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Abstract— Wireless sensor networks have recently emerged
as enablers of important applications such as environmental,
chemical and nuclear sensing systems. Such applications have
sophisticated spatial-temporal semantics that set them aside from
traditional wireless networks. For example, the computation of
temperature averaged over the sensor field must take into account
local densities. This is crucial since otherwise the estimated
average temperature can be biased by over-sampling areas where
a lot more sensors exist. Thus, we envision that a fundamental
service that a wireless sensor network should provide is that of
estimating local densities.

In this paper, we propose a lightweight probabilistic density
inference protocol, we call DIP, which allows each sensor node
to implicitly estimate its neighborhood size without the explicit
exchange of node identifiers as in existing density discovery
schemes. The theoretical basis of DIP is a probabilistic analysis
which yields the relationship between the number of sensor
nodes contending in the neighborhood of a node and the level of
contention measured by that node. Extensive simulations confirm
the premise of DIP: it can provide statistically reliable and
accurate estimates of local density at a very low energy cost
and constant running time. We demonstrate how applications
could be built on top of our DIP-based service by computing
density-unbiased statistics from estimated local densities.

I. INTRODUCTION

Motivation: Over the past few years sensor networks have
received much attention as they are envisioned to support
a wide range of important applications, e.g. surveillance
systems, biological monitoring systems, environment control
systems, equipment supervision systems, etc. A large number
of such sensor applications are based on small, inexpensive,
battery operated, electronic microsensor devices (e.g. Berke-
ley/Crossbow Motes [12], MIT µAMPS nodes [4]) with radio,
sensing and processing components. Due to the size and
cost restrictions, these wireless sensor devices have limited
storage and computation capabilities. Furthermore access to
the sensors maybe difficult or even impossible after their initial
deployment, which implies that the energy expended must be
minimized to increase the lifetime of the system. The most
energy intensive operation in these wireless devices is the radio
operation which suggests that communication should also be
limited.
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Many solutions have been proposed to cope with the above re-
strictions and improve the performance of this kind of wireless
sensor networks. However, due to the wireless communication
aspect, a significant body of previous work assumes that
wireless sensor networks are just a variant of ad-hoc wire-
less networks with additional constraints. As pointed out by
Ganeriwal et al. [7] there are fundamental differences between
ad-hoc wireless networks and sensor networks. Any kind
of sensor network, resource constrained or not, is deployed
to monitor the physical environment and therefore is highly
coupled with the physical world. The sensors are periodically
queried by an external source for summaries and statistical
information about the underlying physical process.

In most of the previous work the sensors are thought to
be uniformly distributed in the field and sometimes even to
form a grid. In [9] Ganesan et al. argue that in the majority
of the cases there are going to be spatial irregularities. Thus
the performance of many previous proposed solutions can
be seriously affected when applied in non-uniform configu-
rations. Besides performance deterioration, the correctness of
the statistics computed from measurements collected by sensor
nodes can also be affected. Ganeriwal et al. [7] present a case
where even a simple query like the average value of an area
(e.g. temperature) can be miscalculated if the local density is
not taken into account. This problem can be solved by having
the sensors aware of the local density.
Our Contribution: Although there have been many proposals
for neighborhood (local) density and topology discovery [16],
[2], [27], to the best of our knowledge, all of these proposals
require the explicit exchange of messages containing the node
addresses/identifiers (and sometimes even their coordinates
in the physical space.) This typically requires some form of
reliable broadcast which makes these schemes very expensive
in terms of energy consumption and convergence time. In this
paper, we present a lightweight distributed protocol for infer-
ring (implicitly estimating) local density (neighborhood size)
at each node. We henceforth refer to our Density Inference
Protocol as DIP. DIP has the following salient features:

• DIP is based on a simple probabilistic analysis, thus
it is easy to analyze the relationship between the level
of contention observed at a node and the size of the
contenting population (local density);

• Inferring local density without explicitly constructing it,
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makes DIP energy-efficient since it avoids the (reliable)
sending of specific messages carrying node identifiers,
thus explicit retransmissions are not needed;

• Not relying on explicit messages makes DIP more re-
silient as well as more accurate in its estimation of local
density since even sensed collisions contribute to the
estimate—they are not simply lost messages that need
to be retransmitted;

• The probabilistic basis of DIP allows for computing
confidence levels for the computed estimate of local
density, thus the running time of the protocol (henceforth
referred to as Density Inference Phase) can be more easily
controlled to achieve a certain energy-accuracy tradeoff;

• DIP provides a general basic service that could be used
by a variety of sensor applications. We present in this
paper such application, which calculates density-unbiased
approximate statistics via uniform spatial sampling over
non-uniform sensor fields.

Paper Organization: Section II presents the sensor network
model we assume in this paper, along with our DIP protocol
and its analytical basis. Section III compares by simulation
DIP against an explicit density discovery protocol that is typi-
cal of existing proposals. Section IV describes an algorithm to
calculate approximate statistics based upon our proposed DIP
protocol. Section V reviews related work (in addition to that
mentioned throughout the paper), and Section VI concludes
the paper with future work.

II. DENSITY INFERENCE PROTOCOL

In this section we describe our network model and the
probabilistic basis of our density inference protocol.

A. Model

Our model is summarized as follows:

• Without loss of generality and for ease of presentation,
we assume that the sensor field is a square of side a

• There are N sensors in the field distributed according to
a general density function λ(x, y) defined over the x and
y coordinates of the square field

• When a sensor transmits, every node within a range of
radius r can hear its transmission

• The energy expended on listening and receiving is pro-
portional to the number of bits received1

• The energy expended on transmitting is larger than that
for listening/receiving

Figure 1 shows an example of a non-homogeneous field.

B. Our Proposed DIP Protocol

We propose a probabilistic Density Inference Protocol (DIP)
to estimate the number of neighbors of a node. Unlike existing
explicit neighbor discovery protocols (e.g. [27], [2]), DIP runs
in constant time and attempts to minimize energy. Using
statistics the error of our approach can be bounded.

1In the case of idle listening a node still has to intercept every bit to check
the status of the carrier and to check the destination of each message.

a r

Fig. 1. Non-homogeneous sensor field

DIP is a contention-based slotted MAC layer protocol. Note
that this protocol is independent of the MAC protocol used
for data communication. We envision that this protocol will
provide a fundamental service for sensor networks and should
be independent of any specific implementation. Moreover this
protocol makes minimum assumptions about the underlying
hardware so that it can be easily implemented over any
platform.

DIP uses the level of contention experienced by each node
to estimate the density of the node’s neighborhood. The
contention that a node experiences while trying to transmit
depends on the number of nodes trying to send at the same
time. Our goal is to find a simple relationship between the
contention a node observes on the carrier and the number of
nodes competing.
Many contention-based MAC protocols have been proposed
for wireless networks, and a lot of work have been done in
analyzing their performance. The IEEE 802.11 protocol has
drawn most of the attention and is widely deployed. The goal
of IEEE 802.11 is to provide reliability while at the same time
be efficient. Due to the complicated nature of the protocol,
the analysis is quite complex. In the performance analysis
provided in [26] and [1], the authors use numerical methods to
solve the formulas that relate the number of nodes competing
with the probability of a successful transmission.
Since we only care about measuring the level of contention and
not provide a reliable MAC layer protocol, we can use a much
simpler version of a CSMA protocol. Instead of exponential
backoffs in times of collision, under DIP, nodes compete over a
predefined number of slots, denoted by m. Each node chooses
a slot at random out of these m slots. At the chosen slot a
node transmits a message at a predefined range r, independent
of whether it collides or not.
Let us compute the expected number of nodes that will
transmit in each slot. Assume there are n nodes competing.
Node j will choose to transmit its message during slot i with
probability pij = 1

m . We can think of this problem as a typical
“bins and balls” problem. The sensors are equivalent to balls—
each sensor will transmit one message in one slot—and the
slots are equivalent to bins. Thus, by analogy, we have n balls
and m bins. We throw each ball into one of the bins chosen
at random. Each throw is independent of the previous one.
The question is: What is the expected number of balls in each
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Fig. 2. Interference problem in wireless communication. Although node
A can only receive messages from node B, node C can interfere with the
transmission of node B

bin? This problem is known as the “occupancy” problem [17].

Define a random variable Xij as follows:

Xij = { 1 if ball j goes to bin i
0 otherwise

The probability that ball j will go to bin i is 1
m . So Xij

represents a Bernoulli trial. Let Xi be a random variable
that counts the number of balls that go to bin i, i.e. Xi =∑n

j=1 Xij . Hence Xi follows the binomial distribution and
we have:

Pr[Xi = l] =
(
n

l

) (
1
m

)l (
1 − 1

m

)(n−l)

From the above equation we can calculate what is the
expected number of bins containing exactly l balls:

E(l, n) = m

(
n

l

)(
1
m

)l (
1 − 1

m

)(n−l)

(1)

Now let us go back to our original problem. When at least
one sensor transmits in a certain slot, this slot is considered
busy, otherwise the slot is idle. We have calculated the
expected number of slots in which exactly l nodes collided
(l > 1). Although a node can tell whether or not there was a
collision, there is no way of counting how many nodes (within
its reception range) had collided.

Furthermore a node can not count the number of successful
transmissions (l = 1) accurately due to the interference
problem in wireless communication. A node can correctly
receive only messages that are within its reception range, since
the received signal would be strong enough to guarantee an
acceptable signal-to-noise ratio. Although the node does not
correctly receive messages from nodes outside its reception
range, these nodes can still interfere with the transmission
of nodes within the reception range. Let us consider the
example in Figure 2. Node A wants to count the number of
successful transmissions of nodes within its reception range
r. The interference range for node A is R. At slot i nodes
B and C decide to transmit. Since only node B is within
the reception range of A, A should count one successful
transmission. However the transmission of C will make A
observe a collision.

A sensor, though, can easily and accurately count the
number of idle slots, i.e. l = 0. If node B transmits then this
slot will be considered busy by A, independent of what node C
does. If only node C transmits then the received signal will not
be strong enough and the slot will be considered empty/idle
by A (since C is outside the reception range r.)

Substituting l = 0 in Equation (1) we get:

E(0, n) = m

(
1 − 1

m

)n

(2)

By inverting Equation (2), we can calculate n knowing m
and the average number of idle slots. To obtain a statistically
reliable estimate of that mean number of idle slots, we can
repeat the experiment several times. We henceforth refer to
these repeated experiments as iterations or runs of our DIP
protocol.

The number of idle slots follows a distribution with mean
given by Equation (2). In each run of the protocol we draw a
sample, say xi, from this distribution. If we repeat the protocol
enough number of times, say ν, we can estimate the mean of
the distribution as X̄ =

∑ ν
i=1 xi

ν . From statistics we know
that the actual (true) mean of the distribution is bounded with
probability (1 − α) in an interval:

E(0, n) ∈ {X̄(0, n) ± tν−1,1−α/2 × S(X̄(0, n))} (3)

where tν−1,1−α/2 is the “critical point” of the t-Student
distribution, and S(X̄(0, n)) is the sample standard deviation

given by
√∑ ν

i=1(xi−X̄)2

ν(ν−1) .
From Equation (3) we can thus estimate a lower bound, L,
and an upper bound, U , on E(0, n). By inverting (2) we get:

n = log
E(0, n)

m
/log

(
1 − 1

m

)
(4)

By substituting L and U for E(0, n), we obtain a lower
and an upper bound on our estimate of the neighborhood size
n—this estimated range of the number of competing nodes
will be within the true value with probability (1−α). Figure 3
shows the number of nodes in the neighborhood of each sensor
node, estimated using DIP, along with confidence intervals. In
this example there are 1000 nodes non-uniformly distributed
over a square sensor field of side 100m. Each point in the
graph represents the estimation of one sensor. The sensors on
the X-axis are ordered in increasing estimated density. The
confidence intervals are shown only for one every 25 sensors.

Our DIP protocol can be invoked periodically, so the sensors
can update their estimate. How often the protocol should run,
depends on the specific application and on the dynamics of
the field (e.g. how often sensor nodes die, new nodes join the
network, nodes move). We refer to the time during which the
nodes execute the DIP protocol as density inference phase.
In summary, DIP is a slotted contention-based MAC protocol
that works as follows. We assume that every sensor has already
received a message containing the input to the DIP algorithm,
namely the number of slots m, the neighborhood range r, and
the number of times to repeat the experiment ν. When the
sensors enter the density inference phase then each sensor:

• chooses a random number si from [1,m];
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Fig. 3. Estimated number of nodes in the neighborhood of each node with
confidence intervals

• it transmits a message in the selected slot si; and
• for the remaining slots the sensor is in listening mode

and counts how many slots were idle.

These steps are repeated ν times. After all the sensors
have gathered ν samples, each sensor j estimates the number
of nodes in its neighborhood nj . Then it estimates its local
density as λj = nj

πr2 and exits the density inference phase.
Figure 4 shows in pseudocode an implementation of our DIP
protocol.

Note that the actual message being transmitted during DIP
is of no importance. It can be an empty message (the smallest
message in Berkeley/Crossbow Motes is 27 bytes [12])—
no retransmissions are necessary. Instead of sending whole
messages, each node can even send a special radio signal if
such busy signal [25] is supported by the underlying hardware.

The running time of our DIP algorithm is a constant—it
runs for m × ν slots. If the bandwidth of the wireless link
is 20 Kbps, each (empty) message is 27 × 8 =216 bits then
each slot is 10.8 msec. Furthermore our algorithm runs in
constant energy. Each node has to transmit only ν messages
in each density inference phase and it has to be in idle/listen
state for the rest of the (m − 1) × ν slots. The fact that
the energy expended by DIP is constant can be very useful
while designing applications, since given a desired energy
consumption level we can set the parameters of DIP to achieve
best performance.

III. SIMULATIONS

In this section, we present simulation results that validate
our proposed DIP protocol and compare its performance
against an explicit neighbor discovery protocol typical of
traditional approaches. We built our simulator in Matlab [15].
We assume that all the links have equal bandwidth, so our base
time unit is the time it takes for a node to receive/transmit one
bit.

A. Parameters and Performance Measures

In our evaluation we use the following two performance
metrics:

// m = number of slots per iteration
// ν = number of samples (iterations)
// r = neighborhood range
for x = 1 to ν do

idle[x] = 0;
choose at random j ∈ {1,m}
for i = 1 to m do

if j == i then
transmit();

end if
if i is idle then

idle[x]++;
end if

end for
end for
λ = calculate density(idle[ ],m, ν, r)

Fig. 4. Algorithm DIP(m, ν, r)

• Normalized Error: Let n̂j be the number of nodes in the
neighborhood of node j estimated by DIP, and nj be the
corresponding actual number of nodes. The normalized
error errj is given by:

errj =
|nj − n̂j |

nj

• Energy Consumed: This measures the energy, E, ex-
pended during the execution of the protocol due to
communication overhead. E is the sum of Etx, the
energy expended to transmit, Erx, the energy expended
to receive, and Es, the energy expended while sensing
the carrier. We assume that Es = Erx.
It is known that in radio communications the energy
expended to transmit a message over a distance r is
proportional to re where e is the path loss exponent, while
the receive/sense energy is proportional only to the time
the radio is on. Following the energy model used in [11],
we take e = 2 and the following expressions for Etx and
Erx:

Etx(k, r) = Eelec × k + εamp × k × r2

Erx(k) = Eelec × k

where k is the size of the message in bits, Eelec is the
cost for just operating the radio, and εamp captures the
amplifier that adjusts the transmission power (range).

Since in DIP each sensor calculates its local density, the
distribution of sensors in the field does not affect DIP’s per-
formance. However for presentation and comparison reasons,
we assume that nodes are distributed uniformly over the sensor
field with spatial density λ, unless otherwise specified. Since
the distribution is homogeneous, the neighborhood size does
not change much throughout the field, so we present the
neighborhood size averaged over all sensors. However as we
have seen in Figure 3, the performance of DIP changes as
the size of the neighborhood changes. In order to change the
neighborhood size we can either change λ, or the transmission
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range r. In our simulations we vary r. The results shown are
the average over 10 independent runs of the simulation.

Table I lists the configuration parameters used in our
simulations. The packet size used is the smallest packet size
for Berkeley/Crossbow Motes [12], as illustrated in Figure 5.
As noted earlier, instead of packets, special signals can be
transmitted by the sensors when running DIP. In this case the
performance of DIP can be improved significantly.

Eelec 50nJ/bit
εamp 100pJ/bit/m2

field size 100m × 100m
packet size 27 bytes

λ 0.1 nodes/m2

TABLE I

PARAMETERS USED IN THE SIMULATIONS

PREAMBLE
18

SYNC
2

CRC
2

HEADER
5

PAYLOAD
(0-29)

Fig. 5. Packet format

B. Results for DIP

Figure 6 shows the error err (averaged over all nodes) for
increasing number of iterations and for varying number of
slots, when the level of contention (represented by the average
number of competing nodes) is set to 3, 13 and 28, which
correspond to setting the range r to 1, 3 and 5, respectively. We
notice that as long as the number of slots is sufficiently larger
than the number of competing nodes then the error is very low
even for a small number of iterations. Therefore if we choose
a large enough number of slots, the iterations needed can be
as low as 5, and that will provide a very small estimation error
for any possible density in our field.

Figure 7 shows the energy consumption of DIP for various
values of its parameters. Note that the energy expended is
independent of the density—DIP runs for a given number
of slots and iterations. Based on the level of energy that an
application is willing to expend, the DIP parameters can be
adjusted accordingly, independent of the network topology,
provided the resulting error in the estimation of local densities
is acceptable.

C. Comparison against Explicit Approach

Next we compare our DIP protocol with a simple message
exchange protocol that is based on unreliable broadcast. In
this explicit message exchange protocol, each node broadcasts
for a certain number of times a hello message containing
its identifier. A node sends the hello message more than
once to increase the number of neighbors that will receive it
successfully. We chose not to compare with a reliable broad-
cast protocol, since in most of these protocols the message
is transmitted more than once with the additional cost of
RTS/CTS messages for each transmission to ensure reliability.

This would only increase the number of messages transmitted
by each sensor and so deteriorate performance.

For the above explicit unreliable approach, we use the
protocol implemented in Berkeley/Crossbow Motes [12] as an
underlying MAC layer transmission protocol. This protocol is
a CSMA/CA protocol using random backoff. When a node
has a (hello) message to transmit it chooses a random delay
between 1 and 128 bits. During this backoff period, if the node
hears another transmission it resets the backoff counter to a
new random value and starts counting at the end of the current
transmission. After a node sends the pre-determined number
of hello messages, it waits until it senses a silence period
larger than the backoff timeout—with high probability that will
indicate that there is no sensor in this node’s neighborhood that
has a message to transmit. The node then counts the number
of distinct node identifiers that it had received and takes that
as the number of neighbors it has. We henceforth refer to this
protocol as the explicit (density discovery) protocol.

Figure 8 shows the estimation error err versus the energy
consumed during the execution of the explicit protocol. Each
point on the graph represents the energy and accuracy achieved
by sending a certain number of hello messages which varies
from 1 to 4. We show the results for different contention levels.
Notice that the energy expended increases exponentially with
the number of neighbors (the X-axis is in logarithmic scale.)
Since the number of hello messages sent by each node is
constant the overhead of energy comes from the sensing of the
channel. That means that it is also the case that the time it takes
for the explicit protocol to terminate increases exponentially
as the contention in the sensor field increases.

Table II reports the minimum energy consumption needed
for the two protocols (DIP and explicit) to achieve an es-
timation accuracy of 95% for different levels of contention.
We also report the parameters used to achieve this level of
accuracy. We can see that the required energy for our DIP
protocol is 1-2 orders of magnitude smaller than that required
by the explicit density discovery approach.
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Fig. 7. Energy consumption of DIP for various parameters

For the next experiment we used a non-homogeneous field.
To create such a field, we divide the whole area into smaller
regions and in each region we create a homogeneous subfield
of sensors. The value of the density of each region is chosen
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Fig. 6. The error err for various configuration parameters of DIP
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N=3 N=13 N=28
Explicit energy 0.12mJ 0.5mJ 20mJ

hello msgs 1 3 3
DIP energy 0.061mJ 0.061mJ 0.16mJ

slots 10 10 25
iterations 5 5 5

TABLE II

MINIMUM ENERGY CONSUMPTION NEEDED TO ACHIEVE ACCURACY OF

95% FOR DIP AND FOR THE EXPLICIT PROTOCOL

uniformly in [λL, λH ], so the standard deviation is σ(λ) =√
1
12 (λH − λL). In the explicit density discovery protocol,

the time it will take each sensor to terminate the protocol,
i.e. the sensor successfully sends the pre-determined number
of hello messages carrying its identifier, depends on its local
density. Therefore the time and energy expended by each node
in a non-homogeneous environment is not a constant. Figure 9
illustrates how the standard deviation of the energy expended
by each node within the field increases as the field becomes
more irregular, i.e. as the standard deviation of the density
increases. This is in sharp contrast to our DIP protocol, where
the energy expended by all the sensors is constant and only
depends on the DIP parameters, namely number of slots and
number of iterations.
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Fig. 9. Standard deviation of the energy consumption in a non-homogeneous
field as a function of the standard deviation of the density of the field

IV. APPLICATION: COMPUTING APPROXIMATE STATISTICS

In this section we present an application that could be
built on top of DIP. We use DIP to calculate unbiased
approximate statistics for the underlying monitored process.
For this application we consider the following setup: There
are N sensors distributed in a field monitoring a physical
process (e.g. temperature). There is a special node, called
the “sink”, that is interested in calculating statistics for this
underlying process. The sink broadcasts a query to all the
sensors, and the sensors should provide either the answer, or
enough information to the sink in order to evaluate the query
by itself.

A. Limitations of Existing Approaches

In some of the previously proposed protocols (e.g. [8],
[18]), the sink gets all the information, or a summary thereof,
from the sensor nodes and then it is able to evaluate any
aggregate query (e.g. average, maximum). Another set of
approaches (e.g. [11], [14], [28], [29], [6]), propose to do
in-network aggregation in order to reduce the number of
messages traveling through the network and thus to consume
less energy. In all of these approaches the objective is for the
sink to gain knowledge about the values, or summaries on
them, sensed by the nodes (sensors.)

However the sink is interested in statistics concerning the
physical process monitored by the sensors. To that end, Ganer-
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iwal et al. [7] have introduced this distinction between the so-
called nodal aggregates and spatial aggregates. They define
as nodal aggregate the value calculated by simply applying an
aggregate function over the set of values received at the sink,
and as spatial aggregate the value calculated when the function
is applied on the physical process. The latter accounts for the
amount of physical space represented by a particular sensor
node. Obviously, if the sensors are uniformly distributed over
the field then the nodal aggregate is a good approximation of
the spatial aggregate. However, as discussed in [9] we should
not expect the distribution of the sensors over the field to be
uniform. In most of the cases there are going to be areas of
high and low density.

Without loss of generality, let us consider a square field
of size a and a set of sensors S distributed over this
field. Let (xj , yj) be the physical location of sensor j. Let
V (x, y), x, y ∈ [0, a] be the function of the monitored
process (e.g. temperature). The sink is interested in calculating
functions like maximum(V (x, y)) or average(V (x, y)). Since
the function V (x, y) is unknown, the sink can only sample the
function at specified points (where the sensors are physically
located.)

The best approximation is to try to reconstruct the function
V (x, y) from the known values. This solution requires either
the sensors to be location aware, or the sink to know the
physical locations of the sensors. An approximate approach
is proposed in [7], where the Voronoi tesselation of the
field is computed. The value of each sensor is assigned a
weight proportional to the area covered by the Voronoi cell
of the sensor. Two algorithms are proposed, a localized and
a centralized one—the former requires that the sensors be
location aware, and the latter does not allow for in-network
aggregation.

Fig. 10. Partitioning of a non-uniform field into homogeneous subregions

B. Our Approach using DIP

A more natural way to provide a spatial unbiased estimate
of an aggregate function is by removing the condition that
introduces the bias in the first place. In other words, the
solution should attempt to make the distribution of the reported
values uniform by drawing a spatial uniform sample of the
sensors. Let A1, · · · , Ak be subareas of the field such that

A1

⋃
A2

⋃ · · ·⋃Ak = A, A1

⋂
A2

⋂ · · ·⋂Ak = ∅ and ∀i ∈
[1 · · · k], λAi

is constant where λAi
is the density of area Ai—

see illustration in Figure 10. Assume each area contains Ni

sensors where
∑k

i=1 Ni = N . Let n be the number of samples
that the sink wants to receive. Then each area Ai should
contribute ni uniformly distributed samples where ni = Ai

A N .
Obviously, if Ni < ni, all Ni sensors would be part of the
reported samples. The probability that a sensor j of area i will
be part of the sample is given by:

pj = {
ni

Ni
if Ni > ni

1 otherwise
(5)

Each sensor, after running DIP, has an estimate about Ni

within an area Ai = πr2, where r is the neighborhood
range used in DIP. If we assume that Ai has a uniform
density then each sensor, using Equation (5), can estimate its
probability of being part of the reported samples from area i.
In summary, the protocol that we propose, on top of DIP, for
performing uniform sampling over non-uniform fields involves
the following tasks:

• The sink specifies a neighborhood range r, the desired
number of samples ni per neighborhood, and the round
duration (which determines the frequency of reporting)

• Each sensor, using DIP, estimates the density of its
local area within the range r, i.e. Ni, and then sets the
probability that it sends its sensed value according to
Equation (5)

• In each round each sensor decides if it is going to transmit
its value to the sink with probability pj

If the field is not very dynamic then the sensors do not have
to run DIP in each round but every a certain number of rounds
defined by the sink.

Figure 11 shows some execution examples of our DIP-
based approach applied in two different non-homogeneous
fields (shown in Figure 11(a)top and Figure 11(a)bottom), for
different r. The sink requests 1 sample per neighborhood.
We can see that for small values of r the sample is not
uniform. This is due to the underlying physical limitations,
i.e. if there are areas of size larger than πr2 with not even one
sensor inside them, then these areas will not be represented. In
essence, our DIP-based approach assumes that the requested
density of the sample is smaller than the density of the most
sparse area in the non-uniform field. Note that if the sink
requests a sample density that is infeasible to provide, the sink
could realize this after only a few rounds. Specifically, the sink
knows that in each round it expects a total of n samples. If, on
average, the sink receives less than n samples, this means that
some areas are not represented, and so the sink can decrease
the requested density through a larger r (or smaller ni).

C. Comparison against Density-oblivious Approach

In order to verify our claims about biased results produced
by traditional density-oblivious approaches, we compare our
density-aware (DIP-based) sampling method with a simple
density-unaware method. In the latter method, the sink asks for
n samples but since the sensors do not know their local density,
all the sensors have the same probability, n

N , to be part of the
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(a) Original field (b) Uniform sampling r=1 (c) Uniform sampling r=2 (d)Uniform sampling r=3

Fig. 11. Uniform sampling: The output of our DIP-based uniform sampling algorithm: (a) the original non-homogeneous field; (b)-(d) uniform sampling for
different values of range r

samples reported to the sink. This density-unaware sampling
would inherit the spatial bias of the original distribution of
sensors in space, and will provide a biased answer. For this
example we assume the average aggregate.

In order to be able to evaluate the quality of each method,
we compare against the true mean and standard deviation of
the monitored process. Let µ(V ) be the mean and σ(V ) be
the standard deviation of V (x, y), where

µ(V ) =

∫ a

0

∫ a

0
V (x, y)dxdy
a2

σ(V ) =

√∫ a

0

∫ a

0
(V 2(x, y) − µ(V )2)dxdy

a2

Figure 12 shows the average calculated using the two meth-
ods, for increasing sampling size. We also report the nodal
aggregate and the spatial aggregate. The density-oblivious
method gives the same results as the nodal aggregate, while
our approach is much closer to the true aggregate value (given
by the spatial aggregate.) As the sample size increases our
approach also starts to diverge from the correct value. This is
because of the underlying physical limitations of the field, i.e.
given the original distribution of the sensors over the field,
there is no sample of the requested size that is uniformly
distributed over the field—this is because the desired density
of the uniform sample is larger than the actual density of the
most sparse area in the field.

D. Energy Savings using DIP

Besides providing unbiased statistics, our DIP-based ap-
proach also provides reduction in energy consumption. After
an initial cost of figuring out local densities, each sensor j
sends, on average, one value every 1

pj
rounds. Of course, the

energy savings depends on how dynamic the field is, i.e. how
often the DIP protocol should run. If the topology does not
change very often then one can achieve great savings using
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Fig. 12. Average calculated using density-aware sampling and density-
unaware sampling

uniform DIP-based sampling. To validate this claim, we ran
experiments comparing the uniform sampling method against
sending all the values to the sink.

To disseminate all values (from all sensors) to the sink,
we use LEACH [11]. LEACH is a clustering-based routing
protocol for data dissemination over wireless sensor networks.
Each sensor elects itself as a cluster-head with a probability p
that is common to all nodes, and then advertises its decision.
A non-cluster-head node sends a join message to the closest
cluster-head. Each cluster-head then broadcasts a message to
all its children with a schedule of when each child should send
its value to the cluster-head. The cluster-head, after gathering
all messages from its children, aggregates the values and sends
only one message to the sink. In our simulation, we do not take
into account collisions during the cluster-head advertisement
and join phases, and assume that all the messages are reliably
transmitted and received only by the receiver, i.e. the rest of
the nodes do not overhear the transmission. Of course, relaxing
all these assumptions will only deteriorate the performance of
the LEACH-based method.
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For the transmission to the sink, one-hop high-powered
transmission is used for both our DIP-based scheme and for
the LEACH-based scheme. Again, collisions are not taken into
account. Since LEACH is designed to run over uniform fields,
we ran the experiments over a uniform sensor field. Table III
lists the configuration parameters used.

FIELD
a 100
λ 0.2 nodes/m2

LEACH
control packet 50 bits

data packet 100 bits

DIP
slots 30

iterations 10

TABLE III

CONFIGURATION PARAMETERS USED IN THE EXPERIMENTS COMPARING

LEACH AND DIP

Figure 13(a) shows how many nodes are alive in each round.
The network lifetime is 1170 rounds under the LEACH-based
scheme, while it is 4300 under our DIP-based scheme; more
than 300% increase. Figure 13(b) shows the average value
obtained using DIP. During the last 200 rounds, the calculated
value oscillates significantly. The reason is that in these last
200 rounds, less than 13 nodes are still alive out of the initial
2000 nodes. Figure 13(c) shows the average value calculated
over the first 4100 rounds under the DIP-based scheme, when
there were still enough sensors to monitor the field, along with
the true mean and standard deviation of the monitored process.

V. RELATED WORK

Most closely related to ours is work done for neighborhood
or topology discovery. If a node knows either its neighborhood
information or the topology of the network then it clearly
can estimate its local density. The main drawback of all
these approaches is that their goal is to explicitly discover all
neighbors of a node which significantly increases their cost.

Some of the protocols, such as AODV [19] and ZRP [10],
propose that the neighborhood information be extracted by
intercepting existing traffic. This approach implicitly makes
two assumptions. First, packets contain the sender’s ID, which
is not always the case as in the MAC layer protocol of
Berkeley/Crossbow Motes [12] where packets contain only
the destination ID. Second, nodes are constantly awake to
intercept the messages of all the nodes. This is not desirable in
a sensor network environment, where the radio communication
is a scarce resource that needs to be wisely used.

Other protocols, such as GAF [27], BMW [24], [5] and
many others, assume the periodic broadcast of HELLO mes-
sages. In wireless networks, the implementation of the broad-
cast functionality is not so easy to implement. For example, the
802.11 standard does not provide reliable broadcast/multicast.
Some solutions have been proposed to provide reliability on
top of 802.11. Some of them [21], [22], [23], [24] attempt
to extend the unicast scheme of RTS/CTS to provide reliable
broadcast/multicast. Given that the size of the RTS and CTS

messages is comparable to that of HELLO messages, the
communication overhead to add reliability is quite large. An-
other drawback of protocols relying on such explicit message
exchange is the high contention during the discovery phase
due to synchronized broadcasts of HELLO messages. On the
other hand, if the nodes do not enter the discovery phase at the
same time, as proposed in GAF [27], this implies that nodes
should stay awake longer to make sure that they will hear the
HELLO transmissions.

A different protocol proposed for neighbor discovery is
the Birthday Protocol [16]. Although this protocol attempts
to minimize contention by having nodes alternate between
listening and sending states, its main objective remains to
be that of maximizing the number of successfully transmitted
messages, resulting in increased communication cost. Further-
more in their analysis, McGlynn and Borbash only account for
the energy consumed in transmitting, ignoring the energy due
to receiving/listening. Work in the area of energy consumption
have shown that the idle:receive:transmit ratios are 1:1.05:1.4
[20] while more recent studies show ratios of 1:2:5 [13], which
suggests that the idle/receive energy can not be ignored when
calculating the total energy consumption.

Neighborhood/density estimation has also been a subject of
study in the area of self-configuration in sensor networks [2],
[3]. The goal of these studies has been to take advantage of
the network density for routing purposes and to extend the
lifetime of the system. However, the proposed architectures
also need explicit neighborhood information so they use an
explicit message exchange approach.

VI. CONCLUSION

We introduced a density estimation service for wireless
sensor networks. Our service is implemented by a lightweight
probabilistic density inference protocol (DIP), which uses a
simple relationship between the number of contending nodes
in the neighborhood of a node and the contention level
measured by that node, to implicitly estimate its local density.
We envision many applications built upon our service. We
demonstrated one such application by computing density-
unbiased approximate statistics. Our simulations confirm the
superiority of our approach over existing explicit message
exchange approaches in terms of consumed energy and conver-
gence time while providing statistically reliable and accurate
estimates of local densities.

In this paper we made the assumption that the transmission
range of a node is a circle of radius r, which is not always true
in wireless communication. We are investigating the effect of
relaxing such assumption on DIP. Moreover, we are evaluating
the performance of explicit HELLO-based schemes built on
top of MAC protocols other than the one considered in this
paper, so as to compare their performance to that of DIP.

We are also developing other density-aware applications on
top of DIP. Finally, we plan to implement DIP in Berke-
ley/Crossbow Motes, and examine deployment issues includ-
ing the dynamic triggering of DIP based of current network
conditions. DIP code and results are publicly available at
http://csr.bu.edu/dip.
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