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Abstract

The current congestion-oriented design of TCP hin-
ders its ability to perform well in hybrid wireless/wired
networks. We propose a new improvement on TCP
NewReno (NewReno-FF) using a new loss labeling
technique to discriminate wireless from congestion
losses. The proposed technique is based on the es-
timation of average and variance of the round trip
time using a filter, called Flip Flop filter, that is aug-
mented with history information. We show the com-
parative performance of TCP NewReno, NewReno-
FF, and TCP Westwood through extensive simula-
tions. We study the fundamental gains and limits us-
ing TCP NewReno with varying Loss Labeling accu-
racy (NewReno-LL) as a benchmark. Lastly our inves-
tigation opens up important research directions. First,
there is a need for a finer grained classification of losses
(even within congestion and wireless losses) for TCP in
heterogeneous networks. Second, it is essential to de-
velop an appropriate control strategy for recovery after
the correct classification of a packet loss.

1. Introduction

The Transmission Control Protocol (TCP) has been
the dominant transport mechanism for reliable data
transfer over the Internet. While the Internet is grow-
ing in size and becoming increasingly heterogeneous,
network designers are faced with the challenging ques-
tion of how to empower TCP so it works well in such
hybrid wired/wireless environment [19], where packets
can be lost because of various reasons. Many studies
have shown that TCP throughput can be improved if
the cause of a packet loss is identified. TCP was orig-
inally designed for a wired environment where pack-
ets are lost mainly due to congestion (i.e. buffer over-
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flow), and the congestion control algorithms imbedded
therein act accordingly. When a TCP connection ex-
tends over wireless links, packet losses over such links
occur primarily due to channel errors or during hand-
off. By attributing a packet loss to wireless transmis-
sion errors, the TCP source can refrain from taking
unnecessary “congestion” control measures. One set
of solutions (e.g. Snoop [1], WTCP [16]) require sup-
port from the base station located at the interface be-
tween the wired infrastructure and the wireless access
infrastructure. These solutions incur the cost of im-
plementation at the base station and some violate the
end-to-end semantics of TCP.

In this paper, we are primarily interested in end-
to-end solutions, i.e. those which do not require any
support from the network. Proposed end-to-end solu-
tions differ in the measure(s) they use to infer the cause
of a packet loss. These measures may be estimated at
the sender without any support from the receiver (e.g.
round-trip delay), or may require support from the re-
ceiver (e.g. one-way delay or delay variance) [15, 4].

Loss classification can be implicit in the congestion
control of a protocol. TCP Westwood [12] is such a
sender-side modification of TCP Reno which estimates
the rate that a connection is getting based on the rate
at which the sender receives the ACKs. TCP West-
wood uses the estimated bandwidth in setting the con-
gestion window and slow start threshold (ssthresh) pa-
rameters. This is in contrast to regular TCP implemen-
tations where the window size is arbitrarily cut in half
whenever a loss is detected [6]. This explicit bandwidth
estimation scheme is shown to have a positive impact
on the performance of TCP Westwood sources, espe-
cially in the presence of random, sporadic losses typical
of wireless links or over paths with high bandwidth-
delay product.

Many proposals tried to classify the losses explic-
itly through different estimation techniques. For exam-
ple, Samaraweera [17] presents a method, called Non-



Congestion Packet Loss Detection (NCPLD), to cate-
gorize the nature of the error. It uses the concept of
the knee point of the throughput-load graph at which
the network operates at optimum power. If the cur-
rent (measured) round trip delay is less than the de-
lay threshold at the knee point then the packet loss is
assumed to be a wireless loss else it is assumed that
congestion (buffer overflow) caused the error.

In [4], Kim et al. present an algorithm called
Linear Increase/Multiplicative Decrease with History
(LIMD/H). It uses explicit support from the receiver
to send the loss rate back to the TCP source. Based
on this loss rate, the sender estimates the goodput. If
the current goodput is below a certain band around
the mean, then the cause of a packet loss is assumed to
be congestion, otherwise the cause of loss is attributed
to wireless errors. LIMD/H backs off its transmission
window less conservatively to wireless losses than to
congestion-induced losses.

Our Contribution: In this paper, we study the
fundamental gains and limits of explicit loss labeling
techniques. Explicit loss labeling may be advantageous
as it provides a clean separation between the process
of inferring the cause of a packet loss and the control
(recovery) process that may make use of it. To this
end, we consider a generic loss labeling technique for
which we can vary its accuracy in correctly attributing
a packet loss to either congestion or wireless error. We
refer to this generic technique as NewReno-LL since we
empower the TCP NewReno version with loss labeling.
We have only chosen NewReno as recent measurements
show that the majority of TCP implementations are
NewReno [14]. NewReno-LL is thus used to cover the
spectrum of explicit loss labeling techniques described
above. Note that each explicit loss labeling technique
arrives in a different way at a particular loss labeling
accuracy.

We also propose a new explicit loss labeling tech-
nique that would result in a certain loss labeling accu-
racy under a particular configuration. The motivation
behind our proposal is that we assume the variation in
round trip times (RTT) and the nature of loss are corre-
lated [11]. Therefore, a good estimation of RTT or ob-
served delay can help TCP identify wireless losses and
in turn TCP could react less conservatively to them.
In our estimation technique, we make use of a Flip
Flop filter [9] in estimating the average RTT. We use
the 3-sigma rule [10] to account for the variance. Note
that there are many techniques to estimate the mean
and variance but we are interested in one that is sim-
ple and sufficiently accurate. The effectiveness of the
Flip Flop filter in filtering out transients and capturing
persistent conditions was shown in [9]. In this paper,

we re-instantiate the filter to measure RTT and aug-
ment it with history information so as to distinguish
between congestion and wireless losses, specifically to
empower TCP NewReno in wired/wireless networks.
We henceforth refer to our loss labeling technique as
NewReno-FF.

The rest of the paper is organized as follows. In
Section 2, we propose a loss prediction algorithm
(NewReno-FF) to predict the cause of a packet loss.
We also describe other schemes against which we com-
pare NewReno-FF. In Section 3, we discuss the perfor-
mance metrics used to evaluate the various loss pre-
dictors. Section 4 presents an analytical model of
our generalized loss labeling technique, NewReno-LL.
Section 5 argues for convergence to fairness and effi-
ciency when a NewReno flow and a NewReno equipped
with loss labeling compete in the presence of both
congestion-induced and random wireless drops. Sec-
tion 6 evaluates the performance of loss predictors us-
ing the ns-2 network simulator [18]. Section 7 discusses
directions for future research and concludes the paper.

2. Evaluated Schemes

2.1. TCP NewReno-LL

TCP NewReno inherently has no loss prediction
ability; it considers all losses to be congestion losses.
We denote by P [C|C] (P [W |W ]), the probability that
a loss predictor classifies a packet loss as congestion
(wireless) loss given that it is indeed caused by con-
gestion (wireless) error [2].Thus for TCP NewReno,
P [C|C] = 1 and P [W |W ] = 0. Ideally we want to have
a protocol with P [C|C] ≈ 1 but also high P [W |W ]
so as to react appropriately based on the type of loss.
P [C|C] ≈ 1 is highly desirable so as not to congest the
network. High P [W |W ] enables the protocol to avoid
taking unnecessary congestion control steps.

To evaluate the limits of TCP NewReno we evaluate
it against TCP NewReno equipped with varying loss
classification accuracies (NewReno-LL). In NewReno-
LL, on a loss event, the sender reduces its congestion
window with probability P [C|C] if the loss is a conges-
tion one and ignores the window adjustment with prob-
ability P [W |W ] if it is a wireless loss. In the perfect loss
labeling version, NewReno-PL, we have P [C|C] = 1
and P [W |W ] = 1. We note that, although we assume
fixed values for P [C|C] and P [W |W ], in general these
values depend on the parameters of the network as well
as the loss classification algorithm. Furthermore, ignor-
ing window adjustments in the case of wireless losses is
not necessarily optimal. We only consider this control
action for simplicity and so as to gain insight into the



fundamental issues. We can imagine window adjust-
ments that match particular levels of error.

2.2. TCP NewReno-FF

We propose a new loss labeling scheme for distin-
guishing wireless losses from congestion losses. In this
scheme, using an adaptive Flip Flop filter [9], a par-
allel estimation of RTT is done on every new ACK
received in NewReno. TCP usually uses one exponen-
tially weighted moving average (EWMA) filter which
is static. The Flip Flop filter uses two EWMA filters,
one is stable and another is agile. An agile filter is one
which gives more weight to recently observed samples
unlike a stable filter. The underlying principle is to em-
ploy an agile filter whenever possible but switch to the
stable one when the RTT samples vary drastically and
become noisy. According to statistical quality control,
control limits are defined around the current sample
mean and when the samples exceed the control limits,
the process is said to be out of control. To estimate
the deviation, the filter uses a moving range which it
estimates from the samples within the control limits.
The control limits are defined as:

x± 3
MR

d2
(1)

where x is the sample mean, MR is the Moving Range
which is the average of the differences between adja-
cent RTT samples, |xi − xi−1|, and d2 estimates the
standard deviation of a given sample given its range.
When the range is from a sample of two, as for MR, d2

≈ 1.128 [10].
The basic tenet of our approach is that if the pack-

ets are suffering congestion losses, the observed RTTs
will vary but if packets are suffering random losses, the
observed RTTs will not vary much. Using the Flip
Flop filter, we define an upper control limit on RTT
using (1). We then consider the much delayed pack-
ets, whose RTT exceeds the control limit, as “outliers.”
More than η outliers in the last l samples are used as
congestion indication. η and l are tunable parameters.
The pseudo code of the loss labeling is given in Fig-
ure 1.

Modified Recovery Strategy: When NewReno-
FF detects a packet loss based on duplicate ACKs1,
it checks if the sender has received more than η outlier
samples in the last l samples. If the number of out-
liers is more than η, it continues with usual congestion

1TCP detects loss either due to timeout or three consecutive
duplicate acknowledgments.

if (s rtt > est rtt+3 MR
1.128

) then
vector = vector � 1 // Left shift once
vector = vector OR 0x01 // Bitwise OR
est rtt = 9

10
est rtt + 1

10
s rtt //stable RTT filter

else
vector = vector � 1 // Left shift once
vector = vector OR 0x00 // Bitwise OR
est rtt = 1

10
est rtt + 9

10
s rtt // agile RTT filter

if (s rtt ≥ est rtt-3 MR
1.128

) then
diff = |s rtt − last rtt|
MR = 0.875MR + 0.125diff

end if
end if
if (first ack) then

vector = 0x00; // initialize bit vector of l bits
est rtt = s rtt
MR = est rtt

2

end if

Figure 1. Flip Flop-based loss labeling

control steps otherwise it ignores it assuming a wireless
loss. The pseudo code of the modified recovery part of
TCP NewReno is given in Figure 2.

if (error detected based on dup acks) then
if (#bits set in vector ≤ η) then

no change in congestion window and ssthresh
// classified as wireless loss

else
do normal congestion window and ssthresh ad-
justment // classified as congestion loss

end if
end if

Figure 2. Modified recovery strategy

We are still assuming that all timeouts indicate con-
gestion, i.e. we do not attempt to classify timeout-
detected losses as congestion versus wireless. It is
known that timeouts caused by wireless losses can de-
grade the performance of regular TCP implementa-
tions, which may back off very conservatively [19]. We
account for these effects through our TCP NewReno
variant with perfect loss labeling.

2.3. TCP Westwood

We have also compared the performance of TCP
Westwood which doesn’t have any explicit loss labeling
mechanism. However, it is claimed that the bandwidth
estimation of TCP Westwood accounts for the wireless
losses [12].



3. Performance Metrics

We have compared the schemes described in Sec-
tion 2 based on the following metrics:

• Goodput: The rate of delivery of useful data. We
measure the goodput at the receiver.

• Overhead: 1- Goodput
Throughput . We measure through-

put as the rate at which the receiver is receiving
data. Note that this measure reflects the overhead
of re-transmissions.

• P [W |W ]: This metric indicates the accuracy in
wireless loss classification. It defines the probabil-
ity of identifying a loss as a wireless loss given that
the loss is indeed a wireless loss.

• P [C|C]: This metric indicates the accuracy of con-
gestion loss classification. It defines the probabil-
ity of identifying a loss as a congestion loss given
that the loss is indeed a congestion loss.

• Fairness: Reflects the fair share distribution across
N various connections. It is given by:

Fairness Index =
(

N∑
i=1

Ti)
2

N

N∑
i=0

T 2
i

where Ti is the throughput of the ith connec-
tion [7].

• TCP-compatibility: This metric measures how fair
a loss prediction-capable protocol is when it com-
petes with regular TCP NewReno. It is defined as
Gh

Go
, where Gh is the average goodput attained by

n NewReno flows competing with n other flows of
the protocol, and Go is the average goodput of n
NewReno flows competing with n other NewReno
flows under the same conditions. Thus a value
close to 1 indicates compatibility in a heteroge-
neous setting. On the other hand, a value less
than 1 indicates that the loss prediction-capable
protocol is grabbing more bandwidth.

4. Stochastic Model of NewReno-LL

In this section, we derive a simple fluid model for
NewReno-LL to illustrate the effect of P [C|C] and
P [W |W ] on throughput. We follow the same lines of
analysis as in [5]. For simplicity, we do not consider
timeouts. We assume that the transmission window is
reduced by half only if the packet loss is identified as
congestion-induced.

For a window size of W (packets), the window in-
creases by 1

W on every ACK reception. This is the
additive increase of TCP. We assume packet loss hap-
pens with a probability p = 1− (1−pc)(1−pw), where
pc and pw are the congestion and wireless drop rates,
respectively. The window decreases by W

2 with proba-
bility pcP [C|C] + (1− pc)pwP [C|W ], i.e. whenever the
packet loss is classified (or misclassified) as congestion-
induced. To make the notation more readable, we de-
note P [C|C] by pc/c and P [C|W ] by pc/w.

The expected change in the window is given by:

E[∆W ] =
(1 − pc)(1 − pw)

W

−W
2

(pcpc/c + (1 − pc)pwpc/w) (2)

Since W is updated at approximately every RTT
W ,

using Equation (2), the expected change in the sending
rate (throughput) r per unit time is approximately:2

dr(t)
dt

=
(1 − pc)(1 − pw)

RTT 2
−

r2(t)(pcpc/c + (1 − pc)pwpc/w)
2

(3)

By rearranging and integrating we have:3

r(t) =

{
1+Ce−2at

1−Ce−2at

}
RTT

√
2(1 − pc)(1 − pw)

pcpc/c + (1 − pc)pw(1 − pw/w)
(4)

where a is given by√
(1−pc)(1−pw)(pcpc/c+(1−pc)pw(1−pw/w))

2 RTT 2 and C depends
on initial conditions.

The steady state throughput of NewReno-LL is thus
given by:

r = lim
t→∞ r(t)

=
1

RTT

√
2(1 − pc)(1 − pw)

pcpc/c + (1 − pc)pw(1 − pw/w)
(5)

From Equation (5), we can observe the significance
of pc/c and pw/w on the throughput of a connection.
A higher value of accurate congestion loss classifica-
tion, pc/c, reduces throughput. On the other hand,
a higher value of accurate wireless loss classification,
pw/w, increases throughput. Note, however, that we
are assuming fixed drop rates and classification proba-
bilities. In reality, these loss and classification prob-
abilities would depend on the number of competing

2Note that r(t) = W (t)/RTT.
3Note that pc/w + pw/w = 1.



connections, network conditions and the behavior of
the protocol. In particular, pc, assumed fixed in tra-
ditional analytical studies [13], depends on pc/c, pw/w

and r. The throughput r in turn depends on pc, pc/c

and pw/w. In general, it is very difficult to solve ana-
lytically for closed-form expressions for throughput and
other performance measures. In Section 6, we resort to
simulations to evaluate the effectiveness of loss labeling
techniques.

5. TCP-compatibility and Convergence

In this section, we argue that two competing
flows, one regular TCP (NewReno) and another TCP
equipped with loss prediction (e.g. NewReno-FF),
would still converge to fairness and efficiency in the
presence of both congestion-induced and random wire-
less drops, given that the loss classification is accurate.

Assuming ideal synchronized feedback, we use the
technique of Chiu and Jain to represent the two-source
case as a “phase plot” [3]. The axes correspond to the
window sizes of each source. As the system evolves
over time, each source adjusts its transmission window
based on the network state and the control algorithm
leading to a trajectory in the phase space. According to
the linear controls of Additive Increase Multiplicative
Decrease (AIMD), the trajectory moves parallel to 45o-
line during additive increase. During multiplicative de-
crease, the trajectory moves along the line joining the
current state to the origin. Fairness, defined as the ra-
tio of the windows, improves during additive increase,
and remains unchanged during the decrease phase.

NewReno-FF

N
ew

R
en

o Fairness Line

Efficiency Line
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b
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d

e
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g

h

i

Figure 3. Convergence of NewReno vs.
NewReno-FF

Referring to Figure 3, without loss of generality,
suppose NewReno and NewReno-FF start at point a.
Both sources linearly increase their windows and both
experience congestion drops at point b when the win-
dows overshoot the efficiency (maximum capacity) line.

Both the sources then reduce their windows evolving
to the under-utilized region but closer to fairness at
point c. Subsequently, assume the sources experience
wireless drops at points d and f , NewReno-FF avoids
unnecessary backoff while NewReno backs off. It is
easy to see that, in cases of random wireless drops,
NewReno-FF grabs more resources evolving the sys-
tem away from the fairness line. However, congestion
losses and accurate classification drive the system back
toward the fairness line (transition from h to i).

The argument can be extended to multiple sources
by considering the sources pairwise. Our simulation
results in Section 6 substantiate this convergence be-
havior.

6. Simulation Model and Methodology

We use the network simulator ns-2 (version
2.1b8a) [18]. The network topology used in the sim-
ulation is shown in Figure 4.
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Figure 4. Wireless Last Hop Topology

We have a number of TCP traffic source-destination
pairs. The link from r2 to each TCP traffic sink has
been assigned 2Mbps bandwidth and 0.01ms propaga-
tion delay. These links represent wireless links with
transmission errors. The loss rate on each wireless link
is set at 5% to represent low to medium range wireless
errors. All other links are error free with 10Mbps band-
width and 1ms propagation delay except the shared
(bottleneck) wired link r1 → r2 whose bandwidth is
10Mbps and propagation delay is 50ms. The buffer
size at r1 → r2 is set to an integer multiple of the
bandwidth-delay product (127×n packets for n ≥ 1).
All other buffer sizes are set to a default value of 50
packets. All the TCP sources and the cross traffic on-
off sources are started randomly at time t ∈ [0, 3] sec
and the simulations are stopped at time 200 sec. For
each UDP-based cross traffic source, the duration of
the on and off periods are Pareto distributed and varied
for each configuration. We calculate the performance
measures within 95% confidence intervals.



6.1. Simulation Results

Configuration 1: The on and off periods of each
of the 10 background cross traffic sources follow a
Pareto distribution with shape parameter 1.5 and av-
erage duration of 45ms and 10ms, respectively. The
sending rate of each cross traffic source is 0.2 Mbps
while it is on, so as to have negligible congestion loss
at r1 → r2 when all 20 competing long-lived TCP flows
are NewReno. The buffer size at r1 → r2 is set to four
times the bandwidth-delay product. For our loss la-
beling technique, the values for l and η are 10 and 5,
respectively.4

Figure 5(a) shows the goodput of NewReno-LL
against varying P [W |W ]. Figure 5(b) shows TCP-
compatibility (normalized goodput) when 10 NewReno
flows compete with 10 NewReno-LL flows. Table 1
summarizes the performance of different schemes in
terms of other metrics (defined in Section 3) when all
20 TCP flows are homogeneous. Recall that NewReno-
PL, the perfect loss labeling version, is a special case
of NewReno-LL with P [C|C] = P [W |W ] = 1.

Configuration 2: The on and off periods of each of
the 30 background cross traffic sources follow a Pareto
distribution with shape parameter 2.5 and average du-
ration of 100ms each. The sending rate of each cross
traffic source is 0.6 Mbps while it is on, so as to have
around 1% congestion loss at r1 → r2 when all 10 com-
peting long-lived TCP flows are NewReno. The buffer
size at r1 → r2 is set to the bandwidth-delay product.
For our loss labeling technique, the values for l and η
are 8 and 4, respectively.

Figure 6(a) shows the goodput of NewReno-LL
against varying P [W |W ]. Figure 6(b) shows TCP-
compatibility (normalized goodput) when 5 NewReno
flows compete with 5 NewReno-LL flows. Table 2 sum-
marizes the performance of different schemes in terms
of other metrics (defined in Section 3) when all 10 TCP
flows are homogeneous.

6.2. Observations and Discussion

• For both configurations, NewReno-FF achieves a
goodput higher than that of NewReno, Westwood,
and NewReno-LL for all values of P [C|C] and
P [W |W ]. Recall that NewReno corresponds to
P [C|C] = 1 and P [W |W ] = 0. NewReno-FF

4Recall that l and η are tunable parameters in our FF-based
loss classification technique. A short history is found to gener-
ally improve goodput and TCP-compatibility; see Figure 7. In
general, l and η depend on the network configuration and may
be adjusted dynamically. We leave this as future work.

achieves higher goodput without losing much in
terms of fairness index. However, NewReno-FF
has higher overhead than NewReno, which has the
least overhead.

• Although NewReno-FF adapts its P [C|C] and
P [W |W ] values according to the network condi-
tions, the average values of P [C|C] and P [W |W ] in
both configurations are observed to be lower than
one would expect. In configuration 1, the average
values of P [C|C] and P [W |W ] for NewReno-FF
are found to be 0.0 and 0.84, respectively, when all
TCP sources are NewReno-FF. When NewReno-
FF flows compete with NewReno flows, the values
are 0.0 and 0.61. Note that in configuration 1, we
intended to have negligible congestion. Therefore,
P [C|C] indeed shows accurate labeling by not clas-
sifying rare (non-persistent) congestion events as
congestion.

Similarly, for configuration 2, we observe the
the average values of P [C|C] and P [W |W ] for
NewReno-FF to be 0.32 and 0.65, respectively,
when all TCP sources are NewReno-FF. When
NewReno-FF flows compete with NewReno flows,
the values are 0.42 and 0.63, respectively. This
means that P [W |C] ≈ 0.68 and 0.58, respectively.
This high value of congestion misclassification
probability makes NewReno-FF more aggressive
and consequently has the highest goodput. Note
that the loss misclassification in NewReno-FF can
sometimes be viewed as finer classification—for
example, misclassifying short-term congestion as
wireless and thus avoiding unnecessary window
backoff may be beneficial.

• To justify the lower values of P [C|C] and P [W |W ]
for NewReno-FF, we need to reconsider the defi-
nitions of the two metrics. The values of P [C|C]
and P [W |W ] much depend on the agility and sta-
bility of the filter. In our experiments, the Flip
Flop filter is stable enough to filter out low fre-
quency transient changes. The random wireless
losses and even short-term congestion losses fall
into this category. Therefore, the Flip Flop fil-
ter classifies many short-term congestion losses
as wireless losses, thus the transmission window
is not reduced. Although this “misclassification”
lowers P [C|C], this may in fact be a more appro-
priate control strategy. The loss classification pro-
cess for a TCP flow is illustrated in Figure 8 for
configuration 2. We don’t have timeout cases over
the shown time interval.5 We have plotted the in-

5Recall that in this paper, timeouts do not contribute to our
loss classification process, only duplicate ACKs.



0

50

100

150

200

250

300

350

400

0 0.2 0.4 0.6 0.8 1

G
oo

dp
ut

 (
K

bp
s)

P[W/W]

Average goodput of NewReno-LL flows

P[C/C]=0
P[C/C]=0.2
P[C/C]=0.4
P[C/C]=0.6
P[C/C]=0.8
P[C/C]=0.9
P[C/C]=1.0

(a) Goodput of NewReno-LL versus P [W |W ]

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

 N
or

m
al

iz
ed

 G
oo

dp
ut

 

P[W|W]

TCP-compatibility of NewReno-LL

P[C/C]=0
P[C/C]=0.2
P[C/C]=0.4
P[C/C]=0.6
P[C/C]=0.8
P[C/C]=0.9

P[C/C]=1

(b) Normalized Goodput versus P [W |W ]

Figure 5. Goodput and TCP-compatibility of NewReno-LL as a function of P [W |W ] (configuration 1)

Protocol Goodput(Kbps) Throughput Fairness TCP-compatibility
NewReno 229.9 230.7 0.9958 1.00

NewReno-FF(10,5) 375.6 397.0 0.9935 0.97
Westwood 352.8 354.9 0.9974 0.96

NewReno-LL 358.1 397.7 0.9961 0.99
Best(P [C|C], P [W |W ]) (1, 0.6) (1, 1) (1, 0.4) (1,0.2)

NewReno-LL 0.02 0.1 0.005 0.50
Worst(P [C|C], P [W |W ]) (0, 1) (0, 1) (0, 1) (0, 1)

Table 1. Comparison of performance metrics for different schemes (configuration 1)

stantaneous queue length of the shared wired link,
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When the queue drop C1 happens at 145.706 sec,
the last l samples are below the threshold η of
our loss labeling technique, therefore window ad-
justment is not done on the duplicate ACK, D1
at 146.001 sec. Observe that this action seems

appropriate as the queue length drops indicating
that congestion has subsided. In effect, the filter
classifies this to be a case of “transient” congestion
loss whereas NewReno would have simply reduced
the ssthresh and congestion window. The error
detection event based on duplicate ACKs, D2 at
146.43 is caused by a wireless drop, W1 but since
the history of not enough outliers is there, this
wireless loss will be correctly classified as a wire-
less loss and the congestion window is not reduced
in this case.

As congestion builds up, many samples may be
detected as outliers and if the congestion is persis-
tent, the number of samples arriving at the sender
will reduce. Therefore, outliers appearing in the
growing phase of the bottleneck queue will retain
the bad history for long if the values of l and η are
chosen properly. On the other hand, if the con-
gestion is transient, more samples will arrive sub-
sequently and the bad history can soon be shaken
off. The queue drop, C2 in Figure 8, is preceded
by more than η outlier samples, therefore, the fil-
ter classifies the loss as congestion at D3, thus the
transmission window is reduced. From the buffer
occupancy, we can see that it is appropriate to be
conservative on D3.
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Figure 6. Goodput and TCP-compatibility of NewReno-LL as a function of P [W |W ] (configuration 2)

Protocol Goodput(Kbps) Throughput (Kbps) Fairness TCP-compatibility
NewReno 166.7 167.5 0.9910 1.00

NewReno-FF(8,4) 187.3 202.5 0.9616 0.75
Westwood 177.9 183.7 0.9888 0.85

NewReno-LL 178.2 216.8 0.9912 1.23
Best(P [C|C], P [W |W ]) (1, 0.8) (1,1) (1, 0.2) (0,1)

NewReno-LL 29.56 43.2 0.318 0.63
Worst(P [C|C], P [W |W ]) (0,1) (0,1) (0.4, 1) (1,1)

Table 2. Comparison of performance metrics for different schemes (configuration 2)

• NewReno with Perfect Labeling (NewReno-PL) is
not necessarily optimal in terms of goodput. Al-
though it seems reasonable to take a control ac-
tion (such as ignoring window adjustment in wire-
less loss cases) based on the exact nature of a
past loss (as in NewReno-PL), such control action
may not always be correct or may not yield better
performance globally. This is because of the de-
layed feedback. By the time the feedback reaches
the senders, the actual network state might have
changed.

In NewReno-LL, on a loss event, the senders re-
duce their transmission window with probability
P [C|C] if the loss is a congestion one, and ignore
window adjustments with probability P [W |W ] if
it is wireless loss. Such randomization of the con-
trol actions may improve goodput by making the
system more robust—for example, if the conges-
tion loss was transient, then having some sources
misclassifying it as wireless and thus not backing
off their transmission rate may be beneficial.

• NewReno-LL can achieve highest goodput at
P [C|C] = 1 and high P [W |W ]. However,
NewReno-LL performs poorly for low P [C|C] and
P [W |W ] = 1. Unlike NewReno-FF, P [C|C] and

P [W |W ] for NewReno-LL are artificially static
and do not depend on network conditions. This
causes NewReno-LL to be overly aggressive, thus
overloading the network and degrading its own
performance. This is apparent from the degra-
dation in goodput as P [W |W ] exceeds a value
of around 0.8 in configuration 1 and 0.6 in con-
figuration 2. We also observe from the TCP-
compatability measure that beyond these P [W |W ]
values, a low P [C|C] causes NewReno-LL to ex-
perience excessive losses, losing its self-clocking of
new packets, hence giving up more bandwidth to
competing regular NewReno flows.

• Table 2 also shows increased aggressiveness in
the behavior of NewReno-FF evidenced by low
TCP-compatility when it competes with regular
NewReno. Unlike regular NewReno, a NewReno-
FF flow does not back off its transmission win-
dow if it classifies a loss as wireless. Otherwise,
NewReno-FF cuts its window in half according
to regular AIMD rules. For any AIMD scheme
to be TCP-compatible, the window increase and
decrease parameters, α and β, must satisfy the
necessary condition of TCP-friendliness given by
α = 3β

2−β (without considering the timeout effects)
[8].
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Figure 7. Effect of history on goodput and compatibility of NewReno-FF (configuration 2)

If loss labeling is not perfectly accurate, the effec-
tive value of β, βe, is given by:

βe = 1
2 (P [C|C]+P [C|W ])+0(P [W |W ]+P [W |C]).

For a perfect labeling case, we have P [C|C] = 1
and P [C|W ] = 0, which implies β = 1/2 and α = 1
as in regular TCP. However, in our configurations,
NewReno-FF shows a lower βe and hence a lower
α should be used when the window is linearly in-
creased.

Figures 9(a) and (b) show the window dynamics
of a NewReno flow competing with a NewReno-
FF flow. The aggressiveness of NewReno-FF is re-
duced, hence TCP-compatibility can be improved,
for a lower increase parameter, α.

7. Conclusions and Future Work

In this paper, we attempted to improve our un-
derstanding of the fundamental gains and limitations
of loss classification techniques employed to empower
TCP in hybrid wired/wireless networks. To this end,
we abstract the general approach of various proposals
by controlling the loss labeling accuracies, P [C|C] and
P [W |W ]. These two measures quantify the probability
that an event is identified correctly. In all proposals,
this event is only one of two possibilites: congestion-
induced loss or wireless loss. Such loss classification
can be used to empower the recovery strategy of TCP.
For example, the usual congestion control measure of
backing off the transmission rate is taken if the packet
loss is attributed to congestion. However, if the packet
loss is attributed to wireless, a different control action
is taken— in this paper, we assume an aggressive strat-
egy whereby the transmission rate is kept unchanged.

We also introduced a new loss labeling technique
that uses a Flip Flop filter to estimate RTT and use
it to differentiate between congestion and wireless loss.

Our technique uses history to examine the number of
“outlier” RTT samples, i.e. those samples that exceed a
control limit beyond which delay values are considered
high. A packet loss is classified as congestion-induced
if enough outliers are observed.

Through extensive simulations, we show that our
loss labeling-based technique outperforms regular TCP
and TCP Westwood in terms of goodput while main-
taining competitive fairness. We also observe the low
values of P [C|C] and P [W |W ] under our Flip Flop
based technique. This does not mean that our FF-
based classification is inaccurate. Rather, the low value
of P [C|C] implies a higher value of P [W |C].This is
the case when short-term congestion losses are treated
as random wireless losses or more generally, transient
losses. This is indeed an appropriate (in effect, finer
grained) loss classification. Based on these observa-
tions, we believe that there is a need for such fine
grained classification that goes beyond a binary clas-
sification of congestion versus wireless. Furthermore,
this opens up the important research question of what
kind of recovery actions should a protocol like TCP im-
plement given the correct classification of packet losses.

We are currently analyzing our FF-based loss clas-
sification technique mathematically. We are also gen-
eralizing this analysis to any technique as a function of
P [C|C] and P [W |W ], or finer classification accuracies.
We again note that the values of P [C|C] and P [W |W ]
depend on the parameters of the network as well as the
loss classification algorithm. The ultimate goal is to de-
velop a fine grained loss classification technique with an
associated adaptive recovery strategy which enhances
goodput and fairness while maintaining low overhead
and high compatibility over hybrid wireless/wired net-
works. An ideal recovery strategy would match the
level and density of error to appropriate transmission
window adjustments. Lowering overhead is especially
important for battery-operated devices.
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