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ABSTRACT
The science of network service composition has emerged as
one of the grand themes of networking research [17] as a di-
rect result of the complexity and sophistication of emerging
networked systems and applications. By “service composi-
tion” we mean that the performance and correctness proper-
ties local to the various constituent components of a service
can be readily composed into global (end-to-end) properties
without re-analyzing any of the constituent components in
isolation, or as part of the whole composite service. The set
of laws that govern such composition is what will constitute
that new science of composition.

The heterogeneity and open nature of network systems make
composition quite challenging, and thus programming net-
work services has been largely inaccessible to the average user.
We identify (and outline) a research agenda in which we aim
to develop a specification language that is expressive enough
to describe different components of a network service, and
that will include type hierarchies inspired by type systems in
general programming languages that enable the safe compo-
sition of software components. We envision this new science
of composition to be built upon several theories, possibly in-
cluding control theory, network calculus, scheduling theory,
and game theory. In essence, different theories may provide
different languages by which certain properties of system com-
ponents can be expressed and composed into larger systems.
We then seek to lift these lower-level specifications to a higher
level by abstracting away details that are irrelevant for safe
composition at the higher level, thus making theories scalable
and useful to the average user. In this paper we focus on ser-
vices built upon an overlay traffic management architecture,
and we use control theory and QoS theory as example theo-
ries from which we lift up compositional specifications.
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1. INTRODUCTION
Specifying, designing, and developing correct, efficient, and
resilient systems is a notoriously hard problem, particularly
when placing these systems in open contexts in which they will
interact with dynamic and unpredictable environments, peers,
and adversaries. From convergence failure of the BGP routing
protocol [6] to the interaction of congestion control/avoidance
algorithms with each other to properties of peer-to-peer over-
lay networks and the applications they support [18, 19] to
nascent architectures for sensor networks, questions of cor-
rectness in the face of the wide and deep unknowns of evolving
network infrastructures and protocols remain among the most
pressing challenges to networking research and development.

By “correctness” we mean simply that we can know with cer-
tainty some desirable invariants of a system based upon its
specification or implementation. Many techniques are already
available to describe, discuss, and deduce the invariants of a
single software component: type systems, model checking,
mathematical analyses and countless derivative tools allow us
to speak confidently about many local invariants. While there
are many interesting and useful properties of single software
agents for which plausible verification systems do not yet exist
(and may never exist), in principle we have a good handle on
what invariant properties for single software components look
like and how to go about establishing them. What we do not
yet have is a solid grasp upon how to describe, discuss, and
deduce the global invariants of open, extensible software sys-
tems, or how to (hopefully efficiently) bridge the gap between
local and global invariants, where global invariants describe
the acceptable range of behaviors and emergent properties
when the components or agents making up a system interact.

A fundamental challenge in specifying an open system is to en-
sure that particular desirable global properties (e.g., conver-
gence upon a fair partitioning of bandwidth, absence of dead-
lock or livelock, finding a statistically useful estimate of sensor
readings across an ad-hoc network, etc.) will necessarily arise
from the verifiable properties of the individual parties to the
system’s execution. For example, consider AIMD (additive in-
crease, multiplicative decrease) congestion control/avoidance
in TCP; the original MIMD (multiplicative increase, multi-
plicative decrease) window control algorithm, correctly im-
plemented at individual nodes of the system, failed to com-
pose together with other instances of itself over network links
in such a way that steady-state bandwidth would be fairly
partitioned (a desirable global invariant).

This is not to suggest that there are no techniques for char-
acterizing and analyzing composite systems in general. Far
from it; such disciplines as control theory [15], network QoS



analysis [2, 11], scheduling [16], queuing theory, game theory,
and our own CHAIN methodology [4] are rich in constructs
and results well suited to exploring the properties of such sys-
tems, provided the questions are rightly framed. Consider, as
an example, the application of control theory to inform the
design of a new complex networked system. For the system’s
architect to take advantage of the proverbial “bag of control
theoretic tricks” currently available, she must derive an ab-
stract description of her system suitable for control theoretic
analysis (i.e., in terms of transfer functions) which preserves
the essential qualities of the original system (no small task,
particularly for one unfamiliar with control theory’s nuances),
perform her analyses, and then re-iterate through a cycle of
design and evaluation until a solution which is both practi-
cally workable and theoretically stable is found.

We envision a specification and development environment that
is able to take results and contributions from valuable but less
accessible (to the average programmer) approaches to com-
posite system verification, and integrate their analyses auto-
matically and mechanically into the design and implementa-
tion processes for composite and distributed applications. In
essence, we seek to lower the bar of expertise required to take
advantage of these tools by encouraging system designers and
programmers to make intuitively clear claims about the be-
havior of individual component programs and desired invari-
ants for the behavior of the complete system, automatically
selecting appropriate algorithms for deducing whether stated
local invariants hold, which other local invariants can be me-
chanically inferred, and whether these invariants are sufficient
to deduce the veracity of invariants of the composite system
as a whole.

Another important challenge that often hinders the use of
disciplined approaches to the specification and development
of systems in general—and of large-scale open networked sys-
tems such as those we envision in particular—is the issue of
“scalability.” Elegant techniques for reasoning about the cor-
rectness of large-scale software systems are often incapable of
tracking any but the simplest “toy examples.” That said,
we note that successful specification and verification tech-
niques are those that use domain-specific knowledge to reduce
the size and complexity of the state space. This is precisely
what motivates the approach we are proposing in this paper.
Namely, we adopt a two-tiered approach. In the lower tier,
we envision the use of an arsenal of domain-specific analyti-
cal tools from a variety of disciplines and theories to aid in
establishing reduction rules (based on structure and relation-
ships) for simple compositions. In the upper tier, we cast
this knowledge in a type-theoretic framework which we use to
reason about larger, more arbitrary compositions. This two-
tiered approach was instrumental in allowing us to reason
about arbitrary HTTP protocol compositions—and indeed to
identify classes of configurations that are prone to deadlocks
[3, 4]. One may view the lower-tier as providing an abstrac-
tion of the constituent subsystems—an abstraction in which
properties that are “essential” for reasoning at the upper tier
are preserved.

Furthermore, because lower-tier results are cast into a type-
theoretic framework, we are able to capitalize upon the notion
of a subtype to simplify the expression of lower-tier results and
perhaps even the internal precision of the lower-tier mecha-
nism. For example, while it may be possible for a control
theoretic proof system to establish the precise time required
for a system to converge upon a desired state, it is usually suf-
ficient for our purposes to prove that the settle time belongs

to some sufficiently descriptive member of a series of bounding
classes (t � 10ms, t � 20ms, etc). In effect, we are replacing
the “microscopic” view of system behaviors used within a par-
ticular discipline with a simply structured “macroscopic” de-
scriptive view; this loss of precision introduces a small amount
of “slack” into the system, but in so doing also allows us to
use much more flexible, modular, and easily compared and
integrated descriptions of component-wise and system behav-
iors.

The remainder of this paper is organized as follows. We begin
in Section 2 by presenting a motivating application—that of
building overlay traffic management services. We use our In-
ternet Traffic Managers (ITM) architecture [1] and the eTCP
tunneling service [7] as an example. Section 3 briefly intro-
duces several well-established theoretical bases, namely con-
trol theory and QoS theory, for the analysis of composite sys-
tems such as overlays. Sections 4 and 5 outline the mapping
of abstract theoretic models to type hierarchies and presents
some of the type theoretic basis for the higher-level analysis
of such systems.1 Section 6 offers a survey of future directions
for this work.

2. BUILDING BLOCKS FOR OVERLAY
TRAFFIC MANAGEMENT

The scalability of the Internet (and any other large-scale ex-
tensible decentralized network) hinges upon our ability to
tame the unpredictability associated with its open architec-
ture. For example, the inherent burstiness of traffic at all
layers of the architecture from link to network to transport to
application leads to a dramatic trade-off between provision-
ing for peak demands and maximizing long-term utilization.
This motivates exploration of basic control strategies for re-
ducing traffic burstiness which can make this trade-off more
manageable.

Such strategies could be implemented through services of-
fered by an overlay management architecture. An example is
our architecture of Internet Traffic Managers (ITMs)—special
network elements strategically placed throughout the Internet
(e.g., in front of clients/servers or at exchange/peering points
between administrative domains) [1]. We believe that the in-
corporation of such control functionalities will be key to the
ability of the network infrastructure to sustain its own growth
and to nurture the Quality-of-Service (QoS) needs of emerg-
ing applications by imposing a useful set of invariants upon
traffic flowing into a network and (thereby) upon that traf-
fic’s behavior within the network itself. Such safety properties
range from basics of protocol implementation and semantics
to high-level statistical metrics of performance. Conceptually,
this approach supplements the end-to-end Internet architec-
ture with a composite edge-to-edge architecture where end-
to-end services are assembled by composing controllers on the
edges and boundaries of the Internet’s constituent networks to
act on the ends’ behalf to exact some particular property from
the network. The challenge in building ITMs is in ensuring
they conform to their stated correctness conditions and per-
formance goals, i.e., ensuring that desirable global invariants
are maintained by imposing local invariants upon the ITMs
themselves.

1In a follow-up expanded report, we provide further details
and evidence for several of our claims, as well as prove the
soundness and completeness of the type system presented in
Section 5.



2.1 eTCP: A Motivating Example
The best-effort nature of the Internet poses a significant ob-
stacle to the deployment of many applications that require
guaranteed bandwidth. Elastic TCP Tunneling (eTCP) [7]
is a novel approach that enables two edge/border routers
(ITMs) to use an adaptive number of TCP connections to
set up a virtual tunnel maintaining the desired bandwidth
between them. The number of TCP connections comprising
this tunnel is elastic in the sense that it increases/decreases
in tandem with competing cross traffic to maintain the tar-
geted bandwidth level; the ingress and egress ITMs multiplex
and demultiplex (respectively) over these TCP connections
any packets belonging to the application requiring the band-
width guarantee. Unlike many proposed solutions that aim to
deliver soft QoS guarantees, the elastic-tunnel approach does
not require any support from core routers (as with IntServ and
DiffServ), is scalable in the sense that core routers maintain
no per-flow state (as with IntServ), and is readily deployable
in a variety of contexts, whether within a single ISP or across
multiple ISPs.

The eTCP approach to delivering soft bandwidth guaran-
tees between two points is to adaptively adjust the demand
from the underlying best-effort network so as to match the
requested QoS. We do so in a way that is consistent with
the proper use of the network–namely, through the use of the
Transmission Control Protocol (TCP) for bandwidth alloca-
tion. Specifically, to maintain guaranteed bandwidth between
two points in the network, our approach calls for the estab-
lishment of an elastic tunnel between these points. An elastic
tunnel is simply a set of TCP (or TCP-friendly) connections
between two ITMs whose cardinality is dynamically adjusted
in real-time so as to maintain a desirable target bandwidth.

Creating a suitable control function to drive the ordinality
of the connection pool used to implement eTCP tunneling is
no trivial problem. Our first instinct may be to implement a
näıve controller which adjusts the width directly in propor-
tion to the current width’s under- or over-achievement of the
targeted bandwidth, i.e.,

m(t+ 1) =
B

b(t)
m(t)

where m(t) is the number of TCP connections at time t, B is
the target bandwidth value, and b(t) is the measured band-
width achieved at time t. However, such a controller has a
number of undesirable properties: it tends to react very ag-
gressively to mismatches between the target and measured
values, often introducing dramatic over-corrections and pro-
longed settling processes whenever the environment changes
(including the startup transient).

Control theory offers us several more steady controllers with
less overshoot and jitter, namely the P (proportional) and PI
(proportional-integral) controls:

P control: m(t+ 1) = A0(B − b(t))

PI control: m(t+ 1) =

∞∑
i=0

Ai(B − b(t− i))

where A is a vector of weights (gains) determining how aggres-
sively the controller should respond to the currently observed
error (A0, called α later in this paper) and compensate for
the sum of previously observed errors (A1, A2, . . . ). As illus-
trated in Figure 1, PI is significantly more steady than the
näıve controller, reducing burstiness experienced by routers

along the tunnel’s path, which may in turn have beneficial ef-
fects upon the ability of the network to predictably and stably
meet its capacity demands.

2.2 eTCP: Towards Safe Implementation
eTCP tunnels are implemented using itmBench, a kernel- and
user-space programming environment for ITMs [5]. In gen-
eral, an itmBench service is a collection of event-handling
functions which classify, monitor, process, and control pack-
ets and network abstractions (such as sockets and TCP con-
nections) at several points in the packet-processing pipeline
(pre-routing, application IP-in, IP-forward, application IP-
out, and post-routing). For example, the eTCP service would
comprise a classification function which would identify which
packets should be scheduled over which eTCP tunnel (if any),
a monitoring function which tracks the effective bandwidth
being achieved by each tunnel, a processing function which
does the actual packet scheduling for the tunnels (or prefer-
entially drops packets), and a control function which adjusts
the number of TCP connections within the tunnel.

While this architecture affords the programmer tremendous
flexibility and power, it does not as yet afford us a great deal
of analytical power with which to reason about the behavior
of a single service or about the behavior of services when
composed with one another. Is it “safe” for an itmBench
programmer to replace single functions within a service, e.g.,
replace a PI controller with a PID controller? How about
to connect two eTCP tunnels end-to-end? Route the traffic
making up one eTCP tunnel through another nested tunnel?
What if other services (e.g., DiffServ) are cascaded or nested
within or without an eTCP tunnel?

Theories like control theory and QoS theory do afford us
conceptual tools with which we can, by manual effort, be-
gin to grapple with these questions. However, it requires the
architect to bridge the chasm between the engineering de-
tails needed to develop an actual implementation (as sketched
above) and the conceptual models needed to perform control-
or QoS-theoretic evaluation of a system (sketched below).
Our goal is to find ways to integrate these by taking advantage
of natural subset and abstract limit descriptions available in
the control and QoS theoretic spaces, as well as others.

3. THEORIES UNDERLYING COMPOSITIONAL
ANALYSIS

Many conceptual tools exist for the analysis of the correctness
of composite systems, or for understanding emergent proper-
ties thereof. While it is expected that network programmers
would be well versed in the “art” of specifying and imple-
menting specific functionalities (e.g., programming a single
PI-controlled eTCP tunnel between two ITMs), it is unreal-
istic to assume that they can (or should) master the analyti-
cal machinery (or theories) that enable the assessment of the
composite system in which such functionalities are embedded
(e.g., an overlay of various P/PI-controlled eTCP tunnels be-
tween a large number of ITMs). That said, we believe that
much of the benefits from using such theories could be still
attained through proper support from the programming envi-
ronment in which such services are developed. In this section
we look at examples of theories that could be used towards
that end. While we will devote much of our attention in this
section (and indeed the whole paper) to the use of control
theory as a tool for verifying the safety of a system specifica-
tion, we do not believe that the techniques we describe are in
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Figure 1: Achieved Bandwidth (left) and eTCP tunnel width (right) using the Näıve, PI, and no controls.

any way limited to control theory; as such, we also mention
other theoretic frameworks which would work equally well in
control theory’s place (for assessing their own ranges of “cor-
rectness”).

3.1 Control Theory
A controller is any artifact (whether actual software, a pro-
tocol, etc.) used to affect the parameters and behaviors of
system components in response to observations of the sys-
tem. TCP congestion control rules [9], admission control al-
gorithms [14], size-aware routing [8], and the eTCP tunnel
width controller [7] (which we will discuss below), are all but
few examples of useful controllers we would like to be able
to analyze in isolation and in composition with each other
and other controllers. Notice that interesting controllers are
often based upon feedback : the controller alters some param-
eter, makes an observation of the effects of that change, and
adapts again based upon the comparison of that observation
with some target result.

Say we are proposing a new controller for a novel network
application. There are a number of questions we can ask
about the behavior of that controller, many of which may be
important to the stable and resilient behavior of our system:

• Does the system converge to the targeted value or not?
Does it oscillate? Does it diverge?

• What is the mean steady-state error of the controller?

• How long does it take for the controller to first reach or
cross its targeted value (rise time)?

• Can the controller cause the system to exceed its tar-
geted value (under-damped) or not (over-damped)?

• How long does it take for the system to converge, within
some acceptable margin of error, upon the targeted value
(convergence time)?

Basic Feedback Control
Consider the simple controller depicted in Figure 2.

T + delay = 1 y(t)

delay = d

Figure 2: AIAD Controller with Feedback Delay d

The output of this system is given by

y(t + 1) =




y(t − d) + 1 if y(t − d) < T

y(t − d) if y(t − d) = T

y(t − d)− 1 if y(t − d) > T

Such a system is extremely simple to analyze; by depicting
the evolution of y(t) given a fixed target T and no delay as
shown in Figure 3(left). We can see that this controller con-
verges after T + 1 units of time with zero steady-state error.
But, when we add delay to the feedback path, this controller
takes on some potentially undesirable properties as shown in
Figure 3(right): while it still reaches T in T +1 time units, it
then overshoots the target and enters a perpetual cycle with
a period of 4d+ 2, with d steady-state error.
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Figure 3: Time domain evolution of an AIAD Con-
troller, T = 10, d = 0 (left) and d = 1 (right)

Consider also the MIMD controller depicted in Figure 4. The
output of this system is given by

y(t + 1) = y(t) + α(T − y(t − d))

If there is no feedback delay (d = 0) and 0 < α � 1, this
controller asymptotically approaches the target value, with
error at time i of (1− α)i × T , as depicted by the first curve
in Figure 6.

Towards More Complex Controllers
All three of the above examples can be easily represented in
the time domain, as we have done in Figure 3, making them
very easy to characterize mathematically. For many interest-
ing controllers, however, this approach to analysis becomes
very difficult. The control function itself often has more elab-
orate shapes (AIMD, SIMD, P, PI, PID, etc). The input to
the system may not be a step function (0 until time 0, T after
time 0), but may rather be any function x(t): steps, impulses,
sinusoidal or other periodic waveforms, or general aperiodic



functions. We discuss examples of more complex controllers
below.

T − α + delay = 1 y(t)

delay = d

Figure 4: MIMD Controller with Feedback Delay d

Reasoning About Behaviors of Cascaded Controllers:
Perhaps most challenging (and our principal concern for this
paper), controllers are often cascaded, nested, and generally
composed in a variety of ways, giving rise to obvious and sub-
tle emergent behaviors which can be very difficult to reason
about in the time domain. For example, consider a series
of three MIMD controllers, the first taking a step input but
the second taking its input from the output of the first, and
the third taking its input from the output of the second as
depicted in Figure 5.

T MIMD MIMD MIMD

Figure 5: Cascading MIMD Controllers

While we can describe with an equation the behavior of the
first controller, the second and third controllers then convolve
its output, producing a result we can derive numerically (Fig-
ure 6) but which lacks a convenient closed form with which we
can reason about precise qualitative properties the system.
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Figure 6: Output of Cascaded MIMD Controllers

Reasoning About Effects of Feedback Delay: Now con-
sider the case of the MIMD controller (Figure 4) with non-zero
feedback delay. This has significant qualitative effects upon
the controller’s properties, as illustrated in Figure 7; the sys-
tem can easily become under-damped (overshooting its target
and having to correct later), and if the delay (d) is sufficiently
large with respect to α (the gain of the controller) the system
will become unstable, periodically passing the target value on
its way to infinitely increasing lower and upper extremes.

Again, deriving a closed form representation of this behav-
ior in time is not a practical exercise for those who may be
designing and specifying a system.

Reasoning About Effects of Complex Stimuli: Now en-
vision the MIMD controller of Figure 4, but replacing T with
x(t), a periodic binary signal 111011101110. . . (three “on”s
followed by one “off”). The result has an interesting shape
(Figure 8) which, while it can still be explored numerically, is

thoroughly inamicable to traditional closed-form analysis in
the time domain.
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Figure 7: MIMD controller with Delay d = {1, 2, 3}
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Figure 8: MIMD controller under periodic input

Principles of Control Theory
Such complex systems are much more straightforward to rep-
resent in the frequency domain than in the time domain [15].
By applying the Z transform (the discrete version of the Laplace
transform) to a signal or function, we are able to manipulate
those signals and functions in Z space:

Z(x(n)) = X(z)

= x(0) + z−1x(1) + z−2x(2) + . . . + z−ix(i) + . . .

=

∞∑
i=0

z−ix(i)

This has the advantage of turning temporal convolutions (com-
position of controllers) into simple multiplications. Thus,
we exchange control functions (as we have been using them
above) for transfer functions which describe the relationship
between a controller’s input and output in the Z (frequency)
domain rather than in time, as illustrated in Figure 9.

X(z) − G(z) Y (z)

H(z)

Figure 9: Transfer Function

Many of the functions we may wish to be able to model and
consider have very simple closed forms in the Z domain. For



example:

Impulse x(i) = 1 0 0 0 0 0 . . . ⇒X(z) = 1 (1)

Step x(i) = 1 1 1 1 1 1 . . . ⇒X(z) =
1

1− z−1
(2)

On/Off x(i) = 1 0 1 0 1 0 . . . ⇒X(z) =
1

1− z−2
(3)

Exponential x(i) = 1 a1 a2 a3 . . . ⇒X(z) =
1

1− az−1
(4)

Given the forward G(z) and feedback H(z) transfer functions
in the closed loop controller in Figure 9, and a function rep-
resenting the stimulus X(z), one can derive the output Y (z)
as:

Y (z) = G(z) (X(z)− H(z)Y (z))

Taking X(z) to be unity (i.e., an impulse function in the
time domain), we get the transfer function of the system (or
equivalently, the impulse response of system):

Y (z)

X(z)
=

G(z)

1 + G(z)H(z)

P Controller: Consider the P controller, where the output
is proportional to the error. For an output delay d, the time
domain description of this controller is:2

y(i + d) = α(x(i)− y(i)), α > 0

y(t) can be transformed into a transfer function in the Z do-
main:

Y (z)

X(z)
=

αzd

zd+1 + α
. (5)

Recall the Z transform of our input (X(z), the step function)
from Equation 2; we can now derive (in the Z domain) the
output of the system (Y (z)) as the convolution (product) of
the step input signal (X(z)) with the P controlled system

(transfer function, Y (z)
X(z)

),

Y (z) =
αz(d+1)

(z − 1)(z(d+1) + α)
(6)

With this result, control theory can immediately provide us
with a qualitative description of the behavior of the system.
For example, to demonstrate that the controller is stable, it is
sufficient to demonstrate that the denominator’s roots (poles)

of the transfer function Y (z)
X(z)

lie within the unit circle, i.e.,

|z| < 1. In the present case, this demands that α < 1 (in-
dependent of d). Furthermore, because the roots are real,
the system is over-damped (i.e., it will not exceed its target
value). It is also straightforward to determine the steady-state
error of the system using the Discrete Final Value Theorem
by taking the limit of (1− z−1)Y (z) as z → 1 to find the
steady-state value:

lim
z→1

(1− z−1)Y (z) = (1− z−1)
αz(d+1)

(z − 1)(z(d+1) + α)
=

α

1 + α

Thus, the P controlled system has a steady state error of (1−

2We are simplifying the exposition in this paper by assuming
the input to the controller simply uses a measurement of its
own output. In reality, the output of a controller usually
affects a system (called plant in control-theoretic terms), then
the output of the system is measured and fed-back to the
controller.

α
1+α

) or (1 + α)−1, independent of feedback delay.

Now consider a case analogous to that presented in Figure
5, in which we cascade n P controlled systems. The transfer
function of such a system would be:

Y (z)

X(z)
=

α1

(z + α1)

α2

(z + α2)
· · · ar

(z + αr)
· · · αn

(z + αn)
=

n∏
i=1

αi

(z + αi)

Note that for this system to be stable, it is sufficient to prove
that

n
max
r=1

(αr) < 1 .

For composition of P controlled systems, testing stability does
not require that we retain the gain valuess of each individual
controller within a composite controller; we only need the
maximal gain value across the set of constituent controllers
to make this assessment.

The precise steady-state value (given a step input of 1) is:

lim
z→1

(1− z−1)× z

z − 1
×

n∏
r=1

αr

(z + αr)
=

n∏
r=1

αr

(1 + αr)

with a steady-state error of 1−∏n
r=1

αr
(1+αr)

. Notice that the

error is bounded from above by the minimum gain value:

1−
n∏

r=1

αr

(1 + αr)
� 1−

(
1

1 + minn
r=1(αr)

)n

While the latter expression clearly represents a looser bound
than the former, it also succeeds in hiding much of the detail
of the makeup of a composite system, making it much easier
for us to imagine taking that result and plugging it into a
higher-level framework for evaluating a broad set of correct-
ness criteria for a system.

PI Controller: Assume that all members of the vector A
have value k, i.e., the time-domain control function is

y(t + 1) =
t∑

i=0

k(x(i)− y(i))

Then the transfer function is

Y (z)

X(z)
=

k

z + (k − 1)

which is stable if k < 2.

Because the PI controller compensates for the accumulated
error of the system, we would expect for its steady-state error
to go to zero, which is indeed the case:

lim
z→1

1−
(
(1− z−1)

k

z + (k − 1)

z

z − 1

)
= lim

z→1

(
1− k

z + (k − 1)

)
= 0

Composing P with PI: Suppose we now compose a P and
PI controlled systems, in that order (denoted as “P ⊕ PI”).
Then the transfer function for P⊕PI is:

YP(z)

XP(z)
× YPI(z)

XPI(z)
=

α

z + α
× k

z + (k − 1)

Now, using a step function for input (recall Equation 2), we
derive the output of the system in the Z domain as follows.



Y (z) =
α

z + α
× k

z + (k − 1)
× z

z − 1

=
αkz

(z − 1)(z + α)(z + (k − 1))

which indicates that the system is stable if α < 1 and 0 <
k < 2. Notice that this result is (perhaps counter-intuitively
at first) independent of the order of the controllers.

The steady-state value of P⊕PI is:

lim
z→1

(1− z−1)Y (z) = lim
z→1

(1− z−1)
αkz

(z − 1)(z + α)(z + (k − 1))

= lim
z→1

(z − 1)

z

αkz

(z − 1)(z + α)(z + (k − 1))

=
α

(1 + α)

This is identical to the steady-state value of P in isolation,
and therefore that the total steady-state error is also the same;
this makes intuitive sense, because PI tends in steady state
toward its input with zero cumulative error. Once again, it
seems that (at least for assessing some first-order properties
like steady-state error values and accumulated error) it may
be permissible to discard information about the internals of a
composite controller (PIs) without losing the ability to decide
the correctness of the system.

3.2 QoS Theory
Another example of theories that could be leveraged to create
typing hierarchies is that of network calculus or QoS theory.
QoS (Quality-of-Service) theory has taken off over a decade
ago [10] and has quite matured since then in the form of alge-
bras that support the composition of various components to
achieve a composite predictable performance behavior from
networking systems. These algebras [2, 11] include both de-
terministic calculus and statistical calculus—the former deals
with hard guarantees on performance measures such as maxi-
mum delay bound or no message loss, whereas the latter deals
with probabilistic guarantees on performance measures such as
a bound on the tail of the message delay distribution or mes-
sage loss probability (e.g., Probability that message delay is
greater than D is less than ε).

For illustration, consider deterministic QoS calculus. The ba-
sic elements of that theory are the so-called arrival envelope
and service curve. Intuitively, the arrival envelope A(t1, t2)
describes the worst-case (maximum) amount of data that a
traffic source component could inject into another network
component during the time period [t1, t2). This traffic source
component could be a user source that is external to the net-
working system, or it could be another neighboring network
component that is serving as relay of user traffic. The service
curve S(t1, t2) describes the worst-case (minimum) amount
of data that a message service component could serve from
a specific set of traffic streams (flows) during the time pe-
riod [t1, t2). Given these two worst-case descriptions, we can
characterize worst-case performance parameters and metrics
such as maximum message backlog in the system, minimum
required service capacity, minimum required buffer space, etc.
For example, the worst-case (maximum) data backlog during
[t1, t2), Q(t1, t2), is simply A(t1, t2)− S(t1, t2).

Consider two example components: traffic shapers and sched-
ulers. A traffic shaper is a component which takes a traffic

2-Hop TE-path

Peak-average ShaperGuaranteed Service Scheduler
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Best Effort
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Figure 10: Composition of QoS Components

flow as input and produces as output another flow that is
shaped according to a certain characterization. Many types
of shapers exist. For example, a leaky peak-rate shaper (L-
shaper) would enforce a maximum rate, say Ri, on the out-
put flow i, or conversely, a minimum spacing between any
two consecutive messages of flow i. A token-bucket shaper
(TB-shaper) would shape the output flow i so it won’t inject
more than σi +ρi × (t2 − t1) messages in [t1, t2), where σi is a
maximum message burst size and ρi is the (long-term) aver-
age message rate of flow i. A delay-jitter shaper (DJ-shaper)
would delay a message if it comes earlier than an expected
arrival time, thus every message experiences a fixed delay.
Traffic shapers can be composed to yield properties that are
composite of properties of constituent shapers. For example,
a TB-shaper followed by an L-shaper yields a shaper which
enforces both a maximum and an average message rate. See
Figure 10.

In addition to traffic shapers, important components of any
QoS architecture are message schedulers. A scheduler de-
termines the order in which messages are sent out onto the
next network component. Many types of schedulers exist.
For example, aWeighted Fair Queueing (WFQ) scheduler ap-
proximately emulates a Generalized Processor Sharing (GPS)
scheduler where different traffic flows (or sets of flows), viewed
as “fluid” flows (rather than the realistic view of message
flows), share the maximum service capacity in proportion to
certain weights. A Static Priority (SP) scheduler maintains a
certain number of priority levels, where flows that map to the
highest priority are served first, and hence these flows would
experience lowest delays. Whether a scheduler provides a cer-
tain share of a resource’s capacity (e.g., WFQ) or a certain
low-delay service (e.g., SP), such service is “best-effort” in
nature, i.e. the performance is not predictable since the num-
ber of flows sharing a scheduler and their traffic behavior may
change over time. Thus, this type of schedulers are termed
best-effort (BE) schedulers.

However, a BE-scheduler can be composed with a certain traf-
fic shaper to elevate its type to a so-called guaranteed-service
(GS) scheduler, which provides certain guarantees on perfor-
mance. For example, the composition of a TB-shaper and a
WFQ-scheduler can yield a GS-scheduler which guarantees a
maximum message delay. Specifically, for a flow i shaped by a
TB-shaper (σi, ρi) served by a WFQ-scheduler at a minimum
share of ρi, the maximum delay experienced by any message
from flow i is given by σi

ρi
+ M

C
, where M is the maximum mes-

sage size and C is the maximum service capacity3. The proof

3For such maximum-delay guarantees to work, an additional
component, called admission controller, should ensure that



of such maximum-delay property follows a worst-case anal-
ysis as mentioned earlier. Specifically, over any time period
[t1, t2), assuming “fluid” (ideal) GPS, we have:

Q(t1, t2) = A(t1, t2)− S(t1, t2)

≤ [σi + ρi × (t2 − t1)]− ρi × (t2 − t1)

= σi

Thus, the maximum delay under GPS is upper-bounded by
Q(t1,t2)

ρi
= σi

ρi
. Since WFQ is a message-oriented non-preemptive

approximation of GPS, there is an approximation error of M
C
,

which accounts for the transmission (service) time of one mes-
sage served earlier than under GPS. Thus, under WFQ, the
maximum message delay is upper-bounded by σi

ρi
+ M

C
.

Similar to this TB+WFQ composition, a TB+SP is another
possible composition which yields another type of GS-scheduler.
Traffic-engineered (TE) paths could also be composed out of
such GS-schedulers. Figure 10 illustrates an example TE-path
composed of TB+WFQ followed by TB+SP, whose proper-
ties can be computed from the individual properties of its
constituents—for example, the TE-path guarantees a maxi-
mum delay that is simply the sum of the maximum message
delays guaranteed by each of the TB+WFQ and TB+SP GS-
schedulers.

Not all compositions would yield desirable global properties.
For example, traffic shapers that only enforce an average mes-
sage rate on their output flows would not compose with BE-
schedulers to yield hard guarantees on performance. This is
because a peak (maximum) message rate is required to cap-
ture the worst-case behavior of an incoming traffic stream.
Even worse, compositions may yield undesirable emergent be-
haviors, i.e. the composition is worse than its parts. For
example, the composition of longer chains of service compo-
nents, e.g., a series of L+SP, may yield worse maximum delay-
jitter (and hence increased buffer space requirement to avoid
message losses) than individual components as traffic bursti-
ness may increase due to possible accumulated interactions
between flows.

The recent work of Shin and Lee [16] is an example of a sys-
tem which yields abstract descriptions of the properties of
complex components. Rather than working directly with the
internal details of real-time scheduling systems (workloads, al-
gorithms, and actual schedules), their periodic resource model
affords a straightforward expression of the needs and capabil-
ities of real-time schedulers in terms of a small set of linear
equations. Schedulability is then expressed in terms of neces-
sary and sufficient conditions upon these equations, allowing
us to completely set aside all internal details of the system
while retaining the ability to precisely determine whether a
set of schedulers can be composed under a super-scheduler in
a such a way that they will still guarantee their deadlines will
be met.

4. CONTROLLERS AS TYPED GADGETS
Theories like control theory and QoS theory allow us to ab-
stract out properties of our building blocks, with the hope
that it will be possible to reason at a higher level about these
abstractions. These abstractions in turn have a number of
uses. We may impose restrictions on inputs that ensure that

the sum of the total shares
∑

ρi allocated to flows going
through the scheduler does not exceed C.

(output of) a controller (or a controlled system) satisfies some
invariants (e.g., minimum period of stimulus). compositions
of controllers or QoS components by composing the properties
of constituent ones (e.g., maximum steady-state error by tak-
ing minimum gain). Constraints could be imposed upon com-
positions to satisfy some invariant of the composition (e.g.,
bounded feedback delay).

As control and QoS theoretic results may afford us more detail
than we actually require, there is nothing to prevent us from
“loosening” descriptions of systems and components where
those less precise descriptions are sufficient to demonstrate
some desirable invariants. For example, it may suffice sim-
ply to know whether the controller is over-damped or not, or
whether the total steady-state error decreases exponentially,
polynomially, or at all with time, or whether the aggregate
signaling path delay exceeds some threshold, or some combi-
nation of such properties which circumscribe a larger range
of systems than the particular precise characterization we are
able to derive. This simpler abstraction, in turn, may be suit-
able for export into non-control/QoS-theoretic domains which
are interested in reasoning about high-level qualitative prop-
erties of the components and their interactions without get-
ting bogged down in the minutiae of the particular available
analysis technique applied to derive those underlying conclu-
sions.

This approach is the very essence of a type: an abstract de-
scription of some object within a system which captures inter-
esting invariants while discarding ancillary details which may
clutter the higher-level abstract analysis.

All we require of any proof, characterization, or analysis sys-
tem for its results to be integrated into this model is the ability
to structure its space of characterization results and require-
ments as a taxonomic partial order, with the less restrictive
characterizations (supertypes) as parent nodes to more restric-
tive (subtype) ones. This space may include both qualitative
and quantitative dimensions; for example, for a particular
safety criteria it may suffice to treat P controllers as a special
case of PI controllers4, and in which we define classes based
upon upper bounds on their constituent gains (gain of less
than 0.8, etc.). This creates the simple two-dimensional type
lattice shown in Figure 11. Another example is a lattice of
types representing the minimum and maximum gains present
in composite controllers made up of individual P controllers,
useful for assessing a loose bound on steady-state error and
whether the system is always stable or not. The resulting
type lattice is shown in Figure 12.

· · · PI, α � 1.0 PI, α � 0.9 PI, α � 0.8 PI, α � 0.7 · · ·
· · · P, α � 1.0 P, α � 0.9 P, α � 0.8 P, α � 0.7 · · ·

Figure 11: Type lattice for P and PI controllers.

These are simple and intuitively clear examples of type spaces
that can be easily derived from control theoretic abstractions
and results. We have already discussed several other possibil-
ities, such as the effects of the PI controller disappearing in
steady state when composed with a P controller and the de-
lay insensitivity of P in steady state. These results, as well as
results implying the stability and dampedness of a controller,

4A P controller is a PI controller where only the 0th member
of the A vector is non-zero.



...
...

...
...

0.0 < α � 1.0 0.1 � α � 1.0 0.2 � α � 1.0 0.3 � α � 1.0 · · ·
0.0 < α � 0.9 0.1 � α � 0.9 0.2 � α � 0.9 0.3 � α � 0.9 · · ·
0.0 < α � 0.8 0.1 � α � 0.8 0.2 � α � 0.8 0.3 � α � 0.8 · · ·
0.0 < α � 0.7 0.1 � α � 0.7 0.2 � α � 0.7 0.3 � α � 0.7 · · ·

...
...

...
...

Figure 12: Type lattice of P controller compositions.

can easily be integrated as dimensions in a control-theoretic
type lattice. Similarly, a QoS-theoretic type lattice can be ob-
tained to infer different properties such as a bound on band-
width or delay as we compose several QoS components.

We now turn toward an examination of the mechanisms needed
to integrate these results into a model of a larger composite
system.

5. SAFELY COMPOSING TYPED GADGETS
In order to develop a system which can mechanically infer
properties and results from types like those sketched above in
Section 4, we must formally define a domain of applications
and rigorously specify rules for the construction and inference
of types based upon the elements of those applications. In
this section we begin by describing a conceptual structure for
flows, the building blocks from which composite applications
are constructed, including rules structuring the composition
of such flows. We then present the syntax by which types are
assigned to flows, and offer rules for assigning types to the var-
ious expression forms making up the specification language,
followed by a brief discussion of the forms of type analysis we
can apply over this class of specifications.

5.1 Flows
Figure 13 illustrates the structure of the basic compositions
of two controllers or flows, A and B, with the types of their
corresponding sockets: f1, f2, f3 and f4 for the forward (sig-
naling) channel, b1, b2, b3 and b4 for the backward (feedback)
channel. bn to refer to the sockets

BA
f1 f2 f3 f4

b1 b2 b3 b4

B
b4

f4

A
f1 f2

b1 b2

b3

f3 b2�b4

f2�f4f1�f3

b1�b3

Figure 13: Sequential (top) and Parallel (bottom)
Composition.

Intuitively, the forward channel is a typed signal; its type may
include such properties as its convergence (or lack thereof),
rise time, settle time, whether or not it is over-damped, its
steady-state error, etc. The backward channel is similarly

typed to reflect the origins of the feedback signals it carries,
whether and how much delay the feedback signal(s) experi-
ence, etc. As such, a flow is analogous to a function which
takes two arguments (the incoming sockets) and returns two
values (the outgoing sockets), and we would expect the typing
of flows to reflect such a functional relationship. Any single
“type” we may assign to or infer for a flow (e.g., “a P con-
troller with α = 0.4”) will correspond with a 4-tuple of such
types describing the allowable inputs and range of outputs
that controller is compatible with and capable of.

5.2 Specification of Global Flows
We represent a specification of a network application as a
global flow. A global flow (or simply a flow) is a compos-
ite object, built up from local flows and flow variables. Local
flows are single components for which we posess complete type
information (e.g., A and B in Figure 13(a)); these generally
represent either a particular physical or logical intermediary
or endpoint to a specified system. Flow variables are “place
holders” in a specification representing components which are
not yet known or fully specified; they could represent un-
known clients or servers at the endpoints of a specification,
unknown intermediary services or transport networks in the
middle, or any compositions thereof. In general, global flows
can be composed with each other, with local flows, or with
flow variables to create larger global flows.

We represent global flows syntactically using the following
BNF:

x, y, z ∈ FlowVar flow variable

A, B, C ∈ LocalFlow local flow

A,B, C ∈ GlobalFlow ::= A | x

| A;B sequential flow

| A‖B parallel flow

| let x = A in B let-binding

Intuitively, a sequential flow A;B is a composition like that
in Figure 13(a) in which two flows are placed (logically) ad-
jacently and joined, while a parallel flow A‖B is one in which
two flows are placed (logically) parallel, offering simultaneous
rather than serial service and data flow (see Figure 13(b)).
The sequential operator “;” and the parallel operator “‖” have
the same precedence, and both associate to the left, i.e.,

A1;A2;A3 means ((A1;A2);A3)

A1‖A2‖A3 means ((A1‖A2)‖A3)

A1‖A2;A3‖A4 means (((A1‖A2);A3)‖A4) .

Here are examples of flow specifications:

1. A1‖A2;A3

2. x;A4; y
3. let x = A1‖A2;A3 in let y = A5‖A6 in x;A4; y

The first flow is closed, because it does not mention free vari-
ables; the second is open, because it mentions free variables
x and y; and the third is closed, because it does not mention
free variables (variables x and y are bound by lets). The third
flow specification above is unambiguously parsed as

let x = A1‖A2;A3 in (let y = A5‖A6 in x;A4; y)

and can be “executed” to produce the equivalent specification:

A1‖A2;A3;A4; (A5‖A6)

The matching parentheses in this expression cannot be omit-
ted because of the associativity rule stated above.



Substitution and flow variables
In order to reason about gaps in a global-flow specification
(flow variables), we must first formalize what it means for
those gaps to be filled. This is done by defining substitution:
Substituting A for x in B is written [x := A]B. The notion is
made precise by induction on the definition of flows:

[x := A]y =

{A if x = y,

y if x �= y,

[x := A]A = A,

[x := A](B ; C) = ([x := A]B) ; ([x := A]C),
[x := A](B‖C) = ([x := A]B)‖([x := A]C),

[x := A](let y = B in C) = (let y′ = [x := A]B in [x := A]C∗),

where C∗ is C with every free occurrence of y renamed into the
fresh variable y′, which will guarantee two important (but not
necessarily intuitively obvious) properties: (1) A will not be
substituted for a bound occurrence of x in the subexpression C
of (let y = B in C) in case x = y, and (2) no free occurrence
of y in A, if any, will be captured by the outer let-binding
after the substitution. Intuitively, this simply ensures that
unbound variables remain unbound and that bound variables
are substituted using the appropriate let.

5.3 Syntax of types
We represent constraints placed upon the behaviors of any
component of the system using varieties of types. Types can
be socket types (forward or backward), plain types (forward
or backward), or flow types, where types and flow types are
built up from socket types.

A socket type is a description of a single logical “entry” or
“exit” point for a flow. The type itself may be drawn from
one or several of the theoretical infrastructures discussed in
Section 3 or suggested in Section 6; for example, on a forward
socket of an eTCP tunnel node it may describe the steady-
state error of a tunnel, whether the adaptation is monotonic
(overdamped) or not, or the convergence rate, and on a back-
ward socket it may describe such properties as cumulative
feedback delay or feedback origins. A plain type is an or-
dered list of socket types, describing a (perhaps composite)
socket, i.e., a socket which actually corresponds with entry
and exit points to one or more parallel flows (as in Figure
13(b)). A flow type is a 4-tuple representing both the forward
and backward entry and exit points to a (perhaps composite)
flow. This represents the complete type specification of a com-
ponent in the flow specification. We will present these tuples
graphically as two-by-two matrices so each element’s position
in the matrix corresponds with its graphical placement in the
flow of Figure 13.

The syntax of types, and the metavariables ranging over their
different categories, are given by the following BNF definition:

r ∈ FwSocketType

s ∈ BwSocketType

t ∈ SocketType ::= r | s

ρ ∈ FwType ::= r | r ρ

σ ∈ BwType ::= s | s σ

τ ∈ Type ::= ρ | σ

T ∈ FlowType ::=

[
ρ1 ρ2
σ1 σ2

]

Note that SocketType ⊂ Type, but that Type∩FlowType = ∅,
i.e., it is safe to promote a socket type to a plain type but

that no plain type (of itself) constitutes a flow type.

Notice that the number of socket types in a plain type occu-
pying one element of a flow type need not match the number
of socket types in another element; this allows us to construct
laterally asymmetric flows, like the split and combine flows
illulstrated in Figure 14. We could also hypothetically con-
struct vertically asymmetric flows (e.g., with more forward
than backward sockets on the left side), but we forbid these
as a matter of convention.5

A useful operation on plain and flow types is concatenation,
denoted “•”, defined in the obvious way: if τ1 = t1 · · · tm and
τ2 = tm+1 · · · tn with m,n � 1, then τ1 • τ2 = t1 · · · tn, and
extended to flow types:

[
ρ1 ρ2
σ1 σ2

]
•

[
ρ3 ρ4
σ3 σ4

]
=

[
ρ1 • ρ3 ρ2 • ρ4
σ1 • σ3 σ2 • σ4

]

This allows us to easily construct types for parallel (Figure
13(bottom)) and asymmetric (Figure 14) flows.

b3

f3b1

f1 b2

f2

b2�b3

f2�f3

b3

f3b1

f1

b2

f2

f1�f2

b1�b2

Figure 14: Splitting and Combining Flows

5.4 Subtyping
Suppose that each forward socket type is drawn from a partial
order like those described above in Section 4 (e.g., describing
gain bounds or the dampedness of the controlled value), and
that each backward socket type is drawn from a similar partial
order (e.g., describing maximum feedback delay). We say
that ∆ is the set of such subtyping assumptions on forward
and backward socket types, and that each individual rule is
written as r1 <: r2 for some r1, r2 ∈ FwSocketType (read
as “r1 is a subtype of r2”) or as s1 <: s2 for some s1, s2 ∈
BwSocketType (read as “s1 is a subtype of s2”). We extend the
subtyping relation to types and flow types, using the following
axioms:

{t1 <: t2} ⊆ ∆

∆ � t1 <: t2

τ ∈ Type

∆ � τ <: τ

T ∈ FlowType

∆ � T <: T

and the following inference rules:

∆ � τ1 <: τ2 ∆ � τ2 <: τ3

∆ � τ1 <: τ3

∆ � T1 <: T2 ∆ � T2 <: T3

∆ � T1 <: T3

∆ � r <: r′ ∆ � ρ <: ρ′

∆ � r ρ <: r′ ρ′
∆ � s <: s′ ∆ � σ <: σ′

∆ � s σ <: s′ σ′

∆ � ρ′1 <: ρ1 ∆ � ρ2 <: ρ′2 ∆ � σ1 <: σ′
1 ∆ � σ′

2 <: σ2

∆ �
[
ρ1 ρ2
σ1 σ2

]
<:

[
ρ′1 ρ′2
σ′
1 σ′

2

]

5If such a structure is useful, it can be represented by noting
the type of the socket which would be removed as “void”.



Intuitively, we are simply declaring that every socket type,
type, and flow type is (reflexively) a subtype of itself and of-
fering mechanisms for extending subtype relationships from
constituent types to composite types, i.e., socket subtype re-
lations can be composed to form plain subtype relations and
plain subtype relations can be composed to form flow subtype
relations.

For example, consider the upper-and-lower gain bound types
diagramed in Section 4; because we know that (0.3 � α �
0.7) <: (0.2 � α � 0.8) and that (0.2 � α � 0.9) <: (0.1 �
α � 1.0), we can judge that the the parallel socket

(0.3 � α � 0.7) • (0.2 � α � 0.9)

is a subtype of the parallel socket

(0.2 � α � 0.8) • (0.1 � α � 1.0)

(i.e., if we judge a socket to have the former type, it is safe
to treat it as having the latter type).

Those familiar with formal type systems will recognize that
subtyping on flow types (the last rule) is contravariant in
the two types along the first diagonal and covariant in the
two types along the second diagonal; if we think of a flow as
analogous to a function, this corresponds intuitively with the
sockets’ roles as input and output sockets, respectively. Thus,
again using the bounded-gain type system from Section 4, we
can judge that

[
(0.1 � α � 1.0) (α = 0.9)
(0.4 � α � 0.6) (0.2 � α � 0.7)

]
<:

[
(0.1 � α � 0.5) (0.8 � α � 0.9)
(0.4 � α � 0.6) (0.4 � α � 0.5)

]

(i.e., any flow with the first flow type can be safely used in a
context requiring a flow conform to the second flow type).

5.5 Typing rules
The point of assigning types to flows and their constituent
elements is to enable us to abstract away the internals of
each component and perform compositional analysis to assess
whether the pieces of a global flow specification will be able
to interact according to the declared composition structures,
i.e., whether the pieces “fit” together, and what “shape” any
gaps (flow variables) in the specification might have. This
is done in two stages: first, we specify typing rules which
formally encode how types can be assigned to global flows as
they are built up from local flows, flow variables, and other
global flows; second, we discuss the formulation of practical
algorithms for deducing these conclusions from a specification
provided by the system architect or programmer.

Figure 15 presents a formal declaration of rules for typing
global flows based upon complete or partial knowledge of the
types of their constituent flows. As previously, ∆ is the set of
subtype declarations, T is a flow type, A is a global-flow spec-
ification, A is a local flow, type() is a function assigning types
(FlowType) to local flows, and Γ (the type environment) is a
partial function assigning types (FlowType) to flow variables
(FlowVar).

We say that A type checks if there is a type environment Γ
and a flow type T such that if we assume Γ the rules in Figure
15 can be applied to derive the conclusion that A has the flow
type T .

For typing rules and conclusions to become usable in a real
system, we must define a practical type analysis procedure or
algorithm (call it P) which, given an arbitrary global flow A

as input, always terminates and returns one of two kinds of
results:

1. P(A) = ‘no solution’, meaning that A is not typable.

2. P(A) = 〈Γ̃, C, T̃ 〉, where Γ̃ is a type environment, C is

a consistent set (possibly empty) of constraints, and T̃
is a type.

Intuitively, the result ‘no solution’ indicates that some com-
position within A was inferred to have a potential incompati-
bility. For example, in the composition A;B, assume that A’s
forward outgoing type is a single socket indicating a PI con-
troller with gain α = 0.3, while B’s forward incoming type is
a single socket with a type requiring a PI controller with gain
α ≥ 0.6; clearly these parameters are incompatible, so their
composition could introduce instability or other incorrectness
into the system.

As another more subtle example, assume that A’s forward
outgoing socket had a type indicating a PI controller with
gain 0.2 ≤ α ≤ 0.5 but B’s forward incoming socket had a
type requiring a PI controller with gain 0.4 ≤ α ≤ 0.8; even
though it is possible the elements could interact properly (if
it happens that 0.4 ≤ α ≤ 0.5), it is also possible they will
not (if α < 0.4 or 0.5 < α).

The second (and preferred) result represents our goal: a de-

scription (called T̃ ) of the type of global flow A and descrip-
tions (the set C) of the “shapes” of all flow variables within
A. Intuitively, C offers (perhaps partial) types for each flow
variable appearing in A, e.g.,

x :

[
ρ1 ρ2

σ1 σ2

]

such that we are assured that any flow B with type T

T <:

[
ρ1 ρ2

σ1 σ2

]

can safely be substituted for x in A, i.e., it is safe to instan-
tiate the specification as let x = B in A.

There are different architectural approaches to implementing
the procedure P which carries out the type analysis of a global
flow specification. We classify P algorithms as belonging to
one of two families: non-compositional or compositional.

Non-compositional Type Analysis
A non-compositional P algorithm can only complete if its
operand is a global-glow containing no flow variables. Intu-
itively, this algorithm is capable of checking the correctness of
a complete end-to-end description of a service (flow), inferring
the invariants (types) which hold for the sockets at the end
points, but is not capable of working around gaps in the spec-
ification which represent unknown services or components.
Clearly this approach is very useful in closed-system analysis,
but its utility is limited when considering open systems which
may be arbitrarily extended in the future; each such modifi-
cation requires the whole-system analysis be performed again
from scratch. This also makes it difficult to perform meaning-
ful type analysis in the presence of information hiding, where
certain components of a service may wish to reveal only nec-
essary constraints for other services which they can embed or
be embedded within without revealing their own structure,
because the full system description musts be acquired by the
single instance of P to complete the analysis.



(var)
Γ(x) = T

Γ � x : T
(sub)

Γ,∆ � A : T ∆ � T <: T ′

Γ,∆ � A : T ′

(local)
type(A) = T

Γ,∆ � A : T
(par)

Γ,∆ � A : T Γ,∆ � B : T ′

Γ,∆ � A‖B : T • T ′

(seq)

Γ,∆ � A :

[
ρ1 ρ2

σ1 σ2

]
Γ,∆ � B :

[
ρ3 ρ4

σ3 σ4

]
∆ � ρ2 <: ρ3 ∆ � σ3 <: σ2

Γ,∆ � A ;B :

[
ρ1 ρ4

σ1 σ4

]

(let)
Γ,∆ � A : T Γ ∪ {x : T ′},∆ � B : T ′′ ∆ � T <: T ′

Γ,∆ � let x = A in B : T ′′

Figure 15: Typing Rules for Flows

Compositional Type Analysis
A compositional P algorithm is much more flexible in that
it can analyze global-flows containing flow variables. Rather
than simply deriving types for the endpoints of a flow, com-
positional P is also able to infer the “shape” of gaps in the
service description represented by flow variables. This sup-
ports a modular approach to analyzing flows and assembling
services, in which local information hiding is acceptable and
analyses of new extensions to the system can be naturally
integrated with existing modular analyses without requiring
another full iteration of bottom-up type inference and check-
ing.

6. CONCLUSION AND FUTURE WORK
In this paper we presented the skeleton of an approach to
building more reliable, stable, and robust software for use in
open and extensible system environments and architectures.
This section offers a roadmap of ways in which we envision
“fleshing out” this approach.

Theoretical Infrastructure
Computation in Types: Some varieties of types, e.g. those
reflecting the delay in a feedback signal, may include numer-
ical values which must be operated upon as part of the type
inference operation itself (i.e., composing two flows with de-
lays d1 and d2 yields a composite flow with delay d1 +d2); we
must devise suitable rules for handling these cases and prove
that they do not break our system.

Transfer Function Identification/Inference: In addition
to exporting declared controller types for compositional anal-
ysis, it may be possible under limited conditions (e.g., within
a domain-specific language designed for this purpose) to rec-
ognize some control functions in their temporal form within
a program’s syntax and to identify their correspondence with
well-known controller types (P, PI, PID, etc.) based upon
the program syntax which implements them and (perhaps)
corresponding parameter values or ranges, effectively deriv-
ing the basis for control-theoretic analysis of control functions
from the implementations themselves.

Pragmatics and Applications
This paper has provided a high-level sketch of the structure
of type spaces based upon control theoretic results. These
sketches offer more of a compass arrow than a roadmap toward
developing useful type taxonomies which preserve properties

which can and should be meaningfully stated, inferred, com-
posed, and tested in practical programming environments.

Useful Control Theoretic Types: We need to define a
working set of meaningful properties which our type inference
and resolution engine can work with. Careful thought must
be given to the meaning of a “subtype” in a control-theoretic
context, whether describing a forward input or output value
or the forward or backward dimension of a flow or the whole
flow. It will be especially interesting to establish which sub-
type and supertype relations do and do not hold when par-
ticular safety criteria are being targeted and to develop type
inference strategies which are best able to take advantage of
this knowledge along with programmer-supplied constraints
upon the salient set of invariants to be enforced.

Additional Sources for Type Models: While this paper
has focused upon control theory as a basis for forming type
taxonomies to describe the performance of components in ex-
tensible/open systems, the type engine and general architec-
ture are not uniquely tailored to control theory; as such, many
other systems for expressing safety and correctness properties
could also be employed instead of (or in addition to) control
theory to define the type space and the algorithms needed to
reconcile and infer types. Three examples follow.

1. Queuing Theory:
The analysis of composite systems is common in queuing
theory; sequences of queues in open and closed loops are
commonly used to describe a whole range of environments
and systems. Queuing system descriptions are themselves a
kind of type; “M/M/3/20/100/FIFO” is a queue taking a
memoryless (Poisson) input, memoryless (exponential) ser-
vice times, three parallel servers, a maximum queue length of
20, a maximum population in the system of 100, and a first-in
first-out scheduling discipline. This nomenclature lends itself
naturally to defining subtype relationships (e.g., “M/M/1”
<: “M/G/1” <: “G/G/k”). Depending upon the metrics
of interest, loose bounds can easily be used to simply de-
scribe complex combinations of queues; for example, two par-
allel M/M/1 queues will have no better average wait time
than a single M/M/2 queue taking the combination of the
two queues’ inputs. Similarly, since the output process of an
M/M/1 queuing system is Poisson (memoryless), twoM/M/1
queues can be arranged serially and still be described as tak-
ing memoryless input and producing memoryless output (al-
though the output rate will be the least of the arrival and
departure rates between the two).



2. Scheduling Theory:
Related to queuing theory is the description of scheduling
systems for periodic or deadline-driven tasks. Such models
could be used to describe packet transmission patterns over
sockets (whether the minimum required outgoing capacity or
incoming rate) or co-scheduling requirements (e.g., in a sen-
sor network environment where nearby nodes wish to schedule
transmissions so as to minimize collisions). Some expressions
of periodic schedules also lend themselves naturally to sub-
type relationships; for example, if a process is able to produce
no fewer than a units of output every b units of time, it is also
able to produce na output per nb time for any integer n � 1.

3. Model Relations:
The notions of forward-simulation, backward-simulation, bi-
simulation, etc. [12, 13] could have useful applications in de-
scribing subtypes for stateful processing nodes in a composite
system. Each forward/backward socket pair of a flow could
be annotated with an event signature describing its expected
output alphabet, its (causal) correspondence with expected
input values, and similarly the (causal) correspondence of the
input alphabet with output symbols, effectively forming a par-
tial finite-state machine with which all potential peers must
be able to safely interact without violating any of its stated
expectations (invariants).

Summary
Many in the networking community have recently been ad-
vocating a vision of flexible networking architectures, which
are programmable to fit the needs of a specific application
or a class of applications. This means that the user should
be able to easily program such architectures such that spe-
cific components are composed to make up the whole system.
Individual components, operating at different levels of the ar-
chitecture, would adapt their local control rules in their inter-
action with other components and the changing environment.
These local control rules, when composed, must finally lead to
global properties that satisfy end-to-end services. Such prop-
erties should include safety measures including predictability
of performance, trust and progress.

Towards that end, this paper introduces a research agenda
that aims at defining a compositional specification language
and its associated type hierarchies inspired by typing in gen-
eral programming languages. This high-level specification
would hide from the user low-level compositional specifications—
derived from theories such as control and QoS theories—by
only exposing “looser” specifications, e.g. whether the com-
position of two controllers yields an over-damped or under-
damped system. This is an ambitious research agenda which
we believe is at the core of the “Science of Networking De-
sign”.
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