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Gentzen Systems

We need some preliminary definitions. A sequent is a pair of finite (possibly empty) sequences of

wff’s, say Γ = γ1, . . . , γ` and ∆ = δ1, . . . , δm, which we write as Γ ∆ or as γ1, . . . , γ` δ1, . . . , δm.

The first part Γ is the antecedent of the sequent, and the second part ∆ the succedent. If Γ is

empty, we write ∆ for the sequent; if ∆ is empty, we write Γ ; and if both are empty, we write .

For an intuitive understanding of the axiom scheme and inference rules below, keep in mind

the following: If `,m > 1, the sequent γ1, . . . , γ` δ1, . . . , δm will have the same meaning as the wff

γ1∧· · ·∧γ` → δ1∨. . .∨δm. More precisely, given an interpretation (A, s), i.e. a structure A together

with a valuation of the variables s : V → |A|, (A, s) satisfies the sequent γ1, . . . , γ` δ1, . . . , δm iff

(A, s) |= γ1 ∧ · · · ∧ γ` → δ1 ∨ . . . ∨ δm

This extends to the case when ` = 0 or m = 0: If ` = 0, the conjunction γ1 ∧ · · · ∧ γ` is viewed

as “true” and the sequent is equivalent to δ1 ∨ . . . ∨ δm; if m = 0, the disjunction δ1 ∨ . . . ∨ δm is

viewed as “false” and the sequent is equivalent to ¬(γ1 ∧ · · · ∧ γ`) or ¬γ1 ∨ · · · ∨ ¬γ`; if ` = m = 0,

the sequent is unsatisfiable.

About notation

In Kleene’s presentation [6], on which this handout is based, as well as in many other presentations

of Gentzen systems (e.g. see [4] or [10]), a sequent is written as Γ→∆ (with a boldface arrow) and

our arrow “→” (not boldface) is the same as their “⊃”. To avoid confusion with our “→”, we use

“ ” (boldface bar) instead of “→” in sequents. The notation is this handout is similar (but not

quite identical) to Dummett’s [3], which uses another symbol yet, namely “:”, to separate the two

parts of a sequent. (We cannot use “:” as the sequent separator because we will need it for another

purpose when we consider intuitionistism and its connection to typed λ-calculi.)

In recent years, some people have started to use “`” to separate the two parts of a sequent (e.g.

see Chapter 5 in [5]). This has been a common practice, for example, when a type-inference system

is set up for a typed λ-calculus, where an expression of the form “A ` M : τ” can be viewed as a

sequent. This is perhaps unfortunate — or, in any case, it goes against the traditional practice of

reserving “`”, a symbol outside the syntax of formal expressions, to assert that a formal expression

can be derived using axioms and inference rules. What is a convenient shorthand to say that a

“sequent with antecedent Γ and succedent ∆ is derivable”? In our notation, we write ` Γ ∆ , and
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in Kleene’s ` Γ→∆ . But it is clearly confusing to write ` Γ ` ∆ , where the two occurrences of

` mean two different things.

The symbol “ ” is not in the syntax of wff’s, but in the syntax of sequents. The rules of

the Gentzen system below transform formal expressions that are sequents into other such formal

expressions.

It is easier to see the organization of a Gentzen system by first considering the simpler case of

propositional logic. We later point out how to extend the system for the case of first-order logic.

Propositional logic

Γ, ∆, Θ, and Λ range over finite sequences of zero or more wff’s. α, β, γ and δ range over the set

of wff’s. There is only one axiom scheme, and many inference rules. The latter are divided into

logical and structural. All logical rules are “introduction” rules, in the sense that they introduce

one of the logical connectives →,∧,∨,¬, on the left or on the right of a sequent, and they are thus

given the suggestive names (→ ), (∧ ), (∨ ), (¬ ) (introduction on the left) and ( →), ( ∧), ( ∨),

( ¬) (introduction on the right).

• Axiom scheme α α

• Logical inference rules

– introduction of →

∆ Λ, α β,Γ Θ
(→ )

α→ β,∆,Γ Λ,Θ

α,Γ Θ, β
( →)

Γ Θ, α→ β

– introduction of ∧

α,Γ Θ
(∧ )

α ∧ β,Γ Θ

β,Γ Θ
(∧ )

α ∧ β,Γ Θ

Γ Θ, α Γ Θ, β
( ∧)

Γ Θ, α ∧ β

– introduction of ∨

α,Γ Θ β,Γ Θ
(∨ )

α ∨ β,Γ Θ

Γ Θ, α
( ∨)

Γ Θ, α ∨ β

Γ Θ, β
( ∨)

Γ Θ, α ∨ β

– introduction of ¬

Γ Θ, α
(¬ )

¬α,Γ Θ

α,Γ Θ
( ¬)

Γ Θ,¬α
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• Structural inference rules

– weakening

Γ Θ
(W )

γ,Γ Θ

Γ Θ
( W)

Γ Θ, γ

– contraction

γ, γ,Γ Θ
(C )

γ,Γ Θ

Γ Θ, γ, γ
( C)

Γ Θ, γ

– exchange

∆, δ, γ,Γ Θ
(E )

∆, γ, δ,Γ Θ

Γ Λ, γ, δ,Θ
( E)

Γ Λ, δ, γ,Θ

– cut

∆ Λ, γ γ,Γ Θ
(Cut)

∆,Γ Λ,Θ

LetG0 denote the Gentzen system described above for propositional logic. In the examples to follow,

a double line in a derivation (with the citation of a rule) stands for zero or more applications of

the weakening, contraction, and exchange rules (following the application of the cited rule).

Example 1. For arbitrary wff’s α and β, the following is a valid derivation in G0:

α α
=========== (¬ )
α,¬α β

( →)
¬α α→ β

( →)
¬α→ (α→ β)

Example 2. For an arbitrary wff α, the following are valid derivations in G0:

α α
( ¬)

α,¬α
( ∨)

α ∨ ¬α

α α
( ¬)

α,¬α
(¬ )

¬¬α α
( →)

¬¬α→ α
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First-order logic

The system for propositional logic is extended by adding rules for the quantifiers and, if an equality

symbol ≈ is included in the syntax of wff’s, axiom schemes and/or rules for equality. The simplest

here, for purposes of comparison with the systems in Handouts 1 and 4, is to have only axiom

schemes for equality.1 As in Handout 1 and Enderton’s book (page 105), αx
t is the wff obtained

from wff α by substituting every free occurrence of x by the term t, provided the substitution is

legal (i.e. no free variable in t is captured by a quantifier in α). Note the proviso “y not free in Γ

and Θ” in the ( ∀) and (∃ ) rules.

• Inference rules for quantifiers

– introduction of ∀

αx
t ,Γ Θ

(∀ )
(∀xα),Γ Θ

Γ Θ, αx
y

( ∀)
Γ Θ, (∀xα)

(y not free in Γ and Θ)

– introduction of ∃

αx
y ,Γ Θ

(∃ )
(∃xα),Γ Θ

Γ Θ, αx
t

( ∃)
Γ Θ, (∃xα)

(y not free in Γ and Θ)

• Axiom schemes for equality

– x ≈ x

– x1 ≈ y1, . . . , xn ≈ yn fx1 · · ·xn ≈ fy1 · · · yn
(for every function symbol f of arity n ≥ 1)

– x1 ≈ y1, . . . , xn ≈ yn, Px1 · · ·xn Py1 · · · yn
(for every predicate symbol P of arity n ≥ 1)

Let G denote the Gentzen system described above for first-order logic.

Exercise 1. Show that without the proviso “y not free in Γ and Θ” in ( ∀) and (∃ ) the system

is inconsistent, i.e. there is a derivation in G for the unsatisfiable sequent .

1In [6] the equality symbol in not included in the syntax of wff’s. The axiom schemes we choose for equality here
are basically those in [4], Section 6.3.
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Example 3. For an arbitrary wff α, the following is a valid derivation in G:

αx
y αx

y
( ∃)

αx
y (∃x α)

(∃x α) (∃x α)
================= (¬ )

(∃x α),¬(∃x α)
(Cut)

αx
y ,¬(∃x α)

( ¬)
¬(∃x α) ¬αx

y
( ∀)

¬(∃x α) (∀x ¬α)
( →)

¬(∃x α)→ (∀x ¬α)

In the next theorem, the symbol “`H” is for derivability relative to one of the Hilbert systems in

Handout 1 (which all derive precisely the same set of wff’s), and “`G” is for derivability relative to

G. Γ is an arbitrary finite (possibly empty) sequence of wff’s and α an arbitrary wff.

Theorem 1. Γ `H α if and only if `G Γ α .

Proof: Both directions are straightforward, if somewhat tedious, inductions on derivations. The

details are in Section 77 of Kleene’s book [6]. Kleene uses a specific Hilbert system, page 82 in [6],

which is not the same as any of the systems in Handout 1, but which is readily shown to be

equivalent to System E in Handout 1 (and therefore equivalent to all the systems in Handout 1).

If Γ in Theorem 1 is a finite sequence of wff’s γ1, . . . , γn then, by repeated use of the Deduction

Theorem (Enderton’s, page 111), Γ `H α iff `H γ1 → · · · → γn → α. By repeated use of (E )

and ( →), we also have that `G Γ α iff `G γ1 → · · · → γn → α. Hence, in this case,

`H γ1 → · · · → γn → α iff `G γ1 → · · · → γn → α ,

which makes the symbol “ ” appear redundant, and justifies the practice of some people to discard

the symbol “`G” altogether (as asserting derivability) and use “`G” instead of “ ” (as sequent

separator) for complete notational symmetry between the Hilbert and Gentzen systems.

It is clear that every derivation D in G can be organized in the form of a tree, with a sequent

inserted at every node of the tree. The root sequent, i.e. the one inserted at the root of the

derivation tree, is the sequent derived by D. Let us say that two derivations D∞ and D∈ in G are

equivalent if D∞ and D∈ have the same root sequent. Let G− denote the system obtained from G

by omitting the rule (Cut).

Theorem 2 (Gentzen’s Hauptsatz2, or cut-elimination theorem). Every derivation in G can be

effectively transformed into an equivalent derivation in G− .

Proof: When there is no equality symbol ≈ in the language and no axiom schemes for equality, a

proof can be found in [6], Section 78, or in [10], Chapter XII. In the presence of ≈, a proof is given

in [4], Chapter 6.3

2Nothing mysterious about this name: Hauptsatz means “main theorem” in German.
3Warning: There are several variants of Gentzen systems in [6], [10] and [4], sometimes with minor differences

introduced for reasons of efficiency and/or clarity of exposition. What we here call G is exactly the system G1 in [6],
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Example 4. The following is a derivation in G−, which is also equivalent to the derivation in G

of Example 3:

αx
y αx

y
( ∃)

αx
y (∃x α)

============== (¬ )
αx
y ,¬(∃x α)

( ¬)
¬(∃x α) ¬αx

y
( ∀)

¬(∃x α) (∀x ¬α)
( →)

¬(∃x α)→ (∀x ¬α)

There are several important applications of Gentzen’s Hauptsatz in first-order logic, none dis-

cussed in Enderton’s book. For example, it can be used to establish Craig’s Interpolation Theorem,

which in turn is used to establish Beth’s Definability Theorem and Robinson’s Joint Consistency

Theorem (for statements of these theorems and proofs based on cut-elimination, see [4], Chapter

6, or [10], Chapter XV, or [1], Section 9.12). It is worth noting that these three theorems can be

established just as elegantly using model-theoretic techniques, without recourse to the syntactic

transformation of Gentzen’s Hauptsatz (see [2], Section 2.2, or [8], Chapter 22). But more im-

portant is the use of Gentzen’s Hauptsatz in investigations of consistency results — more on this

below.

Restrictions for intuitionism

A Gentzen system for intuitionistic propositional logic (resp. first-order logic) is obtained by

omitting just two rules from G0 (resp. G): ( ¬) and ( W).

Example 5. The derivation in Example 1 is acceptable intuitionistically, but none of the deriva-

tions in Examples 2, 3 and 4, is, because each of the latter uses rule ( ¬).

An equivalent restriction of G for intuitionism is given in the next exercise.

Exercise 2. Show that omitting ( ¬) and ( W) from G is equivalent to requiring that the succedent

of every sequent has at most one wff, i.e. every sequent is restricted to be of the form Γ or the

form Γ β. (Hint: Consider the easier case of G0 first. Show by induction that if ` Γ β1, . . . , βm

without ( ¬) and ( W), as well as without (¬ ), then m = 1 — and if without just ( ¬) and ( W),

then m 6 1. For the opposite implication, show by induction on derivations that every use of ( ¬)

or ( W) can be eliminated.)

Let GI denote the system obtained from G by omitting the two rules ( ¬) and ( W), and let G−I
denote the system obtained from GI by omitting in addition the rule (Cut).

and essentially (but not exactly) the system G∗ in [10], in both cases without any of the parts related to ≈. In [4]
there is no less than a dozen systems, and among these, LKe is exactly our G.
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Theorem 3 (Gentzen’s Hauptsatz for intuitionistic logic). Every derivation in GI can be effec-

tively transformed into an equivalent derivation in G−I .

Proof: When there is no equality symbol ≈ in the language and no axiom schemes for equality, a

proof can be found in [6], Section 78.

Gentzen’s Hauptsatz and consistency results

For Gentzen, the Hauptsatz was a tool he used to establish the consistency of a particular ax-

iomatization of number theory, commonly called Peano arithmetic. Moreover, Gentzen wanted to

establish this consistency by proof-theoretic means, without appeal to semantic considerations.

Let P denote Peano arithmetic. The axioms of P are the finitely many axioms of AM (in Section

3.7 of Enderton’s book) in addition to the following induction axiom scheme:

ϕ(0) → ( ∀v1 (ϕ(v1) → ϕ(Sv1)) ) → ( ∀v1 ϕ(v1) )

representing infinitely many axioms, one for each wff ϕ with no free variable other than v1, in the

language of the standard model of arithmetic N. An instance of the induction axiom scheme is an

induction axiom.4

Recall that a set Γ of wff’s is consistent if Γ does not derive any contradiction, i.e. if for every

wff α it is the case that Γ 6` (α ∧ ¬α). Typically, it is not easy to verify such a condition by

proof-theoretic means. It is often easier to check the satisfiability of Γ instead which, by soundness

and completeness, is equivalent to its consistency.

For example, the finite set AM is consistent because we recognize that the standard model

N satisfies every axiom in AM , thus avoiding the hard work of proving directly that AM does

not derive a contradiction. The same can be said of P , by our understanding of induction over

the natural numbers. In fact, based on our common knowledge of the underlying operations and

relations of N, i.e. <, +, ·, etc., we are willing to declare the axioms of AM are “obviously true”

in N. If taken to task, we can of course be more rigorous by applying the methods of Section 2.2

to check that N |= AM , and with a little extra work we can also check that N |= P , but again this

uses unformalized set-theoretic reasoning.

This is a common situation: Semantic methods involve a certain amount of set-theoretic as well

as intuitive reasoning outside formal proof systems. As a consequence, in relation to questions of

consistency, it is sometimes argued that semantic methods are uninformative, or in any case do

not provide the right kind of information, or are too precarious to serve as a basis for consistency

proofs. It is even argued that, short of a formal proof-theoretic verification, the consistency of a

set of wff’s should be taken as an explicit unproved assumption.5

4Peano arithmetic is not discussed in Enderton’s book. It is listed in the Index with a reference to page 183, but
“Peano arithmetic” is nowhere mentioned on page 183! The induction axiom scheme is mentioned in Exercise 3.1.1
of Enderton’s, page 183, but it is restricted to the language of the reduct NS , and we do not make such a restriction
here.

5Shoenfield says that “the main trouble with [a consistency proof for P by means of the standard model] is that
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My own bias is to accept the consistency of P (or any other set of axioms) based on semantic,

i.e. unformalized set-theoretic and intuitive reasoning. There are criteria of rigor for such reasoning

and there is no need to formalize them. But this does not mean that establishing the consistency

of P by formal proof-theoretic means is without value, because additional information about P

beyond its consistency is also obtained in this way. And perhaps this is the real value of Gentzen’s

demonstration of the consistency of P .

It is towards this goal that Gentzen developed the sequent calculus and then proved the Haupt-

satz. After Gentzen’s formal proof of the consistency of P , there were other formal proofs following

the same general ideas. Gödel’s Second Incompleteness Theorem (in Enderton’s book, Section 3.6)

can be adapted to say: If P is consistent, then no wff asserting the consistency of P (by some ap-

propriate encoding) is derivable from P . By Gödel’s result, starting from P as non-logical axioms,

the rules of G (or any formal system equivalent to G) are not strong enough to formally prove the

consistency of P . Thus, in one way or another, the proof system has to be extended to a more

powerful deductive calculus, for example by including inference rules with infinitely many premises

or by allowing transfinite induction. However extended, the Hauptsatz remains the key technical

result in establishing the consistency of P . Further discussion of these issues can be found in [6],

Section 79, and in the Appendix of [7].

it is so uninformative. . . . It does not increase our understanding, since nothing goes into it which we did not put
into it in the first place” [9], page 214.

Mendelson says that, by using semantic methods, “we have not proved in a rigorous way that the axioms of P are
true under the standard interpretation, but have taken it as intuitively obvious” [7], page 107.

Kleene says that “giving a model for the axioms [of P ] in intuitive arithmetical terms does not establish beyond
all doubt that no contradiction can arise in the theory deduced from the axioms, unless it can also be demonstrated
that the reasonings in the theory can be translated into intuitive arithmetical reasonings in terms of the objects used
in the model” [6], page 475. The proviso in the excerpt from Kleene applies to AM , and therefore the consistency
of AM using a restricted form of semantic reasoning, i.e. using what is called “finitary set-theoretic methods”, is
acceptable to Kleene, but the proviso does not apply to P because showing the satisfiability of any induction axiom
in the standard model requires “non-finitary set-theoretic methods”. A discussion of “finitary” vs. “non-finitary”
methods is also found in Shoenfield’s book [9], page 214.
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