0) ⊆ FV(ϕ)∪{x1, . . . , xn, y}. According
to the Skolemization process, ψ is of the form:

ψ , ∀x1 · · · ∀xn ϕ0[y := fy(x1, . . . , xn)]

where fy is a fresh n-ary function symbol. Σ and Σ∪{fy} are the signatures of ϕ and ψ, respectively.
Let M be a structure for signature Σ. The expansion M′ , (M, fM

′
y ) of M is a structure for

signature Σ ∪ {fy}. Let A be the universe of M, which is also the universe of M′. If M′ |= ψ, then
clearly M |= ϕ. Hence, if ψ is satisfiable, then so is ϕ.

Conversely, let M |= ϕ. We construct a structure M′ for Σ ∪ {fy} by expanding M so that for
every a1, . . . , an ∈ A, the function fM

′
y maps (a1, . . . , an) to b where M, a1, . . . , an, b |= ϕ0. Hence,

M′ |= ψ. Hence, if ϕ is satisfiable, then so is ψ.

Exercise 22. What goes wrong in the proof of Lemma 21 if ϕ is an open WFF? Hint : Try the
open WFF ϕ(y) , ∃!v∀w

(
P (a,w)∧P (v, w)

)
→ ∃x

(
P (a, y)∧P (x, y)

)
, where “∃!” means “there exists

exactly one”, P is a binary predicate symbol and a is a constant symbol. Show that |= ϕ(y), but the
construction in the proof of Lemma 21 produces an open WFF ψ(y) not satisfied by any structureM
– unless we introduce additional constraints at the meta-level on M. �

Exercise 23. Let P be a binary predicate symbol and f a unary function symbol.

1. Show that the sentence ϕ , ∀xP
(
x, f(x)

)
→ ∀x∃y P (x, y) is valid, i.e., formally provable. Do

it in two different ways:

(a) proof-theoretically, ` ϕ, using natural deduction, and

(b) semantically, |= ϕ.

2. Show that the sentence ψ , ∀x∃y P (x, y) → ∀xP
(
x, f(x)

)
is not valid, i.e., not formally prov-

able. Note that ψ is just the converse implication of ϕ.

Hint : Try a semantic approach, i.e., show 6|= ψ. You need to define a structure M so that the
left-hand side of “→” in ψ is true in M but the right-hand side of “→” is false in M.

3. Conclude that ∀x∃y P (x, y) and ∀xP
(
x, f(x)

)
are not equivalent first-order WFF’s.

Remark: Despite the conclusion in part 3, Lemma 21 asserts that ∀x∃y P (x, y) and ∀xP
(
x, f(x)

)
are

equisatisfiable, i.e., if there is a model for one, then there is a model for the other, and vice-versa. �
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Herbrand universes, Herbrand structures, Herbrand models

Consider a fixed first-order signature Σ = {P,F , C}, where P, F , and C, are countable sets of predicate
symbols, function symbols, and constant symbols, respectively. If Γ is a set of WFF’s over Σ, we write
P(Γ), F(Γ), and C(Γ), to respectively denote the sets of predicate symbols, function symbols, and
constant symbols, occurring in Γ. We write Σ(Γ) to denote {P(Γ),F(Γ), C(Γ)}.

If C(Γ) = ∅, we add a fresh constant symbol to it in order to be able to build a non-empty set of
variable-free terms. The variable-free terms and the variable-free atomic formulas over Σ(Γ) are called
the ground terms and the ground atoms over Σ(Γ), respectively. More precisely, Gr Terms(Γ) is the
least set satisfying the condition:

Gr Terms(Γ) ⊇ C(Γ) ∪
{ f(t1, . . . , tn)

∣∣ f ∈ F(Γ) has arity n > 1, t1, . . . , tn ∈ Gr Terms(Γ) },

and Gr Atoms(Γ) is the set defined by:

Gr Atoms(Γ) , { t1
.
= t2 | t1, t2 ∈ Gr Terms(Γ) } ∪

{P (t1, . . . , tn) | P ∈ P(Γ) has arity n > 0, t1, . . . , tn ∈ Gr Terms(Γ) }.

If F(Γ) contains function symbols of arity > 1, then Gr Terms(Γ) is countably infinite, otherwise it is
a non-empty finite set (because C(Γ) 6= ∅).

The Herbrand universe over Σ(Γ), i.e., induced by the signature of Γ, is the set Gr Terms(Γ). A
Herbrand structure H(Γ) over signature Σ(Γ) – or just denoted H if Γ is understood from the context
– is a structure whose universe is Gr Terms(Γ):

H ,
(
Gr Terms(Γ),P(Γ)H,F(Γ)H, C(Γ)H

)
where P(Γ)H denotes the interpretation of every predicate symbol in P(Γ) in H, and similarly for
F(Γ)H and C(Γ)H.

We need to handle a variable-free expression such as “f(a, b)” with care, because it is both an
(uninterpreted) term and an element of the universe Gr Terms(Γ). The context will disambiguate the
sense in which “f(a, b)” is understood.10

The interpretation tH of a ground term t is the term t itself. The interpretation fH of a function
symbol f of arity n > 1 is given by fH(t1, . . . , tn) , f(t1, . . . , tn) for all t1, . . . , tn ∈ Gr Terms(Γ).
Observe that the interpretation of terms and function symbols is identical in all Herbrand structures
over the same signature Σ(Γ).

Only the interpretation of predicate symbols differs from one Herbrand structure to another over
the same Σ(Γ). A Herbrand structure is therefore uniquely determined by the truth values assigned
to the members of Gr Atoms(Γ), which is thus sometimes called the Herbrand base or ground base.

As usual, the interpretation of an arbitrary WFF ϕ (containing free variables in general) in a
Herbrand structure H over signature Σ(Γ) is relative to an environment ` : V → Gr Terms(Γ) where
V is the set of first-order variables and Gr Terms(Γ) is the universe of H. We say Γ has a Herbrand
model iff the Herbrand structure H induced by the signature of Γ satisfies every ϕ ∈ Γ, i.e., iff:

Γ =
{
ϕ ∈ Γ

∣∣∣ H |= ϕ
}
.

If Γ is the singleton set {ϕ}, we write P(ϕ), F(ϕ), C(ϕ), Gr Terms(ϕ), etc., instead of P({ϕ}), F({ϕ}),
C({ϕ}), Gr Terms({ϕ}), etc.

10Other names for a Herbrand structure in the literature are canonical structure and (close) term structure.
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Lemma 24. Let ϕ be an arbitrary first-order sentence. Then ϕ is satisfiable iff Θpr,sk(ϕ) has a
Herbrand model.

Proof. Let ψ , Θpr,sk(ϕ). If ψ has a model, Herbrand or not, then ψ is satisfiable. By Lemma 21, if
ψ is satisfiable, then ϕ is satisfiable. The converse is more delicate to prove.

Suppose ϕ is satisfiable. By Lemma 21 again, ψ is satisfiable. Hence, there is a structure M with
signature Σ(ψ) satisfying ψ, i.e., M |= ψ. We need to show there is a Herbrand structure satisfying
ψ, i.e., ψ has a Herbrand model. We proceed by first specifying a Herbrand structure H induced by
ψ, and then by showing that H satisfies ψ. By definition, the signature of H is Σ(ψ), which is also
that ofM. By definition again, the universe of H and the interpretations of every f ∈ F(ψ) and every
c ∈ C(ψ) are already fixed, namely:

• the universe of H is Gr Terms(ψ),

• fH(t1, . . . , tn) , f(t1, . . . , tn) for every n-ary f ∈ F(ψ) and t1, . . . , tn ∈ Gr Terms(ψ),

• cH , c for every c ∈ C(ψ).

Only the interpretation of the predicate symbols need to be specified, which we set as follows:

• (t1, . . . , tn) ∈ PH iff (tM1 , . . . , tMn ) ∈ PM
for every n-ary P ∈ P(ψ) and t1, . . . , tn ∈ Gr Terms(ψ).

In the last bullet point, we do not include “
.
=” as a binary predicate in P(ψ). Hence, it is not the

case that (t1
.
= t2) holds in H iff (tM1

.
= tM2 ) holds in M. However, if (t1

.
= t2) holds in H, i.e., t1

and t2 are the same expression, then necessarily (tM1
.
= tM2 ) in M. To conclude the proof, we prove a

stronger assertion, namely: For every sentence α in Skolem form such that Σ(α) ⊆ Σ(ψ), it holds that
M |= α iff H |= α., which we prove by induction on the number k > 0 of universal quantifiers in α.

1. Basis step: k = 0, in which case α has no quantifiers, i.e., α is a propositional combination of
elements in Gr Atoms(α). For this basis step, we proceed by induction on the number of propo-
sitional connectives in α, which can be limited to {¬,∧}. Remaining details of this induction
are straightforward and left to you.

2. Induction hypothesis: The assertion holds for every sentence α in Skolem form with k universal
quantifiers, for some k > 0.

3. Induction step: Let β , ∀xα(x) be an arbitrary Skolem form where α(x) has one free variable
x and k > 0 universal quantifiers, and β has k + 1 universal quantifiers.

We prove the induction step by a sequence of equivalences. Let U be the universe of M. We write
“[x 7→ u]” to denote the part of an environment that maps the free variable x to the element u ∈ U :

M |= ∀xα(x)

iff for all u ∈ U , it holds that M, [x 7→ u] |= α

iff for all u ∈ U of the form u = tM where t ∈ Gr Terms(ψ), it holds that M, [x 7→ u] |= α

iff for all t ∈ Gr Terms(ψ), it holds that M, [x 7→ tM] |= α

iff for all t ∈ Gr Terms(ψ), it holds that M |= α[x := t]

iff for all t ∈ Gr Terms(ψ), it holds that H |= α[x := t] (by the induction hypothesis)

iff for all t ∈ Gr Terms(ψ), it holds that H, [x 7→ tH] |= α

iff for all t ∈ Gr Terms(ψ), it holds that H, [x 7→ t] |= α (H is a Herbrand structure)

iff H |= ∀xα

This completes the induction and the proof of the lemma.
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Exercise 25. What goes wrong in the proof of Lemma 24 if ϕ (and therefore ψ too) contains free
variables? Hint : Try Exercise 22 first. And what goes wrong if ψ is not in Skolem form? Hint :
Consider the sentence ϕ , P (a)∧∃x¬P (x) which is not in Skolem form, where P is a unary predicate
symbol and a is a constant symbol. Show there is a structure M satisfying ϕ but that M cannot be
a Herbrand structure. �

Example 26. Consider the first-order WFF ϕ below, with signature Σ(ϕ) =
(
{P}, {d}, {a, b}

)
where

P is a binary predicate symbol and d is a unary function symbol:

ϕ ,
(
a
.
= d(a)

)
∧ ∀x

(
¬(x

.
= a) ∧ ¬(x

.
= b)→ ∃y

(
P (x, y) ∧ P

(
y, d(x)

)) )
ϕ is a sentence, since FV(ϕ) = ∅. Transforming ϕ into prenex normal form, ϕ1 , Θpr(ϕ), we obtain:

ϕ1 , ∀x ∃y .
(
a
.
= d(a)

)
∧
(
¬(x

.
= a) ∧ ¬(x

.
= b)→

(
P (x, y) ∧ P

(
y, d(x)

)) )
Transforming the matrix of ϕ1 into CNF, we obtain:

ϕ2 , ∀x ∃y .
(
a
.
= d(a)

)
∧
(

(x
.
= a) ∨ (x

.
= b) ∨ P (x, y)

)
∧
(

(x
.
= a) ∨ (x

.
= b) ∨ P (y, d(x))

)
Transforming ϕ2 into Skolem form, ϕ3 , Θsk(ϕ2), we obtain:

ϕ3 , ∀x .
(
a
.
= d(a)

)
∧
(

(x
.
= a) ∨ (x

.
= b) ∨ P (x, f(x))

)
∧
(

(x
.
= a) ∨ (x

.
= b) ∨ P (f(x), d(x))

)
where f is the Skolem function corresponding to the elimination of the existential quantifier “∃y” from
the prefix of ϕ2. By our earlier analysis, ϕ1 and ϕ2 are both logically equivalent to ϕ, whereas ϕ3 is
only equisatisfiable with ϕ. By definition, Gr Terms(ϕ3) is the least set of terms such that:

Gr Terms(ϕ3) ⊇ {a, b} ∪
{
d(t)

∣∣∣ t ∈ Gr Terms(ϕ3)
}
∪
{
f(t)

∣∣∣ t ∈ Gr Terms(ϕ3)
}

In words, every term in Gr Terms(ϕ3) is of the form γ(a) or γ(b) where γ is a string of unary functions
in {d, f}∗. We also have:

Gr Atoms(ϕ3) ,
{
t1

.
= t2

∣∣∣ t1, t2 ∈ Gr Terms(ϕ3)
}
∪
{
P (t1, t2)

∣∣∣ t1, t2 ∈ Gr Terms(ϕ3)
}
.

The signature of ϕ3 is Σ(ϕ3) =
(
{P}, {d, f}, {a, b}

)
. A Herbrand stucture induced by ϕ3 is therefore

of the form:

H ,
(
Gr Terms(ϕ3), P

H, dH, fH, aH, bH
)

=
({
γ(#)

∣∣∣# ∈ {a, b}& γ ∈ {d, f}∗
}
, PH, d, f, a, b

)
,

where only the binary predicate PH needs to be specified further. That is, to complete the definition
of H, we only need to assign a truth value to every member of Gr Atoms(ϕ3). �

Exercise 27. Consider the first-order sentences ϕ and ϕ3 in Example 26. We can take ϕ3 = Θpr,sk(ϕ)
after transforming its quantifier-free matrix into CNF.

1. Define a structure M , (R, . . .) whose universe is the set R of all real numbers such that:

• M is a model of ϕ,

• dM is not the identity function on R,

• PM is not the equality relation on R.
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(We require the conditions in the second and third bullet points in order to make the exercise a
little more interesting.) Hint : Try PM as the usual linear ordering on R.

2. Use the proof of Lemma 21 to define a structure M′ , (R, . . .) such that M′ |= ϕ3.

3. Use the proof of Lemma 24 to define a Herbrand structure H ,
(
Gr Terms(ϕ3), . . .) such that

H |= ϕ3.

Note that while the initial structure M satisfying ϕ is uncountable (the cardinality of its universe R
is uncountable), the Herbrand structure H satisfying ϕ3 is only countably infinite (why?). �

Herbrand Expansions

Let ϕ be a first-order sentence in Skolem form, ϕ , ∀x1 · · · ∀xn.ϕ0, where ϕ0 is the quantifier-free
matrix and FV(ϕ0) ⊆ {x1, . . . , xn}. The Herbrand expansion, also called ground expansion, of ϕ is:

Gr Expansion(ϕ) ,
{
ϕ0[x1 := t1] · · · [xn := tn]

∣∣∣ t1, . . . , tn ∈ Gr Terms(ϕ)
}
.

In words, the set Gr Expansion(ϕ) is obtained by deleting all the universal quantifiers and replacing
the variables by atomic terms in all possible ways. While ϕ is a single sentence, Gr Expansion(ϕ) is a
set of quantifier-free sentences, and it is also infinite if Gr Terms(ϕ) = Gr Terms(ϕ0) is infinite.

Lemma 28. Let ϕ be an arbitrary first-order sentence. Then ϕ is satisfiable iff the Herbrand expansion
Gr Expansion

(
Θpr,sk(ϕ)

)
is satisfiable.

Proof. Straightforward consequence of Lemma 24, according to which: ϕ is satisfiable iff ψ = Θpr,sk(ϕ)
has a Herbrand model. The universe of the Herbrand structure H is Gr Terms(ψ). Deletion of the uni-
versal quantifiers corresponds to replacing the variables in ψ by elements of the universe Gr Terms(ψ)
in all possible ways. All formal details omitted.

Exercise 29. Supply the missing formal details in the proof of Lemma 28. �

Let Γ be a set of quantifier-free sentences. Every sentence in Γ is therefore a propositional combi-
nation of members of Gr Atoms(Γ). We define a transformation X of every such Γ by:

X (Γ) ,
{
ϕ[α1 := Xα1 , . . . , αn := Xαn ]

∣∣∣ ϕ ∈ Γ and {α1, . . . , αn} = Gr Atoms(ϕ)
}
.

In words, X replaces every ground atom α in Γ by a propositional variable Xα. (We use the upper
case “X” to distinguish these propositional variables from the first-order variables written with the
lower case “x”.) Every expression in X (Γ) is therefore a propositional WFF over the following set of
propositional variables:

X
(
Gr Atoms(Γ)

)
=
{
Xα

∣∣∣ α ∈ Gr Atoms(Γ)
}
.

We write X−1 for the inverse transformation, which is well-defined because X is one-one:

X−1(∆) ,
{
π[Xα1 := α1, . . . , Xαn := αn]

∣∣∣π ∈ ∆ and {Xα1 , . . . , Xαn} are the variables in π
}
,

where ∆ is a set of propositional WFF’s over the set of propositional variables X
(
Gr Atoms(Γ)

)
. If Γ

is the singleton {ϕ}, we write X (ϕ) instead of X ({ϕ}).

Lemma 30. Let ϕ be an arbitrary first-order sentence and Γ , Gr Expansion
(
Θpr,sk(ϕ)

)
. Then ϕ is

satisfiable (in the sense of first-order logic) iff X (Γ) is satisfiable (in the sense of propositional logic).
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Proof. By Lemma 28, ϕ is satisfiable iff Γ is satisfiable. It suffices therefore to show that: Γ is
satisfiable (in the sense of first-order logic) iff X (Γ) is satisfiable (in the sense of propositional logic).
Keep in mind that Γ is a set of quantifier-free sentences.

Let {α1, α2, . . .} = Gr Atoms(Γ) the countable set, finite or infinite, of ground atoms occuring in
Γ, and {Xα1 , Xα2 , . . .} the corresponding set of propositional variables occurring in X (Γ). For the
left-to-right implication, assume there is a first-order structure M such that M |= Γ, and derive a
truth-value assignment σ fromM such that σ |= X (Γ). For the right-to-left implication, assume there
is a truth-value assignment σ such that σ |= X (Γ), and derive a first-order structure M from σ such
that M |= Γ. All formal details omitted.

Exercise 31. Supply the missing formal details in the proof of Lemma 30. �

If Γ is a set of first-order sentences, we write Θpr,sk(Γ) to denote the set {Θpr,sk(ϕ) | ϕ ∈ Γ }.
Similarly, Γ is a set of first-order sentences in Skolem form, we write Gr Expansion(Γ) to denote the
set
⋃
{Gr Expansion(ϕ) | ϕ ∈ Γ }.

Theorem 32 (Transfer Principle). Let Γ be a set, finite or infinite, of first-order sentences and let
Γ′ = Gr Expansion

(
Θpr,sk(Γ)

)
be the corresponding set of quantifier-free sentences. The following

assertions hold:

1. Γ is satisfiable iff Γ′ is satisfiable (both satisfiable in first-order logic).

2. If Γ is finitely satisfiable, then Γ′ is finitely satisfiable (both satisfiable in first-order logic).

3. Γ′ is satisfiable (in first-order logic) iff X (Γ′) is satisfiable (in propositional logic).

4. Γ′ is finitely satisfiable (in first-order logic) iff X (Γ′) is finitely satisfiable (in propositional logic).

Note that the converse implication in part 2 does not hold in general (why?).

Proof. We only sketch the proof, as most of the work is already done for the case when Γ is a singleton
set. Parts 1 and 2 generalize Lemma 28, which depends on Lemmas 21 and 24. So, the proofs of these
three previous lemmas have to be repeated with a set Γ of sentences, instead of a single sentence ϕ.

Parts 3 and 4 generalize Lemma 30, the proof of which depends on Lemma 28 only. So, for parts
3 and 4, we only need to generalize the proof of Lemma 30 for a set Γ of first-order sentences.

5 Compactness and Completeness for First-Order Logic

We first prove Compactness for first-order logic by invoking results of Herbrand theory. Then, in steps
almost identical to the steps in Section 3, we prove Completeness as a consequence of Compactness.

Theorem 33 (Compactness for First-Order Logic). Let Γ be a set of first-order sentences. Then Γ
is satisfiable iff Γ is finitely satisfiable.

Proof. The left-to-right implication is immediate. For the converse, let Γ be finitely satisfiable. We
use the transfer principle expressed by Theorem 32 and its notation.

If Γ is finitely satisfiable, then Γ′ is finitely satisfiable (in first-order logic), by part 2 in the
transfer principle. If Γ′ is finitely satisfiable (in first-order logic), then X (Γ′) is finitely satisfiable (in
propositional logic), by part 4 in the transfer principle. If X (Γ′) is finitely satisfiable (in propositional
logic), then X (Γ′) is satisfiable (in propositional logic) by Theorem 2, which is Compactness for
propositional logic. If X (Γ′) is satisfiable (in propositional logic), then Γ′ is satisfiable (in first-order
logic), by part 3 in the transfer principle. If Γ′ is satisfiable (in first-order logic), then Γ is satisfiable
(in first-order logic) by part 1 in the transfer principle.
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Lemma 34. Let Γ be a set of first-order sentences and ϕ an arbitrary first-order sentence. Then
Γ |= ϕ iff Γ ∪ {¬ϕ} is unsatisfiable – or, equivalently, Γ 6|= ϕ iff Γ ∪ {¬ϕ} is satisfiable.

Proof. Identical to the proof of Lemmas 6 and 16, except that here Γ is a set of first-order sentences
and ϕ is a first-order sentence.

Corollary 35. Let Γ be a set of first-order sentences and ϕ an arbitrary first-order sentence. Then
Γ |= ϕ iff then there is a finite subset Γ0 ⊆ Γ such that Γ0 |= ϕ.

Proof. Identical to the proof of Corollaries 7 and 17, except that here Γ is a set of first-order sentences
and ϕ is a first-order sentence. Moreover, here we invoke Lemma 34 instead of Lemma 16, and
Theorem 33 instead of Theorem 15.

The next lemma is a weaker form of the Completeness Theorem for first-order logic. The Com-
pleteness Theorem for first-order logic in full generality is Theorem 38.

Lemma 36. Let ϕ1, . . . , ϕn, ψ be first-order sentences. If ϕ1, . . . , ϕn |= ψ then ϕ1, . . . , ϕn ` ψ.

Proof. The book [LCS] omits this lemma and its proof, though it mentions in passing that the natural-
deduction proof system is “sound and complete” with respect to the formal semantics it discusses in
Section 2.4 in details.11 The proof can be carried out along the lines of the proof of Lemma 9, although
the semantics of first-order logic are far more involved than the semantics of propositional logic.

Exercise 37. Write the proof of Lemma 36 in detail. You will find it helpful to read the proof of the
counterpart of this lemma for propositional logic in Section 1.4.4, pages 49-53, of the book [LCS]. �

Theorem 38 (Completeness for First-Order Logic). Let Γ be a set (possibly infinite) of first-order
sentences, and ψ a first-order sentence. If Γ |= ψ, then Γ ` ψ.

Proof. Identical to the proof of Theorems 10 and 20, except that all formulas are now first-order
sentences. Moreover, we need to invoke Corollary 35 instead of Corollary 17, and Lemma 36 instead
of Lemma 18.

11See page 96 in Michael Huth and Mark Ryan, Logic in Computer Science, Second Edition, Cambridge University
Press, 2004.
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