
A RANDOMIZED SOLUTION TO BGP DIVERGENCE

SELMA YILMAZ IBRAHIM MATTA

Computer Science Department
Boston University

Boston, MA 02215, USA
{selma,matta}@cs.bu.edu

ABSTRACT
The Border Gateway Protocol (BGP) is an interdomain
routing protocol that allows each Autonomous System
(AS) to define its own routing policies independently and
use them to select the best routes. By means of policies,
ASes are able to prevent some traffic from accessing their
resources, or direct their traffic to a preferred route. How-
ever, this flexibility comes at the expense of a possibility of
divergence behavior because of mutually conflicting poli-
cies. Since BGP is not guaranteed to converge even in the
absence of network topology changes, it is not safe. In
this paper, we propose a randomized approach to providing
safety in BGP. The proposed algorithm dynamically detects
policy conflicts, and tries to eliminate the conflict by chang-
ing the local preference of the paths involved. Both the
detection and elimination of policy conflicts are performed
locally, i.e. by using only local information. Randomiza-
tion is introduced to prevent synchronous updates of the
local preferences of the paths involved in the same conflict.

KEY WORDS
Inter-domain Routing; Border Gateway Protocol (BGP);
Convergence Analysis.

1 Introduction

The Internet consists of thousands of ASes that operate in-
dependently and exchange routing information to coordi-
nate the delivery of IP traffic. On its path from source to
destination, an IP packet traverses routers and links that
belong to different ASes. The sequence of ASes traversed
by an IP packet is determined by routing policies. ASes
use policies to prevent some traffic from accessing their re-
sources, or to direct their traffic to a preferred route. The
routing policies are realized through the Border Gateway
Protocol (BGP) [7]. BGP allows each AS to select the best
routes by applying local policies, and to propagate rout-
ing information without revealing local policies to the other
ASes. However, Varadhan et al. [8] show that a group of
ASes may independently define mutually conflicting BGP
policies that lead to persistent BGP oscillations. In this
state, ASes exchange BGP routing messages indefinitely
without ever converging on a set of stable routes. Such
divergence behavior may introduce a large amount of in-
stability into the global routing system, which may signifi-
cantly degrade the performance of the Internet.

The set of routing policies are called safe if they can
never lead to BGP divergence. There have been recent stud-

ies on guaranteeing safety of BGP [3, 2, 6]. Govindan et
al. [3] propose a static solution which involves keeping
policies in a repository called Internet Route Registry and
verifying that they do not contain policy conflicts that could
lead to protocol divergence. However, Griffin and Willfong
[5] show that such kind of verification is computationally
very expensive. Also, most ASes do not want to reveal their
policies, or keep the information in the registry up-to-date.

To avoid the global coordination required in [3], Gao
and Rexford [2] propose another static solution which ex-
ploits the commercial relationships between ASes, namely
peer-peer, and provider-customer. A pair of ASes have a
provider-customer relationship if one offers Internet con-
nectivity to the other and have a peer-peer relationship if
they are providing connectivity among their customers. To
ensure the stability of the BGP system, each AS is sup-
posed to follow policy configuration guidelines which sug-
gest preferring routes heard from customers to the routes
heard from providers and peers. While this solution guar-
antees stability, it may unnecessarily disallow the use of
many routes. The solution still requires usage of Route
Registry database, only this time to keep hierarchical re-
lationships between ASes, which is more public and de-
ducible compared to the entire set of routing policies. Static
periodic checks are necessary to verify the validity of a
route announcement [1] and to ensure that local-preference
values of routes are consistent with the desired relation-
ships.

Griffin and Willfong [6] suggest a dynamic mecha-
nism to detect and suppress BGP oscillations that arise be-
cause of policy conflicts. The idea is to extend BGP to
carry additional information called history of updates with
each routing update message. It allows each router to de-
scribe the sequence of events that led to the adoption of
a path. Since a history of updates with loops is an indi-
cation of protocol divergence, divergence can be detected
as it happens, and prevented by discarding such updates.
However, with this approach, histories can grow very long,
which makes processing and sending updates very expen-
sive. Also, history may reveal private information about
preferences of ASes over the routes since this information
maybe carried implicitly with history.

In this paper, we propose a new dynamic mechanism
to detect and suppress BGP oscillations. The motivation
behind this work is to eliminate the drawbacks of current
approaches mentioned above. This new dynamic algorithm
allows us to detect policy conflicts using only local infor-
mation, and to adjust local preference values through a ran-



domized approach. We eliminate the use of potentially ex-
pensive and revealing histories, since the algorithm uses
only local information to detect cycles. We also eliminate
the need for any off-line phase, and hence the use of In-
ternet Route Registry database either for policies, or rela-
tionships between ASes. The new algorithm is also more
tolerant to the routes involved in a cycle than current ap-
proaches: Instead of immediately invalidating such routes,
we reduce their preferences with some probability, and in-
validate a route only if it gets involved in a cycle repeatedly,
which provides a broader range of routes and hence allows
for more flexible route selection.

The rest of the paper is organized as follows. Sec-
tion 2 reviews related work to provide the necessary back-
ground, and the current approaches against which we com-
pare our approach. Our randomized algorithm is described
in Section 3. The performance evaluation methodology is
presented in Section 4, and results are reported in Section 7.
Section 6 concludes the paper.

2. Background and Related Work

To study safety of BGP, Griffin and Willfong [6] propose a
simple model called Stable Paths Problem (SPP), and sug-
gest that BGP is a distributed algorithm for solving SPP.
SPP consists of an undirected graph with a single destina-
tion. Each node in the graph has a set of permitted paths
and a ranking function to set an order of preference on the
paths. Permitted paths are the routes learned from peers,
and allowed by the local policy of the node. A solution of
an SPP is an assignment of permitted paths to the nodes
such that the path assigned to a node is the highest ranked
path extending any of the paths chosen at its neighbors.
The formal definition of SPP can be summarized as fol-
lows: A network is represented as a simple, undirected,
connected graph G = (V,E), where V = {0, 1, · · · , n}
is the set of nodes connected by edges from E. For any
node u, peers(u) = {w|{u,w} ∈ E} represents the set
of peers for u. It is assumed that there is a single desti-
nation, which is node 0, to which all other nodes are try-
ing to find paths. A path P in G is a sequence of nodes
(vk, vk−1, · · · , v1, v0), such that (vi, vi−1) ∈ E, for all
i, 1 ≤ i ≤ k. Each path has implicit directionality asso-
ciated with it. P ’s direction is from vk to v0. Assuming
that {u, v} is an edge in E, and v is the first node of path
P , then (u, v)P denotes the path that starts at node u, tra-
verses edge (u, v), and follows path P .

An empty path, ε, indicates that a router cannot reach
the destination. For each v ∈ V − {0}, the set Pv de-
notes the permitted paths from v to the destination. Let
P = {Pv|v ∈ V − {0}} denotes the set of all permit-
ted paths. For each v ∈ V − {0}, there is a ranking
function λv , defined over Pv , which defines how node
v ranks its permitted paths. If P1 and P2 ∈ Pv and
λv(P1) < λv(P2), then P2 is said to be preferred over
P1. Let Λ = {λv|v ∈ V − {0}} be the set of all ranking
functions. An instance of an SPP S = (G,P,Λ), is a graph
with the permitted paths and ranking function at each node
with the following restrictions imposed on Λ and P: For
each v ∈ V − {0}

(1) Empty path is permitted: ε ∈ Pv .
(2) Empty path is the lowest ranked path: λv(ε) = 0.
(3) Strictness: If λv(P1) = λv(P2), then P1 = P2 or

there is a peer u such that P1 = (v u)P ′

1 and P2 = (v u)P ′

2.
(4) Simplicity: If path P ∈ Pv , then P does not have

repeated nodes.
For a given node u, let W be a subset of the permitted

paths Pu such that each path in W has a distinct next-hop.
The maximal path in W , max(u,W ), is defined to be the
highest ranked path in W . π is defined to be a function
called path assignment, which maps each node u ∈ V to
a permitted path π(u) ∈ Pu. π defines the path chosen
by each node to reach the destination. choices(u, π) is a
set of paths, defined to be all P ∈ Pu such that either
P = (u 0) and {u, 0} ∈ E or P = (u v)π(v) for some
{u, v} ∈ E. The path assignment π is called stable at node
u if π(u) = max(u, choices(u, π)). The path assignment
π is called stable if it is stable at every node u ∈ V .

An SPP instance S = (G,P,Λ) is solvable if
there exists a stable path assignment π for S. Every
such assignment is called a solution for S and written as
(P1, P2, · · · , Pn), where π(u) = Pu. An instance of SPP
may have no solution, or one or more solutions. Examples
are GOOD GADGET with a single solution, which is ((1 3
0), (2 0), (3 0), (4 3 0)), and BAD GADGET with no solu-
tion as shown in Figure 1. Possible paths for each node are
shown next to each one of them in a way that the highest
ranked path is placed at the top.

Griffin and Willfong [6] define Simple Path Vector
Protocol (SPVP) as a distributed algorithm for solving
SPP. SPVP is an abstraction of BGP. With this abstrac-
tion, messages are simply paths and rib(u) denotes the
current path that node u is using to reach the destination

and rib in(u ⇐ w) denotes the table where the most re-
cent path received from each peer w ∈ peers(u) are kept.
Then the set of paths available at node u is choices(u) =
{(u w)P ∈ Pu|P = rib in(u ⇐ w)} and the best path at
u is best(u) = max(u, choices(u)). The best path is the
highest ranked path for node u among the paths received
from its peers. The network state of the system is the col-
lection of rib(u), rib in(u ⇐ w) and the state of all com-
munication links. A network state is stable if all commu-
nication links are empty. If SPVP converges, the resulting
state is the solution of SPP. If SPP has no solution, then
SPVP diverges.

Griffin et al. [4] introduce the notion of a dispute
digraph, while developing sufficient conditions that will
guarantee safety of an SPVP specification. If a dispute
graph does not have any cycle, which is called dispute
cycle, then the corresponding SPVP specification is safe
and the corresponding SPP is solvable. Cycles in the dis-
pute graph represent circular dependencies that cannot be
satisfied simultaneously. For any instance of SPP S =
(G,P,Λ), a directed graph called dispute digraph, DD(S),
can be constructed as follows: The nodes of DD(S) are
composed of permitted paths of S and the arcs represent
certain relationships between the policies of peers. There
are two types of arcs, transmission arcs and dispute arcs.
Assuming nodes u and v are peers, there is a transmis-
sion arc P · · · > (u, v)P if P is permitted at node v,



and (u, v)P is permitted at node u. Assuming Q is a
permitted path at node v and (u, v)P is a permitted path
at node u, there is a dispute arc Q− > (u, v)P if and
only if the following are true: (1) (u, v)P is a permit-
ted path at node u, (2) Q and P are permitted paths at
node v, (3) Path (u, v)Q is not permitted at node u, or
λu((u, v)Q) < λu((u, v)P ), (4) λv(P ) ≤ λv(Q). Dis-
pute digraphs of GOOD GADGET and BAD GADGET are
shown in Figure 1. Since GOOD GADGET is safe, the cor-
responding dispute digraph is acyclic, whereas the dispute
digraph of BAD GADGET has a cycle.

1 2

3

0

4

4 2 0

2 0

3 0

1 3 0
1 0

4 3 0

2 1 0

2 0 4 2 0 2 1 0

4 3 0 3 0 1 3 0

1 0

1 2

3

0

4

2 0

4 3 0

4 2 0

3 0

2 1 0

1 3 0 3 4 2 0

(b) Dispute digraph for GOOD GADGET

(d) Dispute digraph for BAD GADGET

(a) GOOD GADGET

(c) BAD GADGET

3 4 2 0

2 0

3 0

1 3 0
1 0

2 1 0

4 3 0
4 2 0

1 0

Figure 1. Examples of Stable Paths Problems and the corre-
sponding dispute digraphs.

2.1 Review of the Evaluated Algorithms

2.1.1 Safe Path Vector Protocol: Griffin and Willfong
[6] introduce an algorithm for dynamically detecting and
eliminating cycles that arise because of policy conflicts.
The idea is adding a new attribute called path history to
the messages. Path histories are dynamically computed se-
quences of path change events. A path change event is a
pair e=(s,P), where s ∈ {+,−} is the sign of the event
and P is the path. Assuming Pold and Pnew are permit-
ted paths at node u and there has been a transition from
rib(u) = Pold to rib(u) = Pnew. If we assume that u ranks
Pold lower than Pnew, then the corresponding path change
event will be (+, Pnew), which means u went up to path
Pnew. If we assume that u ranks Pnew lower than Pold, the
corresponding path change event will be (−, Pold), which
means u went down from path Pold. Path history is ei-
ther an empty history or a sequence ek ek−1 ek−2 · · · e1,
where each ei is a path change event and ek is the most
recent event. A history may have a cycle if there exists
i, j, with 1 ≤ i < j ≤ k, such that ei = (s1, P ) and
ej = (s2, P ). Figure 2 shows the distributed algorithm
which is computing histories dynamically. The algorithm
uses a function called hist(u) to calculate a new path his-
tory for Pnew whenever the best path at node u changes
from Pold to Pnew. The exact procedure is shown in Figure
2. A message m in the algorithm is a pair (P, h) where P

is a path and h is a history. For any message m = (P, h),
path(m) = P and history(m) = h. Each node also uses
an additional data structure to keep bad paths, B(u). Bad
paths are the paths that have been invalidated because their
adoption led to a cycle in the history. Therefore, the paths
in the bad paths set are banned forever even if in the future,

they are advertised by peers and permitted by local poli-
cies. Definition of best(u) and choices(u) are updated to
exclude the paths in the set B(u) as follows:
choicesB(u) = {(u w)P ∈ Pu −B(u))|P ∈ rib in(u ⇐ w)}

and bestB(u) = max(u, choicesB(u)).

process 

then

if Pnew 6= Pold then

send vtorib(u)

spvp[u]

rib in(u ⇐ w) = m

hnew = (−, Pold)

rib(u) = (Pnew, hnew)

for each v ∈ peers(u)do

m from wreceive

Pnew = bestB(u)

if

B(u) = B(u)
⋃

{Pnew}

Pnew 6= Pold then

hist(u) condition

if path(rib(u)) 6= bestB(u)

if

hnew = hist(u)

Pnew = bestB(u)

hnew contains a cycle then

Pold = path(rib(u))

Auxiliary function hist(u) for SPVP algorithm.

The most recent path adopted by w is P2

did so. The path that w has just abondoned is

(b)(a) SPVP process at node u. The program

to the right of the

one atomic step

is executed in

P1.

s=sign(ek), and

h = ek ek−1 . . . e1,

rib in(u ⇐ w) = (P2, h),

Pnew = (u w)P2, and

Pold = (u w)P1, and

if λu(Pold) = λu(Pnew),(s,Q)h

rib in(u ⇐ w) = (P2, h),
Pold = (u w)P1, and

(-, Pold)h if λu(Pnew) < λu(Pold),

rib in(u ⇐ w) = (P2, h),
Pnew = (u w)P2, and
if λu(Pold) < λu(Pnew),(+, Pnew)h

Q =

{

Pold if s = −

Pnew if s = +

and the associated history h explains why w

Figure 2. SPVP process at node u and function hist(u).

2.1.2 Stable Internet Routing without Global Coordi-
nation (Gao&Rexford Algorithm): Gao and Rexford [2]
propose a set of guidelines guaranteeing safety of BGP
when they are followed. The approach exploits commer-
cial relationships between autonomous systems in the In-
ternet: The neighboring ASes have either a customer-
provider or peer-peer relationship. Considering a node u,
the set neighbors(u) is partitioned into the following sets:
customers(u), peers(u), and providers(u). Paths are
classified depending on the relationship between the first
two nodes of the path. A path (u v)P is a customer path
if v ∈ customers(u), a peer path if v ∈ peers(u), or a
provider path if v ∈ providers(u). Gao et al. [1] pro-
pose that a stable paths problem with the following prop-
erties is safe: (1) Acyclic provider-customer digraph: The
directed graph induced by the customer-provider relation-
ships is acyclic; (2) No valley: A path between two nodes
should not traverse an intermediate node that is lower in the
hierarchy; (3) No steps: A peer-peer edge {u, v} is a step
in path P1(u v)P2 if either the last edge of P1 is a peer-
peer or provider-customer edge, or the first edge in P2 is a
customer-provider edge; (4) Customer paths are preferable
to peer and provider paths. The idea of this algorithm is
to use a database called route registry to store the relation-
ships between each AS pair for each destination, and then
to check if the aforementioned properties are satisfied. The
route registry can identify the sequence of ASes invading
these properties and force them to use a restrictive policy.

3 Randomized Algorithm

We are proposing an alternative algorithm for dynamic loop
detection where only local histories are used. If there is a
policy conflict, each node involved in this conflict will ob-



serve a route flap, and therefore will be able to locally de-
tect which one of its paths is involved in a cycle. To break
a cycle, it maybe sufficient to invalidate only one of the
paths involved or drop the local preference of only one of
such paths. However, since the proposed algorithm is dis-
tributed and based only on local information, there maybe
synchronous invalidation or reduction of the preferences of
the paths involved in the conflict. To prevent unnecessary
path invalidation, or rank change, we suggest a randomized
approach: Upon detection of an involvement in a cycle, the
local preference of the path Pi is reduced with a probability
inversely proportional to its preference rank, i.e. the prob-
ability decreases as 2−rank(Pi). Figure 3 shows the exact
algorithm. rank(Path) is the index of Path at node u in
the order of decreasing local preference value.

With our randomized approach, because of the prob-
abilistic drop of local preferences, a cycle may not be elim-
inated even though it is observed several times. This hap-
pens, for example, if the local preference of none of the
paths involved in a cycle has been lowered. Another possi-
bility is that each one of the paths in the cycle is the least
preferred path in the corresponding node. That is why the
lowering local preference of these paths would not change
the relative rank of paths, hence the cycle would remain.
To be able to deal with such persistent cycles and/or paths
that get involved in many different conflicts, our algorithm
makes use of counters to keep track of the number of times
each path gets involved in a cycle. times(Path, u) is the
value of the counter showing how many times Path has
been adopted by node u. When a path is adopted and later
abandoned as many times as some predetermined value,
max threshold, it is invalidated and put in the set of bad
paths, B. The paths in B are excluded from further con-
sideration in the best path selection process, even if they
are advertised by peers and permitted by local policies. On
the other hand, min threshold specifies how many route
flaps later a node decides that there is a policy conflict. If
a counter of a path exceeds this value, then a probabilistic
dropping of its rank is started.

4 Evaluation Method

For a given SPP S = (G,P,Λ), we would like to see how
efficient the algorithms are at removing all possible pol-
icy conflicts. To be able to do this, we run the algorithms
repeatedly until all possible conflicts are resolved and the
system is safe. Safety is tested by constructing the dispute
digraph of S with the current set of permissible paths, P ,
and checking it for cycles. At each run, to eliminate a dis-
pute cycle, conflicting paths are either invalidated or their
ranks have been updated depending on the algorithm. The
pseudo-code of our evaluation method is shown in Figure
4. The input is just a graph, G, instead of an SPP specifica-
tion. We construct SPP by finding the set of possible paths
at each node of G, and assigning local preference values as
shown. Therefore, at step 10, we have an SPP specification,
with graph G, set of all permitted paths being the set of all
possible paths and the ranking function is as shown in lines
3-9. After step 10, since each algorithm handles conflicts in
a different way, the exact details of the evaluation method

is different for each algorithm as discussed below.
Gao&Rexford algorithm has no run-time component.

Therefore, we only construct the corresponding SPP, S.
The P component of S is the set of all possible paths at
this point. Each path in P is checked for guidelines re-
viewed in Section 2.1.2. Paths involving steps or valleys
are invalidated, as well as customer-provider paths. Since
following these guidelines guarantees safety, the resulting
SPP with updated set of permitted paths is safe.

For SPVP, each independent conflict that is observed
for the current state of SPP S is taken care of at each iter-
ation (lines 10-14) until the system is safe. A cycle which
does not contain any smaller cycles is called independent.
The idea behind finding independent cycles and eliminat-
ing them in a single run is an attempt to model SPVP better
in this static context. SPVP is a distributed, dynamic al-
gorithm. Path histories are carried by path updates, which
provide the main mechanism of detection and elimination
of conflicts. Since we are not using the dynamic algorithm
for evaluation, we try to model such dynamic behavior as
closely as possible. In a dynamic environment, while the
actual algorithm is running, the shorter cycles would be
detected earlier than the longer cycles, just because the
nodes whose paths are involved in shorter cycles are lo-
cated closer to each other. Since SPVP is distributed, in a
dynamic environment, many small independent cycles can
be detected and taken care of simultaneously. Therefore, in
our evaluation method, we break all independent cycles in
one iteration. However, a question remains: which path(s)
involved in a particular cycle should be invalidated and la-
beled as bad path in our static evaluation of SPVP. In a dy-
namic environment, the first node detecting the cycle would
give up its path, and update the corresponding history ac-
cordingly. Therefore, none of the other nodes whose paths
involved in this particular cycle would attempt to break this
cycle again. Which node will be the first one to notice the
cycle depends on the order of messages propagated. There-
fore, in our static evaluation, to break a particular cycle, we
arbitrarily choose a path involved in the cycle and exclude
it from the set of permitted paths.

For our randomized approach, the evaluation is very
similar to SPVP. However, with our randomized algorithm,
a particular cycle would be observed in the form of route
flaps. All the nodes whose paths are involved would try to
break the cycle simultaneously without any way of know-
ing about the other nodes. However, since the algorithm
is randomized, some nodes will end up lowering the lo-
cal preference of their path involved in the cycle and some
nodes will do nothing. The best case of our randomized al-
gorithm happens when only one node lowers the local pref-
erence of its path involved in the cycle and doing so results
in breaking the cycle. The worst case of our algorithm hap-
pens when none of the nodes lower the local preference of
their paths involved in the cycle and this behavior repeats
max threshold times. As a result, each node is forced
to add its path to B. We have a set of results for both of
these cases. For the best case, we arbitrarily choose a path
in the cycle, and reduce its local preference, without us-
ing any probabilities. For the worst case, we do not lower
local preferences for any path involved in the cycle. There-



fore, after max threshold times seeing the same cycle, all
the paths involved in the cycle are added to the set of bad
paths. To obtain the expected performance of our algorithm
in practice, we obtain another set of results, by probabilisti-
cally reducing local preference of each path involved in the
cycle. The set of results showing the best and worst cases
of our randomized algorithm are shown in Figure 5 and the
set of results showing the expected behavior are shown in
Figures 6, and 7.

process 

if Pnew is not least preferred path then

if Pnew 6= Pold then

send vtorib(u)

randomized[u]

if

Pold=rib(u)

Pnew = bestB(u)

then(Pnew 6= Pold) and (Pnew 6= ε)

from

if rib(u)6= bestB(u)then

rib in(u ⇐ w) = m

receive m w

times(Pnew,u)++

B(u) = B(u)
⋃

{Pnew}

Pnew = bestB(u)

else if

times(Pnew, u) ≥ max threshold thenif

times(Pnew, u) ≥ min threshold then

localpref(Pnew)=localpref(P )

with probability=1/2rank(Pnew),

where rank(P )=rank(Pnew)-1

else

localpref(Pnew)=localpref(Pnew)/2

with probability=1/2rank(Pnew)

for each

Note: The code to the right of the

rib(u) =Pnew

is assumed to be executed in one atomic step .

v ∈ peers(u) do

Figure 3. Randomized Algorithm at node u.

line

find all paths from each node to destination

// set local preferences of the paths 

3

4

5

6

7

8

9

10

11

12

13

14

set local preference of the path to 500

set local preference of the path to 400

set local preference of the path to 300

eliminate cycles that are not independent

for each resulting independent cycle

1

2

process evaluator(graph G)

for each path (u, v)P

if v ∈ customers(u) then

if v ∈ peers(u) then

if v ∈ providers(u) then

construct SPP S = (G,P , Λ)

find all cycles in DD(S)

while S = (G,P , Λ) is not safe //there is a cycle in DD(S)

break the cycle //update set of all permitted paths, P

Figure 4. The pseudo-code used to evaluate the algorithms.

5 Performance Metrics and Results

We used dispute wheels for evaluation. A dispute wheel of
size n is a graph with n nodes, and one destination, node
0. Each node has 2 paths that are either the direct path or
the path through the clockwise neighbor, where the latter
is more preferred. The more formal definition of dispute
wheels can be found in [4]. Griffin et al. [4] show that for
every dispute wheel, there is a cycle in the corresponding
dispute digraph, which in turn suggests policy conflicts
that cannot be satisfied simultaneously. That is why when
we use a graph that contains a dispute wheel, we can be
sure that there is a policy conflict. The results in Figure
5 are obtained using a dispute wheel of size 250. To be

able to deal with the huge number of possible paths, at the
beginning of the evaluation, the possible paths for each
node are restricted to the direct path and the path through
the clockwise neighbor. For Figures 6, and 7, we have
used smaller graphs of size 5, 10, 15, 20, and 25. Although
with these smaller graphs, we were able to include extra
paths in addition to the direct path or the path through the
clockwise neighbor in the set of possible paths, we still
needed to exclude some paths (customer-provider paths in
our case) at the beginning of the evaluation just to keep
the set more manageable. For our randomized algorithm,
max threshold and min threshold are set to 6 and 2,
respectively.

Number of tries is a measure of how many times
we go through the while loop in line 10 of Figure 4. The
metric is used to measure how quickly the system reaches
safety. Figures 5 and 6 show the results. This metric is
not meaningful for the Gao&Rexford algorithm, which
does not have a run-time component. As expected, our
randomized algorithm takes more tries to break cycles than
SPVP, since SPVP eliminates conflicts by immediately
excluding one of the paths involved. This is a sure way of
eliminating both the current conflict and future ones that
might involve this path. Our randomized approach tries
to eliminate conflicts by reducing the local preferences
probabilistically. However, sometimes lowering the
preference of a path may not be enough to break a cycle:
The preference might need to be further reduced. It is also
possible that after breaking a particular conflict, the same
path may get involved in another conflict because of its
updated preference rank. It is also the case that lowering
the preference of a path may take a few tries just because
of the probabilistic nature of our algorithm. Therefore,
it is obvious that resolving conflicts with our randomized
algorithm may take longer than SPVP. The worst-case
value of our randomized approach in Figure 5 is 6 because
we set max threshold to 6. The worst-case behavior can
be improved for this metric by choosing a smaller value
for max threshold. However, this may lead to more path
elimination and hence badly affect reachability, which
is the basic trade-off in this context. As the size of the
network grows, the number of tries for our randomized
algorithm approaches that of SPVP.

The percentage of the paths that are excluded from
the set of possible paths is used to see if an algorithm
eliminates too many paths and hence puts strain on routing
reachability. Both Figures 5 and 7(a) show that the
Gao&Rexford algorithm has the worst performance and
may give up 96% of possible paths. Figure 5 shows that
although the worst-case performance of our randomized
algorithm is as bad as the Gao&Rexford algorithm, the
best-case performance is as good as SPVP. Figure 7(a)
shows that even though the expected performance of our
randomized approach is worse than SPVP, it is still much
better than the Gao&Rexford algorithm and excludes
approximately 60% less paths. With SPVP, the number
of paths that are eliminated equals the number of cycles
observed, since SPVP breaks each cycle by putting exactly
one path away. The number of cycles increases with
increasing size of the graph, but at a slower rate. This is



the main reason why in Figure 7(a) the metric value of
SPVP decreases as the number of nodes increases. For our
randomized approach, the number of cycles observed and
dealt with in a single iteration is much higher than SPVP,
since the randomized approach does not put away paths as
soon as a cycle is observed, the cycle may not be broken or
the path whose local preference value is updated may get
involved in a different cycle in the next iteration. Another
observation is that when the paths in a cycle are all the
least preferred paths, then by lowering the local preference
of the least preferred paths, the randomized approach does
not change the ranks of the paths and the cycle will remain
for up to max threshold iterations. At this point all of the
paths involved in the cycle will be eliminated and put in B.
As a result, we observe that the randomized algorithm has
a higher volume of path exclusions than SPVP.

Rearranging the ranks of the permitted paths is the
basic mechanism for the randomized approach to resolve a
conflict. To look deeper into the behavior of our random-
ized approach, we try to answer the question whether the
algorithm causes too many nodes to rearrange the ranks of
their paths and so giving up their preferences. For this pur-
pose, we use the metric called percentage of loss of prefer-
ences, which is defined as (total1−(total2+total3))/total1,
where total1 =

∑

p∈P1
localpreference(p),

total2 =
∑

p∈P2
localpreference(p), and total3 =

∑

p∈B
originallocalpreference(p)), denote the total

value of local preferences for the sets P1, P2, and B,
respectively; P1 is the set of permitted paths for the SPP
to begin with, P2 is the set of permitted paths for the
resulting SPP, and B is the set of all paths eliminated by
the algorithm. For the paths that are in B, the whole value
of the original local preferences is counted as loss. The
results are shown in Figures 5 and 7(b). Since we have
already seen that the Gao&Rexford algorithm eliminates
most of the paths, it is not surprising to see that it has the
worst performance for this metric too. The same is true
for the randomized algorithm at its worst-case behavior.
Figure 7(b) shows that the expected performance of
the randomized approach is not always as good as SPVP,
but still about 35% better than the Gao&Rexford algorithm.

6. Conclusion and Future Directions

Our proposed randomized algorithm is designed to realize
safety of BGP, while eliminating the drawbacks of current
approaches. It is a dynamic algorithm which eliminates
any kind of static checking, or route registry database as
in the Gao&Rexford algorithm. It does also eliminate the
need to carry potentially long and revealing histories as in
SPVP. Instead, the cycles are detected locally, i.e. by us-
ing only local information. Our randomized algorithm at-
tempts to resolve policy conflicts by adjusting the ranks of
a few paths. Thus ASes would not need to lose their paths,
and possibly end up not being able to reach the destination.
The performance of our randomized algorithm is expected
to be as close as SPVP in practice, while its worst-case per-
formance is no worse than the Gao&Rexford algorithm.

We are currently evaluating the algorithms using de-
tailed packet-level simulations using the SSF simulator,

www.ssfnet.org. We are improving our randomized al-
gorithm by restoring the local preferences of the paths
whose local preferences were dropped as soon as stabil-
ity is reached. This improvement will help us eliminate
some unnecessary rank changes. We are also aware of the
fact that not all route flaps are caused by policy conflicts.
Therefore, we are further improving our algorithm by dif-
ferentiating between transient and permanent route flaps.
We are also working on mathematically analyzing our al-
gorithm.

−
+

−
+

−
+

−
+

−
+

−
+

55.55

50

Number of Tries

Metrics

%of Excluded Paths 

% of Loss of Preference Value

0.2

1

SPVPGao&Rexford
Randomized
best case

2 6

50

55.550.44 0.05

0.00.0

Randomized
worst case

3.73E−17

1.24E−17

0.22

0.2 1.24E−17

Figure 5. Results for 250-node
input graph.

0

5

10

15

20

25

30

5 10 15 20 25

N
um

be
r 

of
 T

rie
s

Number of Nodes

Griffin&Wilfong
Randomized

Figure 6. Number of Tries.

0

20

40

60

80

100

5 10 15 20 25

P
er

ce
nt

ag
e 

of
 P

at
hs

 In
va

lid
at

ed

Number of Nodes

Griffin&Wilfong
Gao&Rexford
Randomized

(a)

0

20

40

60

80

100

5 10 15 20 25P
er

ce
nt

ag
e 

Lo
ss

 o
f V

al
ue

 in
 P

re
fe

re
nc

es

Number of Nodes

SPVP
Gao&Rexford
Randomized

(b)

Figure 7. (a) Percentage of the paths that are invalidated (ex-
cluded) to break all possible cycles (b) Percentage of Loss of Pref-
erences

Acknowledgment

This work was supported in part by NSF grants ANI-
0095988, ANI-9986397, EIA-0202067, and ITR ANI-
0205294.

References
[1] L. Gao, T. Griffin, and J. Rexford. “Inherently Safe

Backup Routing with BGP ”. In Proc. IEEE INFO-
COM 2001, April 2001.

[2] L. Gao and J. Rexford. “Stable Internet Routing with-
out Global Coordination ”. In Proc. ACM SIGMET-
RICS, June 2000.

[3] R. Govindan, C. Alaettinoglu, G. Eddy, D. Kessens,
S. Kumar, and W. Lee. “An Architecture for Sta-
ble, Analyzable Internet Routing ”. IEEE Network,
13(1):29-35, 1999.

[4] T. Griffin, F. Shepherd, and G. Willfong. “Policy Dis-
putes in Path-Vector Protocols”. In Proc. IEEE ICNP
1999, 1999.

[5] T. Griffin and G. Willfong. “An Analysis of BGP
Convergence Properties”. In Proc. ACM SIGCOMM,
September 1999.

[6] T. Griffin and G. Willfong. “A Safe Path Vector Proto-
col”. In Proc. IEEE INFOCOM 2000, March 2000.

[7] Y. Rekhter and T. Li. “A Border Gateway Protocol”.
In RFC 1771, March 1995.

[8] K. Varadhan, R. Govindan, and D. Estrin. “Persistent
Route Oscillations in Inter-Domain Routing ”. Com-
puter Networks, 32:1-16, 2000.


