
Demonstrating RINA using the GENI Testbed

Yuefeng Wang Flavio Esposito Ibrahim Matta
Computer Science Department, Boston University

Boston, MA 02215
{wyf, flavio, matta}@cs.bu.edu

Abstract—The inability of the current Internet architecture to
accommodate modern requirements has spurred novel designs for
future Internet architectures. The Global Environment for Net-
work Innovations (GENI) is a wide-area virtual network testbed
which allows experimentation of such architectures for possible
deployment. We have contributed to the efforts of redesigning
the Internet with a Recursive InterNetwork Architecture (RINA),
and in this paper we demonstrate its practicability by running
a prototype on the GENI testbed.

We focus on testing two fundamental features of our archi-
tecture: security and manageability, discussing in detail how
the experimentation was carried, and pointing out some lessons
learned using the testbed.

I. INTRODUCTION

The lack of a complete Internet architecture continues to
dramatically increase the management costs and complexity
of all distributed systems. Fundamentally, the problem with
the current Internet architecture is that a layer expects a
certain level of service from the underlying layer, but the
underlying layer may not meet that requirement. This inability
of layers to communicate what service level is needed, together
with the desire to offer virtualized network services, have
compounded existing network service management challenges.
In response to such challenges, the research community has
directed significant efforts and resources toward clean slate
architecture design.

Even when a novel architecture solution is well-tested and
accepted by the research community, the barrier to deployment
remains a tremendous challenge. The Global Environment for
Network Innovations (GENI) initiative [6] has been designed
to overcome such challenges, supporting research experiments
in computer networking and related disciplines. GENI experi-
menters are in fact able to acquire isolated (layer-2) virtual
“slices” of a physical network spanning resources across
multiple federated aggregates, e.g., those provided by existing
virtual network testbeds [8], [9], [10].

We participate in the community efforts of re-architecting
the Internet, by demonstrating how our Recursive InterNet-
work Architecture (RINA) [15] prototype can run using GENI
resources.

RINA is based on the fundamental principle that networking
is Inter-Process Communication (IPC). RINA recurses the IPC
service over different scopes. Specifically, a scope defines
a Distributed IPC Facility (DIF) comprised of the set of
IPC processes, possibly running on different machines, that
collaboratively provide a set of well-defined flow services to
upper application processes. The mechanisms within each IPC
process are the same but each DIF layer is instantiated using

a possibly different set of policies. For example, two low-
level DIFs, DIF1 and DIF2, could provide communication
services to a higher level DIF3, where the IPC processes of
DIF1 run their own management policies (e.g., authentication,
addressing, routing, resource allocation) and the IPC processes
forming DIF2 run the same mechanisms, instantiated with
different policies. And DIF3, building on DIF1 and DIF2
services, runs its own different set of policies. A DIF is thus a
policy-intantiated service block that can be stacked to provide
wider scoped services. A more detailed RINA background is
given in Section II.

We focus our GENI demonstration on two main aspects of
the architecture: (i) enrolling/authenticating an IPC process
into an existing DIF, to form a secure layer, and (ii) the
instantiation of a new, higher level DIF layer on top of two
preexisting DIFs (possibly instantiated with different policies.)
The details of the experiments are in Section V.

In designing and running our GENI experiments, we faced
some difficulties when trying to reserve slices across different
aggregates, as a layer-2 tunnel could not always be reserved.
Often reserving a slice with complex topologies required
several attempts. Detailed comments on our GENI experience
are in Section VI.

II. RECURSIVE INTERNETWORK ARCHITECTURE

Recursive InterNetwork Architecture (RINA) [1] is a new
Internet architecture based on the fundamental design principle
that networking is Inter-Process Communication (IPC). A
collection of distributed IPC processes with shared states
is called a Distributed Inter-process communication Facility
(DIF). A DIF layer provides data transport services over a
certain scope (i.e., range of operation).

Each IPC process consists of three sets of mechanisms
dealing with communication aspects at different time-scales:
(i) data transfer, e.g. fragmentation, (ii) data transfer control,
e.g., flow control, and (iii) management, e.g., routing. The
mechanisms also operate over different granularities and time
scales: data transfer (error and flow) control mechanisms for
example are flow-specific and they operate at a round trip
time scale, while the IPC management deals with wide-area
shared states (e.g. routing table updates) and operates over
longer time scales. DIF layers can be discovered and created
on the fly [11], and their mechanisms are able to respond and
support policy adaptation as network states (e.g. quality of
underlying services) change.



RINA Prototype: the design and implementation of RINA did
not arise de novo, but instead derives from first principles [1],
[2], and combines design and implementation efforts across
different institutions [13]. This is in contrast with most clean-
slate Internet architecture prototypes that rely on a single
implementation.

We have been adding new components to our prototype for
over two years. The current version [15] resulted in about
30, 000 lines of Java code, excluding support libraries, test
applications, and configuration files. Before testing on GENI,
it was tested with IPC processes running on our local campus
network, both on Linux machines and on Android phones.

All management and data transfer messages are serialized
and deserialized using the Google Protocol Buffer [14]. The
prototype is built as an overlay over the Java TCP library,
where TCP connections are used to emulate physical connec-
tivity. We do not rely on TCP/IP protocols to transport and
route packets among communicating processes of a DIF.

III. EXPERIMENT SETTINGS

In our experiments, we used instances of physical resources
provided by ProtoGENI [7], a prototype implementation and
deployment of the GENI testbed. ProtoGENI is the Control
Framework for GENI Cluster C, largely based on the Emulab
software and Slice-Based Facility Architecture [16]. To request
their virtual resources, e.g., virtual nodes, virtual links, inter-
faces and other metadata (such as operating system types or
end-to-end delays), ProtoGENI users need to use the RSpec,
an XML-based specification language following the RELAX
NG Compact syntax [16].

In GENI, a slice is the resource container in which users
can run an experiment, and a sliver is the virtual instance of
the physical resource (e.g. a virtual machine or a virtual LAN)
granted to the user. To reserve virtual resources in GENI, we
hence need to reserve a slice, and then add at least one sliver.

A. Flack and Omni

To set up an experiment, we used both Flack [17] and
Omni [18]. Flack is a Flash-based web interface for viewing
and allocating ProtoGENI, as well as other supported GENI
resources. Omni is a command line tool for finding and
reserving all GENI resources. 1

Flack provides a more direct and visible way to build the
experiment environment as it is a GUI tool. However, when
we used Flack to reserve resources, the process is slower and
often returned errors across several browsers. Not surprisingly,
Omni is less user-friendly but faster both in terms of resource
reservation response and, thanks to its API, in reproducing
experiments with scripting. The only drawback of Omni is the
need to create the RSpec file manually to build the experiment
topology. We used Omni to reserve the resources for our
experiments.

1ProtoGENI resources are a subset of all GENI resources: only those
present in the single cluster C.

IV. EXPERIMENT SETUP USING OMNI

In order to be able to use the GENI testbed, we need to
create an account, and acquire credentials with public/private
keys and SSL certificate. After installing and configuring the
Omni python scripts, we reserved the GENI resources as
follows:

Commands used:
a. $ omni.py createslice rina
b. $ omni.py listresources -a pg-utah -o
c. $ omni.py createsliver -a pg-utah rina rina.rspec
d. $ omni.py listresources -a pg-utah rina
e. $ omni.py sliverstatus -a pg-utah rina

We first created a slice using the createslice (command
a) with rina as the slice name. Then, we list the available
resources from Utah Aggregate Manager (AM) using listre-
sources (command b). After getting the details of all the
available resources on the AM, we created the RSpec file
with file name rina.rspec, which describes the resources we
will use (including the nodes and the links). Next, we re-
serve the resources using createsliver (command c). Once the
resources are reserved, we can see them using listresources
(command d), or we can check the status using sliverstatus
(command e). The resources reserved using Omni can also be
seen in Flack.

When the resources are successfully reserved, Omni returns
the names of all reserved nodes (machines). Then we can use
SSH to log into these nodes and upload our own code to run
the experiment. Our program is in java, so we installed the
Java environment as follows:

$ sudo yum install java-1.6.0-openjdk

Once the Java environment is setup, we can start our RINA
experiments.

V. RINA EXPERIMENTS

We have run two kinds of RINA experiments on ProtoGENI.
One is the enrollment/authentication procedure of a new IPC
process with an existing DIF, and the other is the formation of
a higher-level DIF on top of two pre-existing DIFs. The new
DIF is created on the fly to provide communication service to
two applications which have no common underlying DIF to
communicate at the beginning.

We have chosen to test these two experiments, as they
represent two key features of our RINA architecture. In
RINA, application processes communicate by means of an IPC
process within a DIF. IPC processes need to be enrolled into
the same DIF to communicate. All IPC processes must be
authenticated using an explicit enrollment procedure. When
an application process cannot find an IPC process that can
provide such communication service, a new DIF needs to be
dynamically created where an IPC process in the new DIF
could provide the communication service needed.



Fig. 1. Enrollment procedure slice: network topology seen in Flack.

A. Enrollment procedure

The enrollment, the allocation (i.e., establishment of a flow)
and the data transfer phases are the three phases of operation
that need to be performed for a sender-receiver communication
to occur. An enrollment creates, maintains, distributes (and
eventually deletes upon withdrawal) information within a DIF.
Such information may include addressing, access-control rules
or other management policies necessary to create instances and
characterize a communication.

The enrollment procedure starts with an enrollment request
to the DIF manager who is responsible for enrolling new
members into the DIF. The DIF manager requests authenti-
cation (e.g. with user and password or SSH keys) from the
requesting IPC process. If successfully authenticated, the DIF
manager assigns the new member a name – a private address
within the DIF, and other DIF configuration states, such as
routing policy, the current members of the DIF, and the list
of application processes directly reachable by them. Lastly,
the DIF manager updates all the other existing IPC processes
with the new member information, such as new application
processes reachable from it. After the enrollment procedure is
complete, the new member is able to communicate with all
members in the same DIF.

Figure 1 is the network topology displayed in Flack after we
reserve two nodes using Omni from the Utah aggregate. Node
PC (pc210.emulab.net) is the DIF Manager, and Node PC-0
(pc206.emulab.net) is the new IPC process which is going to
join the DIF. These two nodes are connected by LAN lan0.
We first run this experiment on nodes reserved from the GENI
Utah aggregate manager, then we run this same experiment on
nodes reserved from the GENI Kentucky aggregate manager.

Figure 2 shows the number of control messages the new DIF
member received during and after the enrollment procedure at
Uath and Kentucky, respectively. The first few messages are
for the enrollment procedure, and they include authentication
messages, DIF configuration messages, and so on. After that,
the number of messages continues to increase. This is because
after the IPC process is enrolled into the DIF, the DIF
Manager process continually sends probe messages to the IPC
process, to check if the IPC process is still reachable. We
observe similar results over the two aggregates, indicating that
GENI supports repeatable experiments even across different
aggregates.

B. Dynamic Layer (DIF) Instantiation

In this experiment, we demonstrate the dynamic layer
instantiation feature of RINA by forming a new, higher level
DIF layer. When two application processes try to establish a
communication flow, but they cannot find a common existing

1 1.5 2 2.5

x 10
4

0

5

10

15

20

25

time [ms]

O
v

er
h

ea
d

 [
m

es
sa

g
es

]

 

 

Utah

Kentucky

Fig. 2. Control messages received by the new DIF member: the first four
messages are due to the enrollment procedure.

IPC1 IPC2

IPC3

IPC5IPC4

IPC6DIF1 DIF2

Host 5Host 4

Host 3
Host 2

Host 1

App1 App3App2

IDD Host 6

Fig. 3. Dynamic DIF Formation: App2 has underlying IPC processes in
both DIF1 and DIF2, and uses the Inter-DIF Directory (IDD) mechanism to
register a relay service between them.

DIF to communicate over, a new (higher level) DIF needs to
be dynamically created.

We consider three application processes that use two low-
level DIFs, DIF1 and DIF2 to communicate. Here DIF1
and DIF2 can be seen as two private local networks. Each
underlying DIF has three IPC processes. In particular, App1
and App3 use IPC1 and IPC5 as underlying IPCs for their
communication in DIF1 and DIF2, respectively, while App2
uses IPC2 and IPC4 for its communications in DIF1 and DIF2,
respectively. IPC3 is the DIF manager of DIF1, and IPC6 is
the DIF manager of DIF2 (Figure 3.)
App1 wants to establish a flow with App3, which can

be seen as a process in one private network wanting to
communicate with another process in another network. Since
it cannot find a common underlying DIF, it triggers the Inter-
DIF Directory (IDD) service mechanism and discovers which
DIF it needs to join to establish a flow with App3. Previously
registered as relay service for App3, the address of App2
is returned to App1. DIF3, is the new higher-level layer
dynamically created by App2 (Figure 4.) The first member of
DIF3 is IPC8, forked by App2, the DIF manager of the new
DIF3. App2 then invites both App1 and App3 to have a new
underlying IPC process to join and to enroll into the higher-
level DIF3. Each application process forks a new IPC process
(IPC7 and IPC9). As shown in Figure 4, DIF3 is dynamically
formed, and App1 can establish a transport flow with App3
through DIF3.

Figure 5 shows the network topology displayed in
Flack after we reserved six nodes using Omni from
the Utah aggregate. Node PC (pc121.emulab.net), Node
PC-0 (pc116.emulab.net), Node PC-1 (pc99.emulab.net)



IPC1 IPC2

IPC3

IPC5IPC4

IPC6DIF1 DIF2

Host 5Host 4

Host 3

Host 2

Host 1

App1 App3
App2

IPC7 IPC8 IPC9
DIF3

IDD Host 6

Fig. 4. Dynamic DIF Formation: higher-level DIF3 is dynamically formed
by App2 upon App1’s request to establish a flow with App3.

Fig. 5. Dynamic DIF Formation slice: network topology seen in Flack.

and Node PC-2 (pc125.emulab.net) are connected through
LAN lan0. Node PC (pc121.emulab.net), Node PC-3
(pc87.emulab.net), Node PC-4 (pc153.emulab.net) and Node
PC-2 (pc125.emulab.net) are connected through LAN lan1.

As shown in Figure 5, there are six GENI nodes correspond-
ing to six hosts in Figures 3 and 4. The GENI Node PC is
Host 6 which has the IDD process, Node PC-0 is Host 1 which
initially has App1 and IPC1, Node PC-1 is Host 4 which has
IPC3 (DIF manger of DIF1), PC-2 is Host 2 which initially
has App2, IPC2 and IPC4, PC-4 is Host 5 which has IPC6
(DIF manager of DIF2), and PC-3 is Host 3 which initially
has App3 and IPC5.

We run this experiment on resources from the Utah Ag-
gregate and Kentucky Aggregate, respectively, and Figure 6
shows the number of keep-alive control messages received by
App3 from App1 after the new higher-level DIF3 is formed
and the transport flow between them is created.

VI. LESSONS LEARNED USING GENI AND CONCLUSIONS

We believe the deployment of future Internet architectures is
an immense challenge. Having ours [15] or other prototypes
constantly running on a GENI slice is key to enable users
to test different competing architectures. In this paper, we
reported on our experience, testing with our prototype, two
key features of the RINA architecture [1], [2], [11], [12],
[15]: enrollment of an IPC process into an existing DIF, and
dynamic instantiation of a DIF layer, on top of two pre-existing
DIFs.

We found that a slice with slivers across different ag-
gregates, connected by a Generic Routing Encapsulation
(GRE) tunnel could rarely be reserved. Moreover, we found

0 1 2 3 4 5 6 7
x 104

0

5

10

15

20

25

30

time [ms]

O
ve

rh
ea

d 
[m

es
sa

ge
s]

 

 

Utah
Kentucky

Fig. 6. Keep-alive control messages received by App3 from App1 once the
new higher-level DIF3 is formed and the flow is created between App1 and
App3. About 3.5 seconds after a communication request is made, the new
DIF3 is formed.

it straightforward to reserve few slivers within a slice, but
reserving a slice with complex topologies required several
attempts.

Finally, although it was possible to run short-term experi-
ments on the testbed, we also found it challenging to let users
opt-in into a GENI slice hosting RINA, without having to
renew (manually or automatically) the slice. In the future, we
plan to expand our prototype evaluation, running it directly
over layer-2 connectivity and testing the scalability of our
architecture over a large-scale GENI slice.

ACKNOWLEDGMENT

This work is supported in part by the National Science
Foundation under grants CNS-0963974.

REFERENCES

[1] J. Day, I. Matta and K. Mattar. “Networking is IPC: A Guiding Principle
to a Better Internet”. In Proc. of ReArch’ 2008. Madrid, Spain.

[2] J. Day. Patterns in Network Architecture: A Return to Fundamentals.
Prentice Hal, 2008.

[3] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar. “Making Middleboxes Someone Else’s Problem: Network
Processing as a Cloud Services”. In Proc. of the ACM SIGCOMM 2012.

[4] N. McKeown et. al, “OpenFLow: Enabling Innovation in Campus
Networks”. SIGCOMM CCR. vol. 38, no. 2, pp. 69-74, March 2008.

[5] D. Farinacci, V. Fuller, D. Meyer, and D. Lewis, “Locator/ID Separation
Protocol (LISP)”. March 2009, draft-farinacci-lisp-12.txt.

[6] GENI. http://www.geni.net.
[7] ProtoGENI. http://www.protogeni.net.
[8] B. Chun et. al, “Planetlab: An Overlay Testbed for Broad-coverage

Services”. SIGCOMM CCR. pp. 3-12, 2003.
[9] A. Bavier , N. Feamster , M. Huang , L. Peterson , and J. Rexford,

“In VINI Veritas: Realistic and Controlled Network Experimentation”.
In Proc. of the ACM SIGCOMM 2006.

[10] B. White et. al, “An Integrated Experimental Environment for Dis-
tributed Systems and Networks”. ACM SIGOPS Oper. Syst. Rev. 36,
SI, December 2002.

[11] E. Trouva, E. Grasa, J. Day, and S. Bunch. “Layer Discovery in RINA
Networks”. In IEEE CAMAD, 2012.

[12] V. Ishakian, J. Akinwumi, F. Esposito, and I. Matta. “On Supporting
Mobility and Multihoming in Recursive Internet Architectures”. Comp.
Comm., vol. 35, num.13 July 2012.

[13] Pouzin Society. http://www.pouzinsociety.org.
[14] Google Protocol Buffer. http://code.google.com/p/protobuf.
[15] RINA Lab, Boston University. http://csr.bu.edu/rina.
[16] Th. Megedanz and S. Wahle. ”Control Framework Design for Future

Internet Testbeds”. Elektrotechnik and Informationstechink. vol. 126,
no.7, pp. 274-279. Springer, 2009.

[17] ProtoGENI Flack. http://www.protogeni.net/wiki/Flack.
[18] Omni. http://trac.gpolab.bbn.com/gcf/wiki/Omni.


