
J. Parallel Distrib. Comput. 67 (2007) 318–335
www.elsevier.com/locate/jpdc

Adversarial exploits of end-systems adaptation dynamics�

Mina Guirguisa,∗, Azer Bestavrosb, Ibrahim Mattab, Yuting Zhangc

aDepartment of Computer Science, Texas State University, 601 University Drive, San Marcos, TX 78666, USA
bDepartment of Computer Science, Boston University, 111 Cummington Street, Boston, MA 02215, USA

cDepartment of Computer Science, Allegheny College, 520N. Main Street, Meadville, PA 16335, USA

Received 7 August 2006; received in revised form 7 August 2006; accepted 25 October 2006

Abstract

Internet end-systems employ various adaptation mechanisms that enable them to respond adequately to legitimate requests in overload
situations. Today, these mechanisms are incorporated in most scalable end-systems through the use of one or more component subsystems
such as admission controllers, traffic shapers, content transcoders, QoS Controllers, and load balancers. While the design of these components
has been heavily investigated and significantly fine-tuned for efficiency and scalability purposes, the security implication of the adaptation
mechanisms used in these components has not been on the radar to system designers. To that end, this paper exposes adversarial exploits of the
dynamics that result from the adaptive nature of these components. We show that a well orchestrated Reduction of Quality (RoQ) attack could
induce significant inefficiencies or reduce the service quality of end-systems, without resorting to brute-force Denial-of-Service (DoS) exploits
that target the limited steady-state capacity of these end-systems. We present a general analytical framework that captures the effect of RoQ
exploits on the underlying optimization process of the adaptation mechanisms. Using detailed models, we instantiate this general framework
for some of the aforementioned end-system adaptation mechanisms, focusing on admission controllers and load balancers. Our exposition is
supported with numerical solutions of analytical models, which are validated using results from detailed simulations, and measurements from
real Internet experiments performed in our lab.
© 2006 Elsevier Inc. All rights reserved.

Keywords: Security; Denial of Service; Scalable web services; Adaptive resource management; Performance evaluation

1. Introduction

End-system servers and networks (such as web servers and
content delivery networks) have emerged as crucial building
blocks of our current Internet infrastructure with profound im-
pact on our economy and society. Due to the open nature of
access to these end-systems, the designs of such systems have
grown to be quite sophisticated to enable them to adapt ade-
quately in response to the often erratic load offered by legiti-
mate requests. However, as the complexity in these adaptation
mechanisms increases, it becomes harder to understand their
dynamic behavior.

� This work was supported in part by a number of NSF awards, including
CNS Cybertrust Award #0524477, CNS NeTS Award #0520166, CNS ITR
Award #0205294, and EIA RI Award #0202067, and by grants from Fortress
Technologies.

∗ Corresponding author.
E-mail address: msg@txstate.edu (M. Guirguis).

0743-7315/$ - see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2006.10.005

1.1. The challenge of capturing/taming system dynamics

End-systems may exhibit elaborate dynamic behaviors due
to resource management strategies in general (as in scheduling,
load balancing, caching, etc.) and system adaptation strategies
in particular (as in admission control, congestion control, etc.).
These dynamics are quite hard to capture analytically or even
empirically. As a result, models of computing system compo-
nents often tend to abstract away such dynamics and focus
instead on static properties obtained through aggregations over
time scales that are long enough to hide the transients of adap-
tation; metrics used to monitor and evaluate a system’s perfor-
mance (such as utilization, delay, jitter, and admission rates)
are typically expressed as shapeless mean values, which do not
give us insights into the inefficiencies caused by transients over
time scales shorter than those used in measuring such metrics.
Such relatively little attention by computing system designers
and practitioners to system dynamics stands in sharp contrast
to how other engineered systems, such as the electric grid or

http://www.elsevier.com/locate/jpdc
mailto:msg@txstate.edu

M. Guirguis et al. / J. Parallel Distrib. Comput. 67 (2007) 318–335 319

mechanical artifacts, are evaluated. For such systems, the char-
acterization of system dynamics is front and center to protect
against oscillatory behaviors and instabilities.

System dynamics could be “safely ignored” (or abstracted
out as we like to say in Computer Science), if one can en-
sure that such dynamics will not interfere, or that they will
have negligible impact on the overall performance of the sys-
tem, which is typically measured using metrics that gauge effi-
ciency and responsiveness. Such assurances are warranted for
closed systems with predictable, non-adversarial workloads.
However, for open systems, such dynamics cannot be “safely
ignored” as they could be exploited by adversaries. Indeed,
the main goal of this paper is to show that such exploits are
not only plausible, but that their impact could be significant.
Notice that while system dynamics could be shown not to
interfere with, or significantly impact the fidelity of an end-
system under non-adversarial (even if bursty or erratic) work-
loads, the same could not be said for adversarially engineered
workloads.

1.2. Adversarial exploits of end-system adaptation mechanisms

To deal with the open access nature of the Internet and the
potential overload situations that may arise, end-systems typ-
ically employ a combination of (1) admission controllers, (2)
content adaptation controllers and (3) load balancers in order to
maintain high-fidelity operation. Admission controllers ensure
that the overall offered load to the system, over a long-enough
timescale, does not exceed its rated capacity. Content adapta-
tion controllers mitigate the overload conditions by reducing
the quality of the serviced content, using content transcoding
for example. Load balancers, on the other hand, ensure that the
system capacity and performance is achieved through a judi-
cious distribution of load to the servers and resources available
in the system.

In this paper we show that a determined adversary could
bleed a system’s capacity or significantly reduce its service
quality by subjecting it to a fairly low-intensity (but well or-
chestrated and timed) request stream that causes the system to
become very inefficient, or unstable. While in [20] we gave
an example of such attacks—which we termed Reduction of
Quality (RoQ; as in “rock”) attacks—on Internet resources em-
ploying Active Queue Management (AQM) schemes, in this
paper, we consider RoQ exploits on adaptation mechanisms
employed in end-systems. In particular, this paper combines
our work on RoQ exploits on admission controllers [21] and
on load balancers [22], and briefly discusses RoQ exploits on
content adaptation controllers.

1.3. An illustrative RoQ exploit

Current adversarial strategies for Denial of Service (DoS)
are brute force [9]. An attacker may render a system, say a
Web server, useless by subjecting that system to a sustained
attack workload (e.g., syn attack) that far exceeds that system’s
capacity. The result is that legitimate requests experience
a much degraded response from a persistently overloaded

system—or even are denied access to that system altogether.
Could an attacker achieve similar outcomes without overload-
ing the system in a persistent manner? The answer is yes.
To explain why this is the case, we give a simple illustrative
example.

Consider an admission controller that sets its admission rate
of incoming requests as a function of the utilization of its back-
end system [46,47,6]. Now, consider a point in time when the
offered load is low enough for the admission controller to al-
low a large percentage of all requests to go through. At this
point, a surge in demand (e.g., a large number of requests) in a
very short period of time would push the system into overload.
This, in turn, would result in the admission controller shutting
off subsequent legitimate requests for a long time—given the
fact that under overloaded conditions, the system operates in
an inefficient region (e.g., due to thrashing). Once the system
“recovers” from the ill-effects of this unsuspected surge in de-
mand, an attacker would simply repeat the process. Albeit sim-
plistic, this attack illustrates how adaptation strategies may be
exploited by adversaries to reduce system’s fidelity.

Dynamic content adaptation and load balancing controllers
could be targets of RoQ exploits as well. In these settings, an
attacker’s goal would be to reduce the quality of the content or
to increase the response time for legitimate requests. Since users
may not be willing to wait for results, or tolerate a degraded
content (e.g., a degraded quality video stream), RoQ exploits
in such settings could translate into a denial of service, similar
to the admission control example above.

1.4. Motivation behind mounting RoQ exploits

We believe the work presented in this paper captures an on-
going trend of launching attacks that are more stealthy, with the
main goal of the attackers not to be discovered. For example, the
work presented in [26], shows how attackers are moving away
from bandwidth floods to attacks that mimic the web browsing
of a larger set of clients. There are two main reasons of why an
attacker would prefer to launch a RoQ attack over a traditional
DoS attack. First, it takes a lot of effort to mount a DoS attack;
an attacker needs to find the machines (zombies) that are going
to be used and needs to control them to direct their malicious
attack traffic towards the victim. Both of these tasks are hard
to accomplish. Second, DoS attacks, once launched, are very
easily discovered. Thus, proper defense mechanisms could be
set in place very quickly, to mitigate the attack’s impact and
to trace-back the preparators. RoQ attacks, on the other hand,
do not require a lot of resources to mount the attack (the cost
in mounting the attack is taken explicitly into account) and it
is very hard to tell if a system is under attack in the first place
(the dynamics resulting from a RoQ attack, could still occur
under normal operation), hence, detection and trace-back are
that much harder than under DoS attacks.

1.5. Paper outline

Section 2 summarizes the premise and the definition of
RoQ attacks with a focus on the notion of attack potency to

320 M. Guirguis et al. / J. Parallel Distrib. Comput. 67 (2007) 318–335

quantify the impact of RoQ attacks. We also present an analyt-
ical model, whereby the transients of adaptation are simply the
result of an optimization process which forces an end-system
to converge to a stable operating point. Under such model, one
could view a RoQ attack as a persistent attempt to regularly
knock the system off its stable (or quiescent) operating point.
In Sections 3 and 4, we present dynamic models along with
results obtained from simulation and Internet experiments, for
an admission controller and a load balancer, respectively. In
Section 5, we outline few challenges for the detection and mit-
igation of RoQ exploits. We outline possible defense mecha-
nisms. In Section 6, we briefly discuss related work, noting that
throughout this paper, we point to various pieces of research
work as appropriate. We conclude in Section 7 with a summary
and with future directions.

2. RoQ attack premise and definition

This paper leverages some of the models and analysis of RoQ
attacks presented in earlier work of ours [20]. In this section,
we briefly review the premise of RoQ attacks, emphasizing its
novel conception of the attacker’s goal: namely to maximize
damage per unit attack load (or cost). We then illustrate the
general framework whereby the transients of adaptation are the
result of an optimization process which forces the system’s
operation into a stable regime.

2.1. Attack goal and definition

We consider a RoQ attack comprising a burst of M requests
sent to a system element at the rate of � requests per second
over a short period of time �, where M = ��. This process is
repeated every T units of time. We call M the magnitude of
the attack, � the amplitude of the attack, � the duration of the
attack, and T the period of the attack.

For the above RoQ attack, we define �, the attack potency,
to be the ratio between the damage caused by that attack and
the cost of mounting such an attack. Clearly, an attacker would
be interested in maximizing the damage per unit cost—i.e.,
maximizing the attack potency.

Potency = � = Damage

Cost
1
�

. (1)

The Potency definition given by Eq. (1) does not specify
what constitutes “damage” and “cost”. Clearly, one may con-
sider various instantiations of these metrics. For example, for an
attacker aiming to minimize a web server availability, through
exploiting its admission controller, a natural metric of “dam-
age” would be the difference between the total number of
requests admitted before and after the attack (excluding the
attacker’s requests). If the attacker aims to maximize the jitter
in the users’ observed response time, then a natural metric of
“damage” would be the difference between the standard devi-
ation of the time it takes to process a request before and after
the attack. Similarly, there could be a number of different met-
rics for what constitutes “cost”. Examples include the effective

attack request-rate (i.e., M/T), the attack amplitude �, the at-
tack duration �, etc.

The Potency definition given by Eq. (1) uses a parameter � to
model the aggressiveness of the attacker. A large � reflects the
highest level of aggression, i.e., an attacker bent on inflicting
the most damage and for whom cost is not a concern. Mounting
a DoS attack is an example of such behavior. A small � reflects
an attacker whose goal is to maximize damage with minimal
exposure. Thus, the parameter � enables us to identify families
of attacks based on aggression. Throughout this paper, we take
� to be 1, where we compare “damage” versus “cost” directly.

2.2. Adaptation as an optimization process

We consider a system subjected to multiple request streams,
each of which offers a load characterized by a rate xr of re-
quests. In a web server setting, xr would represent the request
rate for a particular service r (e.g., in hits/s). The value of xr

is adapted based on feedback received from the system (equiv-
alently, prices). In a web server setting, that pricing feedback
would be the request response time, which is a function of re-
sources consumed (e.g. CPU, disk and memory.) 1

The adaptation of xr would typically follow differential
equations (2) where I(.) and D(.) represent the increase and
decrease functions, which depend on the rates x(t) and the
function pl(.) reflecting the prices/costs fed back to the source
as the input load on the resources l used by stream r varies.

d

dt
xr(t) = I(x(t), pl(x(t))) − D(x(t), pl(x(t))). (2)

In analyzing the convergence of such system to steady-state
rates x∗

r , we resort to optimal control theory to show that the
evolution of the system leads to optimizing some objective
function, called the system’s Lyapunov function [38]. The basic
idea is to find such Lyapunov function U(x) of the system state
x that is positive, continuous and strictly concave, such that
d
dt

U(x(t)) > 0 if xr(t) �= x∗
r and equals zero when xr(t) = x∗

r

for all r.
Lyapunov function U(x) is generally of the form in Eq. (3),

where the first term represents the gain in request rates and the
second term represents the associated costs (prices). Thus by
optimizing U(x) the system optimizes its net gain.

U(x) =
∑

r

G(xr) −
∑

l

C(pl(x)). (3)

Given that the system converges to a fixed point x∗
r ,

one would be interested in the rate of convergence as
this will determine the speed with which transients sub-
side. An optimized RoQ exploit would leverage such tran-
sients of adaptation to knock the system off whenever it
is about to stabilize. Let � determines the rate of conver-
gence of the system—a higher value indicates faster con-
vergence. Notice that for a linearized system, in the form

1 While we give an example of what constitutes a price in a specific setting,
other pricing functions are certainly possible.

M. Guirguis et al. / J. Parallel Distrib. Comput. 67 (2007) 318–335 321

Load

P
ri
c
e

Capacity

During

Attack

Without
Attack

Time

R
a
te

xr*
xr*

(x')r*

�

�'

Fig. 1. An example of a web server pricing function as the load on the system varies. RoQ attacks, effectively, will keep the pricing function changing (left)
and Effect of a RoQ attack pattern on the request rate (xr (t)). RoQ attacks will hinder convergence to steady state points (right).

of ẏ = Ly where L is a matrix and y is a vector of state
variables, the smallest eigen value of L determines the rate of
convergence, �.

The analysis we have conducted so far could be used to
provide insights into the effect of adversarial attacks that aim
to exploit the optimization process that leads the system to
converge to steady-state rates x∗

r . We do so next.
Assume that the system had already stabilized to its steady-

state x∗
r values. Since a resource is used to its almost maxi-

mum capacity, the additional attack load is likely to push the
resource towards saturation where the fed-back prices are ex-
tremely high—see Fig. 1(left). Since the RoQ attack involves
a sustained rate of � for � units of time, the system will be
pushed to a new stable point, say (x′)∗r . Let �′ refer to the
new rate of convergence to the new stable point (i.e., from x∗

r

to (x′)∗r). Since the capacity of the attacked resource is effec-
tively reduced during the attack duration �, the resource pricing
function is pushed to the left, as shown in Fig. 1(left). Such
higher prices result in faster convergence (i.e., higher �′) and
lower (x′)∗r .

As soon as the system stabilizes to (x′)∗r , an optimized RoQ
exploit would cease, allowing the system to return to its original
state x∗

r . This pattern then repeats as illustrated in Fig. 1(right),
in effect forcing the system to spend its time oscillating be-
tween different states, due to the presence and absence of the
attack traffic. Note that in general, the attack traffic may destroy
the “contractive” mapping property of the pricing function and
so the system may not converge to a fixed point while under
attack.

Having defined the RoQ exploit, we now turn our attention to
assessing its potency as defined in Eq. (1). With respect to our
analytical model parameters, one may capture the “damage”
caused by the attack using the expression �(1

�′ + 1
�). Intuitively,

this expression represents the wasted capacity (or other service
qualities such as delay and rate jitter, as we discuss later) during
instability. Also, one may capture the “cost” of the attack by
(�/(1

�′ + 1
�)). Intuitively, the cost increases with increasing the

attacker’s peak rate and decreases with longer attack period.
Again, we emphasize that the definition of potency allows for
many other instantiations of “damage” and “cost” (which may
be more meaningful as we will do later in the paper) and that
our specific choices above are for illustrative purposes.

Accordingly, we calculate potency using Eq. (4), where � re-
flects the relative values that an attacker attributes to “damage”

versus “cost”, or equivalently the desired level of aggression

� =
�

(
1
�′ + 1

�

)
(
�/

(
1
�′ + 1

�

))1/�
= �1− 1

�

(
1

�′ + 1

�

)1+ 1
�

. (4)

In the next two sections, we will consider more elaborate an-
alytical models to gain further insights into more complicated
adaptation dynamics of specific systems. In Section 3, we con-
sider RoQ exploits on admission controller, and in Section 4
we consider RoQ exploits on dynamic load balancers.

3. RoQ attacks on admission controllers

3.1. Adaptation through admission control

Admission controllers—a common fixture of computing sys-
tems and networks—are used to protect against overload con-
ditions by rejecting requests (or offered load) that would push a
system beyond a quiescent operating point. Admission control
strategies are employed in operating systems, database servers,
real-time and multimedia servers, among many others. As the
example in Section 1 illustrated, admission controllers may be
targets of RoQ exploits. In this section, we instantiate from the
general model we presented in Section 2, a detailed model for
studying the vulnerabilities of admission controllers.

3.2. Model derivation

The operation of a server (say a web server) whose load is
regulated by an admission controller is modeled by three com-
ponents: the admission controller, the server, and the feedback
monitor.

The admission controller determines the percentage of re-
quests that should be accepted (i.e., admitted) for service. This
admission rate is based on the deviation of the server’s state
(utilization) from a desirable set value. We use a PI controller
[38] to translate the error signal (deviation in utilization from
a set value) to an admission rate. The impact of using other
forms of controllers can also be studied using this same frame-
work. For instance, one can think of an Additive-Increase
Multiplicative-Decrease (AIMD) admission controller. AIMD
admission control would shut off admission rate (when system
gets to overload) exponentially but would only increase it,

322 M. Guirguis et al. / J. Parallel Distrib. Comput. 67 (2007) 318–335

Admitted

Rejects

- Controller Gate
Web Server

(Plant)

Monitor

(Feedback)

Error

Signal
 Admission

Ratio

Target

Utilization

Departures

Utilization

Arrivals

Observed Utilization

Admission Controller

+
-

Request

Flow

Control
Flow

Fig. 2. Block diagram showing the various components of the admission control feedback loop for a web server (as an example of an Internet end-system).

Table 1
Parameters of the linearized model used to analyze potency of RoQ exploits
of PI admission control

Parameter Description

�(.) Admission ratio
�(.) Server utilization
n(.) Number of requests pending inside the system
�(.) Rate of arrival of requests
m(.) Number of requests admitted
K PI controller constant
�∗ Target server utilization
A, B, C, D, N Constants describing load/utilization curve
�o Server utilization beyond which the server thrashes
� Thrashing index
�max Maximum service rate
�min Minimum service rate
� Attack rate
� Attack duration
T Attack period

when the system is under-loaded, linearly. Admitted requests
are then processed by the server. The feedback monitor period-
ically measures the server’s utilization and reports back a value
thereof (e.g., average over a time interval or EWMA) to the
admission controller. This feedback control system is depicted
in Fig. 2.

Table 1 summarizes the notation and the description of the
parameters used in our model.

Instantiating our general model of Section 2, the pricing func-
tion of the admission controller is given by the relationship be-
tween the admission ratio (equivalently, prices) of web requests
�(.) and the utilization of the server �(.) (load). The latter is a
function of the current total number of requests pending inside
the system n(.), which in turn evolves as a function of both
the admission rates of requests m(.) and the service rate of the
web server. Fig. 3 shows two specific (simple) examples of the
relationships between n(.) and �(.), and between �(.) and the
web server (plant) service rate.

A natural goal of a RoQ exploit on an admission controller is
to maximize the damage caused by a periodic adversarial attack
of magnitude M, where damage constitutes the reduction in the
number of legitimate requests admitted to the system per attack

period, or equivalently the difference between the admission
rate under normal conditions and that achieved when the exploit
is mounted. Let Rw denote the number of rejected requests due
to a single periodic attack with parameters M = � × �, over an
attack period, T. Thus, the attack potency � = Rw/M .

As in the generic analytical model of Section 2, the attack
traffic can effectively reduce the service rate of the resource by
pushing the system into high utilization, leaving the system in
a “thrashing” mode of operation where it takes a long time to
recover.

Considering a discrete-time model, Eq. (5) represents a PI
controller, where the admission ratio, �(i), at time i, is updated
based on the error signal between the target utilization, �∗, and
the current utilization, �(i). K is the PI controller’s constant,
which plays an important role in how aggressive the controller
reacts to the error signal. In particular, a higher value of K will
tend to cause the admission controller to react more aggres-
sively to the error signal, but possibly causing transients in the
utilization to be reflected in the admission ratio. A lower value
of K will tend to achieve higher stability margins, but possi-
bly causing the admission controller to be less responsive to
sudden changes in utilization.

�(i) = K × (�∗ − �(i)) + �(i − 1). (5)

Eq. (6) represents the utilization, �(.) as a function of the
number of requests pending inside the system. N, A, B, C and
D are constants 2

�(i) =
{

An(i) + B n(i) < N,

min[Cn(i) + D, 1] otherwise.
(6)

Notice that �(.) has a lower bound of B, which represents
the utilization when the offered load is zero, reflecting the uti-
lization of the system due to background operating-system ser-
vices, etc. When n(i) < N , the server operates efficiently; its
utilization increases slowly in proportion to n(i) as dictated by
the (small) constant A. Beyond N, utilization increases quickly
in proportion to n(i) as dictated by the constant C > A, until
it reaches its upper bound of 1.

2 Since �(.) is continuous, three constants suffice to describe Eq. (6), but
to simplify the notation, we use four constants (A, B, C and D).

M. Guirguis et al. / J. Parallel Distrib. Comput. 67 (2007) 318–335 323

1.0

Utilization

Service Rate

0.8 1.0Pending

Requests

10075 0.7

Target
Utilization

p*

0.7

0.4

0.2

umin = 70

umax = 90

p*

Utilization

n p

p
οN

p u

Fig. 3. Instances of (linearized) pricing functions showing the relationships often observed between load and utilization (left) and utilization and thrashing
expressed as degradation in service rate (right).

Given the admission rate �(i) and arrivals �(i) at time i,
the number of requests admitted at time i is given by m(i) =
�(i) × �(i). Notice that this adaptation of m(.) represents a
Multiplicative-Increase Multiplication-Decrease (MIMD) pol-
icy since �(.) is simply multiplied by the price �(.). This
leads us to Eq. (7) for the evolution of the number of pending
requests n(.)

n(i) = n(i − 1) + m(i) − (�max − I (�(i) > �o)

×�(�(i) − �o)), (7)

where I (x) is the indicator function that equals 1 if condition x
is true, and � is the thrashing index, a constant that represents
the severity of degradation in service rate as �(.) increases
beyond �o. Eq. (7) implies that as long as �(.) is less than �o,
the system is operating at its rated capacity. However, once it
gets into overload, its capacity is reduced.

We assess the vulnerabilities of the above-modeled admission
controller to a RoQ exploit comprising periodic bursts of �
requests/s sent over a short duration �, with a period T. For
simplicity, we assume that � = 1.

Let �(0) denote the admission rate for a steady-state (con-
stant) arrival rate of � prior to an attack starting at time 0. As-
suming that � is of a high-enough value to force �(.) to reach
unity, we get a constant error signal of �∗ − 1. Thus the PI
controller (cf. Eq. (5)) will start decreasing the admission rate
in fixed steps of K(�∗ − 1). One can easily see that at time i,
�(i) = K(�∗ − 1)i + �(0). Clearly, �(.) will remain at 1 un-
til the load is low enough to decrease � to a value lower than
unity. Let us denote by � the period of time during which �(.)

remains at one.
During �, the total number of requests admitted to the sys-

tem will include whatever was admitted from the attack traffic,
plus whatever was admitted from regular arrivals, based on the
changing values of the PI controller—namely, ��(0)+�(�(0)+
�(1)+· · ·+�(�)). During that time, since � is stuck at one, the
departure rate is equal to �max −�(1−�o) which we denote by

�min—the minimum departure rate. Thus � can be expressed as

� = ��(0) + �(
∑�

i=0 �(i))

�min
. (8)

Notice that the summation
∑�

i=0 �(i) is equal to

�∑
i=0

�(i) = (� + 1)�(0) + K(�∗ − 1)
�

2
(� + 1). (9)

This allows us to derive a second-order equation which can be
solved for (the positive value of) � and is given by

(
�K(1 − �∗)

2

)
�2 −

(
��(0) − K(1 − �∗)

2
− �min

)
×� − (� + �)�(0) = 0. (10)

Since K(1−�∗)
2 is typically relatively small compared to �min

and ��(0), one could approximate the above equation by 3(
�K(1−�∗)

2

)
�2−(��(0)−�min)�−(�+�)�(0)=0. (11)

Notice that the attacker’s traffic � only appears in the constant
coefficient of the above second-order equation. This means that
as the attacker’s traffic increases, the positive root of the above
equation will be larger, resulting in a larger value of �, implying
a longer time for the server to fully react to the attack. This can
be easily seen when we solve for the roots of the second-order
equation of the form a�2 + b� + c = 0; the term b2 − 4ac

is always positive since c is negative and it gets larger as the
magnitude of c gets larger, so the value of the positive root
increases.

During �, and as the system reacts to the overload caused by
the burst of attack traffic, the admission controller would have

3 The numerical solution in the absence of this approximation matches
very closely the closed-form solution given in Eq. (11).

324 M. Guirguis et al. / J. Parallel Distrib. Comput. 67 (2007) 318–335

rejected R� (legitimate) requests. The value of R� can be easily
derived using Eq. (9):

R� = �{(�(0) − �(1)) + (�(0) − �(2)) + · · · + (�(0) − �(�))}

= �

⎛
⎝��(0) −

�∑
i=1

�(i)

⎞
⎠

= �

(
K(1 − �∗) �(� + 1)

2

)
. (12)

Beyond �, � decreases precipitously as a result of the admis-
sion controller’s reaction to the overload caused by the RoQ
exploit. Eventually, this will cause the PI controller to reverse
course by increasing the admission rate so that � can reach
�∗. This increase in � will span two epochs of time 	1 and
	2, corresponding to whether the number of pending requests
is less than N or larger than N, respectively. Thus, after time
�+	1+	2, the admission rate will once again reach �(0), which
represents the initial condition before the attack was waged.

Next, we derive how long it takes the system to again get
its admission rate close enough to �(0). This period is divided
into two regions as dictated by the piecewise linear function of
load on utilization. We start by calculating the admission rate
starting from �(�). At time � + 1, the admission rate �(� + 1)

is given by

�(� + 1) = Ke(�) + �(�)

= K(�∗ − �(�)) + �(�)

= K(�∗ − (An(�) + B)) + �(�)

= K(�∗ − (A�(�)� + B)) + �(�)

= K(�∗ − B) + �(�)(1 − KA�)

= K1 + K2�(�), (13)

where e(�) = �∗ − �(�) is the error signal to the PI controller
and K1 and K2 are given by K(�∗ − B) and (1 − KA�),
respectively. In the above derivation steps of Eq. (13), since the
attack had subsided and the admission ratio is at its lowest value,
whatever requests get admitted in one time step are served by
the end of this time step; thus the number of pending requests
n(.) is simply given by the number of admitted requests m(.) =
�(.)�.

Thus, at any time i after �, the admission rate is given by

�(� + i) = K1
1 − Ki

2

1 − K2
+ Ki

2�(�)

= K1

1 − K2
+ Ki

2

(
�(�) − K1

1 − K2

)
. (14)

Let 	1 denote the time it takes for the admission rate to
recover to some value �̂(0), which is the point in time when
utilization switches functions based on N. Solving for 	1

	1 = logK2

(
�̂(0)(1 − K2) − K1

�(�)(1 − K2) − K1

)
. (15)

Once the number of pending requests exceeds N, at time 	1,
the admission rate �(� + 	1 + 1) is given by

�(� + 	1 + 1) = Ke(� + 	1) + �(� + 	1)

= K3 + K4�(� + 	1). (16)

Similarly, it can be easily shown that K3 and K4 are given by
K(�∗ − D) and (1 − KC�), respectively. Let 	2 denote the
time it takes for the admission rate to recover to some value
�̄(0), which is close to �(0), starting from �̂(0). Solving for 	2

	2 = logK4

(
�̄(0)(1 − K4) − K3

�̂(0)(1 − K4) − K3

)
. (17)

We are now ready to compute the number of (legitimate)
requests which are rejected as a result of the RoQ attack (in
a single period T). The total number of rejected requests are
those rejected during � + 	1 + 	2. During the period 	1, the
total number of rejected requests R	1

is given by

R	1
= �{(�(0) − �(� + 1)) + · · · + (�(0) − �(� + 	1))}

= �

⎧⎨
⎩	1�(0) −

	1∑
i=1

�(� + i)

⎫⎬
⎭

= �

⎧⎨
⎩	1�(0) −

	1∑
i=1

{
K1

1 − K2
+ Ki

2

{
�(�) − K1

1 − K2

}}⎫⎬
⎭

= �

⎧⎨
⎩	1�(0) − 	1K1

1 − K2
−

	1∑
i=1

{
Ki

2

{
�(�) − K1

1 − K2

}}⎫⎬
⎭

= �

⎧⎨
⎩	1�(0) − 	1K1

1 − K2
−

{
�(�) − K1

1 − K2

} 	1∑
i=1

Ki
2

⎫⎬
⎭

= �

{
	1�(0) − 	1K1

1 − K2
−

{
(�(0) − K(1 − �∗)�)

− K1

1 − K2

} {
K2

1 − K
	1
2

1 − K2

}}
. (18)

Similarly, during 	2, the total number of rejected requests R	2
is given by

R	2
= �

{
	2�(0) − 	2K3

1 − K4

−
{

N

�
− K3

1 − K4

} {
K4

1 − K
	2
4

1 − K4

}}
. (19)

The above results can be used to calculate the potency of the
attack, which is given by

 = R� + R	1
+ R	2

M
. (20)

M. Guirguis et al. / J. Parallel Distrib. Comput. 67 (2007) 318–335 325

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Time (units)

Admission Rate

RHO

100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

Time (units)

Admission Rate

RHO

0 0.02 0.04 0.06 0.08 0.1
0

20

40

60

80

100

120

K

P
o
te

n
c
y

Thrashing Index 75
Thrashing Index 50

Fig. 4. Assessment of vulnerability to RoQ attacks: results from the numerical model (left and center) and the effect of K on the Potency (right).

3.3. Numerical solution

We numerically solve the above system. We assume that
legitimate requests arrive at a rate � of 100 requests per unit
time (1 s). The number of pending requests n(.) drives �(.) as
shown in Fig. 3(left), with constants A = 0.00267, B = 0.2,
C = 0.024, D = −1.4, K = 0.01 and N = 75. The service
rate �(.) is driven by �(.) as shown in Fig. 3(right), with �max =
90, �min = 70, �o = 0.8, and � = 70. Fig. 4(left) shows
the results we obtained. It shows the admission rate as well
as the utilization of the back-end system over time. Clearly,
within 50 s of operation, the system converges to an efficient
operating region with admission rate at 0.875 and utilization
is around its target value of 0.7. The RoQ attack starts at time
150 for a duration of � = 1 s and is repeated every T = 50 s,
producing a potency of over 100, i.e., one request from the
attacker results in over 100 legitimate requests being denied
service. Fig. 4(centre) takes a closer look at the period of time
between 100 and 200. It is clear that the admission ratio drops
to below 0.6 from its steady-state value of 0.875.

Clearly, potency depends largely on the choice of the admis-
sion controller parameter, K, as well as the degradation in the
service rate, �min. Fig. 4(right) show this dependence by show-
ing the attack potency as a function of K for different values
of �. These plots were obtained using Eq. (20) and the closed-
form solutions for R� (from Eq. (12)), R	1

(from Eq. (18)) and
R	2

(from Eq. (19)). Clearly, the value of K is critical as it re-
flects the sensitivity of the PI controller to the error signal. It
exposes the tradeoffs between efficiency and tolerance to RoQ
exploits. A larger value of K will lower the potency of a given
attack. However, a large value of K implies that the system will
react swiftly to minor changes in its workload. Under normal
operations, this is quite undesirable as it compromises stabil-
ity. In Section 5, we address this issue along with the possibil-
ity of adjusting such parameters on-line as a possible defense
mechanism.

The model developed above assumes a feedback delay of
unit value—i.e., the utilization at time i drives the admission
decision at time i + 1. In a practical setting, this feedback
delay will slow the controller’s reaction making it even more

vulnerable. We illustrate the impact of feedback delay in our
experiments.

3.4. Internet experiments

We assess the impact of RoQ attacks on an admission con-
troller that lies in front of a Linux web server through real ex-
periments performed in our lab. We conduct a series of experi-
ments to investigate the effect of different values of the control
parameter K in the presence and absence of feedback delay.
Due to the wide deployment of web servers in the current In-
ternet, we used a web server as an example of an end-system
functionality that is subject to admission control. We could have
instead used an application server or a database server. 4 In our
experiments and similar to our analysis, we used a simple PI
controller to derive the admission ratio. Other controllers, such
as AIMD controller, could have been used as potential targets
for RoQ attacks.

Notice that our main goal is to give evidence that such attacks
could be carried out, as opposed to fully characterizing the
possible damage that could be inflicted. A full characterization
of damage is hard to assess due to the following two limitations:

(1) When faced with severe thrashing, Linux, on which the
web server in our experiments runs, starts killing threads
to get itself out of thrashing. This behavior, while ac-
ceptable for simple HTTP transactions (such as file trans-
fer) is not acceptable in other more realistic and prevalent
scenarios—e.g., when HTTP sessions are involved, and
when backend system state could be compromised. This
is precisely why the analytical model we used in the pre-
vious section assumed that the admission controller is the
only entity that is responsible for admitting and rejecting
requests and that it does not “kill” threads if the system is
thrashing. This is important to ensure thread integrity in

4 Indeed, such systems would be much more vulnerable to RoQ attacks by
virtue of the more granular nature of their services, and hence their ability
to recover from overload conditions.

326 M. Guirguis et al. / J. Parallel Distrib. Comput. 67 (2007) 318–335

many scenarios. For example, a database server with too
many admitted transactions, cannot simply kill web server
threads to get rid of thrashing. This may result in a viola-
tion of the system’s integrity which, in return, could im-
pose longer periods of recovery. 5

Linux’ interference with our admission controller (by im-
posing its own admission control) makes it impossible for
us to assess the true impact of a RoQ attack once Linux
starts its own thrashing prevention measures. Thus our
experiments were only carried out under moderate load
levels—i.e., at thrashing levels that did not trigger Linux’s
thread-killing measures. This naturally puts an upper-limit
on the achievable potency values that we are able to ob-
serve and reliably measure in our laboratory experiments.
In other words, the results we report should be viewed
as lower bounds on the achievable potencies. Indeed, they
will tend to be lower than those predicted analytically,
since our models did not account for the existence of an
outside mechanism (namely Linux’ behavior in overloads)
that “clears” thrashing.

(2) Httperf [36], which we use to generate HTTP requests,
is not a perfect open-loop load generator. In particular, a
client cannot open new connections when there are more
than 1024 requests pending (this is an operating-system
limitation on the number of open file descriptors). Having
more machines to generate requests could indeed simulate
a “more open-loop” system. In our experiments, we used
four machines to generate requests.

Given the above two limitations, the potency values reported
next are lower than those obtained analytically, and lower than
what would be possible in a real setting—they should be inter-
preted as lower bounds; potencies of real attacks could well be
much higher.

3.4.1. Experimental setup
Fig. 5 depicts the experimental setup we used in running our

experiments. It consists of a server machine (S) running Mini-
httpd [34] web service and four client machines (C1, C2, C3
and C4) generating web traffic. We have implemented an ad-
mission controller to the web server, where requests from the
clients are admitted to the server based on a dynamically ad-
justed admission ratio. The clients and the server are connected
through a 2-hop switched LAN with 100 Mbps link capacities.
All machines run Linux 2.4.20. The clients use Httperf [36] to
generate their web traffic.

A client (Ci) is configured to send cgi requests to the server
(S) through HTTP 1.0. Upon an arrival of a request, the server
admits or rejects the request based on the admission ratio. For
each admitted request, the server forks a new thread, which
executes a cgi script. Each cgi script accesses 1 Mbit of memory
and returns 4 Kbit of data back to the client. Under normal

5 In database end-systems, recovery could be very costly in terms of CPU
cycles as well as I/O, due to rolling back of uncommitted transactions to
insure database integrity.

C1

C2

C3 S

C4

Other Lab traffic

share this link

Fig. 5. Experimental setup used in our empirical evaluation.

conditions, it takes around 20 ms to respond to a single
request. 6 If the server does not have additional resources
to fork a new thread, the request is queued and the server
would postpone forking a new thread until a later time, when
resources become available.

3.4.2. RoQ exploit of the admission controller
Our first set of experiments demonstrates the impact of RoQ

attacks on the PI admission controller outlined above. We have
instantiated the target of the PI controller to be the memory uti-
lization, measured as the ratio between used (physical) mem-
ory and total (physical) memory. When memory utilization is
very high, frequent paging activities cause the system to thrash
and as a result the service rate will dramatically decline. RoQ
attacks then would push the system into thrashing, causing a
decline in the admission ratio and hence a denial of service
to legitimate requests for a long period of time until thrashing
clears up. This process would repeat once the system recovers.

Fig. 6(left) illustrates the evolution of the admission ratio as
a function of time. Under normal workload conditions (i.e., no
overloading), the memory utilization is fairly low, and the ad-
mission ratio is about 1. At time 120, 800 requests are injected
as a RoQ attack is initiated. As a result, the system is pushed
into thrashing causing high memory utilization and associated
paging activities. This inefficient period lasts for more than
200 s, until around time 500 when the admission controller re-
covers to admitting all legitimate requests. At time 740, another
800 requests are injected causing the same scenario to repeat.
When K was chosen to be 0.01, the RoQ attacks achieved a po-
tency of 8, i.e., a single attack request caused denial of service
for eight legitimate requests.

Fig. 6(center) shows the effect of different K values on
potency. As K gets larger, the potency decreases. Notice the
resemblance in the trend between Fig. 6(left) and Fig. 4(left and
centre) (obtained analytically), and also between Fig. 6(center)
and Fig. 4(right) (also obtained analytically).

6 While accessing 1 Mbit of memory may seem a lot of memory for a
simple web request, existing services such as back-end database servers and
transaction web services could easily require more that figure of memory
access to handle one request.

M. Guirguis et al. / J. Parallel Distrib. Comput. 67 (2007) 318–335 327

0 200 400 600 800 1000 1200 1400
0

0.2

0.4

0.6

0.8

1

Time (units)

Admission Rate
RHO

0 0.02 0.04 0.06 0.08 0.1 0.12
0

1

2

3

4

5

6

7

8

9

K

P
o
te

n
c
y

0 10 20 30 40 50 60
0

5

10

15

20

Delay (s)

P
o
te

n
c
y

Fig. 6. Admission ratio and memory utilization under attack (left), effect of K on the potency (center) and effect of feedback delay on the potency (right).

3.4.3. Impact of feedback delay
In the experiments above, the effect of feedback delay was

ignored. In these experiments, we assess RoQ exploits when
the effect of feedback delay is taken into consideration. Feed-
back delay could arise from possibly several non-exclusive sce-
narios. First, feedback delay may arise from delay in measure-
ments due to averaging for example. Methods like Exponential
Weighted Moving Average (EWMA) for instance, tend to use
a smoother value for control that is different from what is in-
stantaneously experienced by the system. Second, the effect of
feedback delay could be inherent in the design/architecture of
the system. For instance, the measurement component could be
located on a machine different from the one where control is
applied. We modified our control rules to keep a short history
of past utilization measurements, and applied the control rules
on past values rather than the latest. Fig. 6(right) shows how
the potency increases as feedback delay increases. When the
feedback delay is around 60 s, the potency is higher than 18!
Intuitively, long feedback delays have the effect of admitting
more requests at the beginning since the admission controller
does not know about the system state and whether it is thrash-
ing. This confirms the known impact of feedback delay on the
stability of control systems by causing them to become unsta-
ble, and in our case here, more vulnerable to RoQ exploits.

3.4.4. Admission control versus multiprogramming control
One of the main reasons making the admission controller in

our experiments susceptible to RoQ exploits, is that the Mini-
httpd server [34] blindly keeps forking threads as requests keep
arriving, leaving the system at the mercy of its admission con-
troller. Other web servers, such as Apache [4], maintain a fixed
thread pool to prevent operating in an overload or a thrashing
regime. A request is only processed when a pool thread is avail-
able. Effectively, this approach limits the level of concurrency
(or multiprogramming level) in the system.

Indeed, having a fixed thread pool reduces the impact of RoQ
attacks, but this comes at a cost—namely, there is a serious
risk that the web server might become underutilized. Since
requests could have very different characteristics, in terms of
the resources they require, having a fixed pool of threads, and
assuming the worst-case scenario, would prevent the web server

from adapting to different mixtures of requests. In fact, this
has prompted research studies into how the thread pool size
may be adjusted dynamically based on the profiles of current
(or recent) requests in the system [45,17].

Having a dynamically adjustable thread pool size is simply
another paradigm for implementing admission control, and thus
could itself be the target of RoQ attacks. Indeed, thread-pool-
size adaptation could be exploited by forcing the thread pool
size to oscillate between its two extremes (for example, by al-
ternately subjecting the system to short requests, that do not
take a lot of resources and long requests that would consume a
lot of resources, which will cause the pool size to keep chang-
ing). Such tradeoff is very important to highlight. Do we want
systems that are more resilient to attacks but less efficient, or
systems that are efficient but susceptible to attacks?

3.4.5. Alternatives to admission control
In our analysis and experiments, we have assumed that upon

the onset of thrashing, requests are “rejected”. There are other
alternative approaches that could be adopted in overload situ-
ations. For instance, content adaptation controllers are used to
reduce the quality of the content serviced when the system is
deemed to be operating under overload conditions. Another al-
ternative would be to delay (or buffer) the requests until the
system is operating efficiently. While such approaches may ap-
pear as possible defenses against RoQ exploits, they simply
change the nature of damage.

For example, within the context of a content adaptation
controller, an attacker’s goal may well be to reduce the quality
of the content returned to legitimate users. To that end, one
can instantiate the model presented in Section 2 in such a way
so as to capture the quality of the content as a function of the
load on the system. Notice that since the degraded content is
pre-computed and stored to avoid the overhead of real-time
transcoding, the degradation would typically proceed in a few
pre-defined discrete steps. A natural metric to capture the dam-
age would be the difference in quality of the content before
and after the attack. RoQ exploits of content adaptation con-
troller will likely yield a high potency since it is hard for the
system to figure out when to revert back to serving full content
[1]. Reverting early would cause an instant overload situation.

328 M. Guirguis et al. / J. Parallel Distrib. Comput. 67 (2007) 318–335

Thus, it would typically take the system a long period of time
to recover, during which, degraded content will be serviced.
Another possible attacker’s goal is to cause inconvenience
(e.g., answering challenges) for legitimate users, with the hope
of driving some of them away from using the service. This
can be achieved by exploiting adaptation mechanisms that are
used to differentiate between real users and zombie clients in
overload situations [26].

The use of buffering as an approach for overload mitigation
is not practical either, since for many applications, the added
delays may introduce unintended consequences (e.g., trigger-
ing timeouts at other layers, which will effectively result in
a DoS). Buffering (as a defense mechanism against RoQ ex-
ploits) simply changes the nature of damage—from a reduction
in the capacity of the system to an increase in the response
time of the system. In the next section, we study the impact of
RoQ attacks that aim to increase the response time of the sys-
tem; we do so by exploiting the adaptation dynamics in a load
balancing setting.

4. RoQ attacks on load balancers

4.1. Adaptation through load balancing

Load balancers are integrated in the design of many end-
systems to ensure efficient resource utilization and improved
performance through load distribution. Generally speaking,
load balancing mechanisms could be classified into two cat-
egories: static and dynamic. Static load balancers use a pre-
scribed assignment strategy (such as round-robin or weighted
round-robin) to make load distribution decisions [18,15]. Dy-
namic load balancers, on the other hand, rely on feedback from
the resources they manage to inform their assignment deci-
sions. In this section, we present a detailed model for studying
the vulnerabilities of dynamic load balancers. We limit our ex-
position to load balancers employed in server farms. However,
we believe that the model we present can be extended to load
balancing solutions deployed in other settings, such as routers
and network switches, routing protocols, firewalls and traffic
shapers.

4.2. Model derivation

Consider the setup illustrated in Fig. 7, consisting of N iden-
tical servers and a load balancer. Requests arrive according to a
Poisson process with an average rate of � requests per second
to the load balancer. All requests are assumed to be identical
and each requires a fixed service time of Ts seconds. 7 The of-
fered load, in terms of �, should always be less than the total
service rate for all servers—otherwise the servers would not
be able to handle the request stream whether load balancing is
used or not. The load balancer picks the server that is to han-
dle an incoming request based on some load balancing policy.

7 We relax this assumption in our experiments, where we use heavy-tailed
distributions for the service time.

Server

1

Arrivals

Departures

Load

Balancer

Server

2

Departures

Server

N

Departures

:

Fig. 7. The general setup we consider for load balancing composed of a load
balancer and N identical servers.

Table 2
Parameters of the model used to analyze potency of RoQ exploits on
proportional-control balancing policy

Parameter Description

N Number of servers
�n(.) Admission ratio for server n
qn(.) Number of requests in queue for server n
� Rate of arrival of requests
Ts Service time
� Proportional-control balancing constant
Tq Response time under no attack
T́q Response time under attack
T̄q Response time under smoothed attack
DA Absolute damage
DS Sensitivity damage
� Service rate
� Attack rate
� Attack duration
T Attack period

Under a static policy and assuming symmetry, the load balancer
would assign 1

N
of the arrivals to each server. Under dynamic

load balancing, the load balancer would determine the admis-
sion ratio for each server based on the loads reported back from
the servers.

Table 2 summarizes the notation and the description of the
parameters used in our model.

Instantiating our general model of Section 2, the pricing func-
tion of the load balancer is given by the relationship between
the response time of requests (prices) and the number of pend-
ing requests inside the server (load). The latter is function of
both the admission ratio to that server and its service rate.

We consider the same RoQ attack pattern we considered in
the previous section. However, in this setting, the attacker can
distribute the attack magnitude M over one or more servers. It
is possible for the attacker to bypass the load balancer, since
load balancers in web-server setting adopt the “sticky connec-
tion” feature. This feature ensures that connections originating
from the same client, over a period of time set by the “sticky
timer”, would always be directed to the same real server. While
this feature is essential in maintaining sessions to track users,
an attacker can now distribute its attack magnitude in any ar-
bitrary manner across the servers, bypassing the load balancer.

M. Guirguis et al. / J. Parallel Distrib. Comput. 67 (2007) 318–335 329

Of course, if the servers have public IP addresses, the attacker
does not need to leverage this feature as it is able to send the
burst directly to the intended server(s). Throughout this section,
we assume M would be distributed uniformly at random over
the number of attacked servers.

A natural goal of a RoQ exploit on an load balancer is to
maximize the damage caused by a periodic adversarial attack
of magnitude M, where damage constitutes the additional de-
lay that legitimate requests will experience. We instantiate two
different metrics for computing the damage.

Absolute damage (DA):

One can capture the damage resulting from this attack by the
additional delay legitimate requests experience in comparison
with their response time when the attack is not launched. In
that case the absolute damage, DA is given by

DA = (T́q − Tq) × T �, (21)

where T́q is the average response experienced by legitimate
requests under attack and Tq is the average response time under
no attack.

Sensitivity damage (DS):

One can also capture the damage resulting from this attack
by the additional delay that legitimate requests experience, in
comparison with another system where the attack burst would
be smoothed over time according to another Poisson Process
with a different arrival rate, through the load balancer. Thus
this damage measures the sensitivity of the response time to
the burstiness of the attack traffic, as opposed to the magnitude
of the attack traffic. In particular, the damage, DS is given by

DS = (T́q − T̄q) × T �, (22)

where T̄q is the average response time these requests would
have experienced, if the attack burst was smoothed over time.
Clearly, the absolute damage is larger than the sensitivity dam-
age, since Tq is always less that T̄q due to the absence of attack
traffic. 8

We now turn our attention to calculating the cost (to the
attacker) for mounting the attack. Such cost can be captured
by several metrics, including the attack magnitude, M, or the
attack rate, M

T
. We chose to define the cost as the time spent by

the attack requests in service. This metrics reflects the capacity
(or “energy”) used by the system to process the adversarial
workload. In particular, the cost, C is given by

C = M × Ts. (23)

Using the expressions for damage (D) and cost (C), one can
compute the attack potency using the definition in equation (1),
where D could be instantiated as the absolute damage or the
sensitivity damage (DA or DS).

8 Using M/D/1 queuing model, we calculate Tq , T́q and T̄q based on the
attack parameters [22].

Notice that our choice of both metrics, damage and cost, as
units of time enables us to have a unit-less metric (the potency)
which describes the trade-offs in time. For example, a potency
of 100, would mean that for every second, the attack requests
spend in service, 100 s of additional delay get added to the
response time for the legitimate requests.

Consider a dynamic discrete-time model, where servers re-
lay their load to the load balancer in order to influence future
balancing decisions. Let qn(i) denote the queue size, at time i,
for server n. The queue size evolves according to the following
equations:

qn(i) = qn(i − 1) + �n(i)� − �n, (24)

where �n(i) is the percentage of requests admitted to server n—
a percentage that is set by the load balancer. �n is the service
rate for server n. 9 Clearly,

∑N
n=1 �n(i) at any time instant, i,

is 1. Eq. (24) is bounded from below by 0. 10

Ideally, servers should measure their load and report that
back to the load balancer. We use the queue size as a load
metric—the larger the queue size, the more loaded the server is.
We relax this assumption in our experimental evaluation since
we allow requests to be of different sizes.

Periodically, servers will relay their loads to the load-
balancer. The load balancer would then adjust the admission
ratio for each server based on the load-balancing policy. We
have studied few of the most-commonly used mechanisms
[18,15] in a recent work of ours [22]. We present only the
proportional-control balancing policy here.

Ideally, the load balancer should match the queue sizes. A
simple controller to achieve such a goal can be described by
the following proportional controller:

�n(i) = 1

N
+ �

N∑
j=1

(qj (i − 1) − qn(i − 1)), (25)

where �n(i) is adjusted based on the differences between queue
sizes. �, a key parameter in the controller, is introduced to
smooth out the difference for stability reasons. Notice that in-
stantaneous queue size will likely exhibit oscillations that would
prevent it from being used directly as an accurate measure of
load, unless reported instantly to the load balancer. 11 How-
ever, due to the feedback delay coupled with the overhead of
communicating instantaneous queue sizes to the load balancer,
a more smoothed signal is used. One can easily see that when
all servers have the same queue size, �n(i) will be 1

N
. Also, at

any time instant i,
∑N

j=1 �j (i) will be 1.

9 Throughout this paper, we assume all N servers have the same service
rate �, thus we occasionally drop the superscript.

10 In our analysis, we assume infinite queue size and hence no bounds from
above.

11 Indeed, if instantaneous load measures are reported instantly to the load
balancer, the load balancer could perfectly adapt to noisy/short-term changes.
Communicating instantaneous measures may not be feasible in practice.

330 M. Guirguis et al. / J. Parallel Distrib. Comput. 67 (2007) 318–335

0 20 40 60 80 100
0

20

40

60

80

100

120

Time (sec)

Q
u
e
u
e
 S

iz
e

Server 1
Server 2

0 20 40 60 80 100
0

20

40

60

80

100

120

Time (sec)

Q
u
e
u
e
 S

iz
e

Server 1
Server 2

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Time (sec)

R
a
ti
o

Fig. 8. Vulnerability of load balancing under proportional control: simulation results (left) and numerical solutions (center) and (right).

4.3. Numerical solution

We now solve the above difference equations numerically to
capture the effect of the attack traffic. For simplicity, we ignore
the stochastic effect of the request arrival process and present
results under a fluid model.

In a smooth fluid model, as long as the arrival rate is less
than the service rate, there will be no queuing. However, if the
arrival rate exceeds the service rate, queuing would occur. We
will also validate our model with simulation results, which will
show that despite the limitations of the fluid model, the nu-
merical solutions we derive still capture the essential dynamics
involved, enabling us to accurately assess the damage inflicted
by an adversary.

Notice that due to the absence of stochastic effects, we cannot
differentiate between the case when the attack traffic is not
present versus when the attack traffic is smoothed, since in both
cases the queue size would be zero as the arrival rate never
exceeds the service rate. Hence, we give only the damage as
the increase in response time observed by legitimate requests
compared to observing an empty queue (of size 0).

We take N equal to 2, and we assume that requests arrive
with a rate � = 15 requests per second, that the service time
Ts is fixed to 0.1 s, and that the attack burst of magnitude 100
arrives to one of the servers and is repeated every attack period
of 50 s.

Fig. 8 illustrates the results we got from using a proportional-
control balancing policy. We have chosen � to be 0.003.
Fig. 8(left) show the queue sizes for both servers as the attack
is launched on server 1, results obtained from a simulation
experiment under the same parameters. Fig. 8(center) show the
queue sizes obtained from the numerical solution. Notice that
the results match pretty well. Fig. 8(right) shows the admission
ratio for server 2 obtained from the numerical solution.

Unlike the static balancing policy which would have affected
only one server, the attack had an impact on both servers, even
though only one of them was targeted by the adversary. This
is the result of the dynamic load balancer’s diversion of sub-
sequent requests to the other server, which temporary exceeds
its service rate causing queuing. Notice that the attacked server
was able to get rid of the burst and return to its normal opera-
tion at around time 22 s (as opposed to 40 s, in the static case

with same parameters). However, for the other server, the situa-
tion is different. It has to deal with the extra load being diverted
to it. That is why we see an increase in its queue size before
it can also get back to its normal operation. The above attack
resulted in an attack potency of 65 using the absolute dam-
age metric and 56 using the sensitivity damage metric. These
results are computed in simulation experiments averaged over
10 independent runs. The potency we got from the numerical
solution was pretty consistent at 73.

Fig. 9(left) shows simulation results obtained from a setup
with 6 servers. We vary the number of servers attacked (on the
x-axis) from 1 to 6 and we plot the absolute potency on the
y-axis, for different � values. Each point is averaged over 10
independent runs. One can see the impact of the parameter �
on the potency. Notice also that attacking one server is the best
attack strategy under static load balancing. We also plot the
optimal load balancing policy (which is simply making instan-
taneous decisions based on clairvoyant knowledge of attack pa-
rameters). While such “optimal” load balancer is impossible to
implement in practice, the presentation of these results is use-
ful as they show a lower bound on the achievable potencies.
Distributing the attack traffic over all servers, is the best attack
strategy (highest potency) under optimal balancing. In general,
the optimal number of servers to attack is a function of the �
parameter.

Fig. 9(right) shows the impact of a 10-s feedback delay on
the absolute potency under the proportional load balancer with
different values of �. Notice that the large � values that de-
creased the potency close to the optimal when no feedback de-
lay was present (Fig. 9(left)), are now the ones that cause the
maximum potency (� = 0.0015 and 0.0009). That is because
the load balancer is reacting in the wrong manner (aggressively)
and at the wrong time (too late). In these cases, it is better not
to do dynamic load balancing, i.e., switch to static load bal-
ancing instead. If � is small, however, the load balancer reacts
slowly and becomes less sensitive to the feedback delay.

4.4. Internet experiments

To validate the results we obtained, we have experimented
with the proportional-control load balancing policy. Additional
results could be found here [22].

M. Guirguis et al. / J. Parallel Distrib. Comput. 67 (2007) 318–335 331

1 2 3 4 5 6
0

20

40

60

80

100

120

140

160

Attacked Servers

P
o
te

n
c
y

Optimal

Beta = 0.0015

Beta = 0.0009

Beta = 0.0003

Beta = 0.00015

Static

1 2 3 4 5 6
0

50

100

150

200

Attacked Servers

P
o
te

n
c
y

Optimal

Beta = 0.0015

Beta = 0.0009

Beta = 0.0003

Beta = 0.00015

Static

Fig. 9. Vulnerability assessment for proportional load balancer in comparison to the static and the optimal load balancing policies: without feedback delay
(left) and with feedback delay of 10 s (right).

0 50 100 150 200 250 300
0

5

10

15

20

25

30

35

40

time

Q
u
e
u
e
 S

iz
e

Server1

Server2

0 50 100 150 200 250 300
0

5

10

15

20

25

30

35

40

time

Q
u
e
u
e
 S

iz
e

Server1

Server2

0 50 100 150 200 250 300
0

5

10

15

20

25

30

35

40

time

Q
u
e
u
e
 S

iz
e

Server1

Server2

Fig. 10. Performance of a proportional balancer (� = 0.003): no attack (left), attack traffic is smoothed (center), and under attack (right).

4.4.1. Experimental setup
Fig. 7 depicts the experimental setup we used in running

our experiments. It consists of a machine running the load bal-
ancer, and two machines running MINIHTTPD [34], and several
client machines generating web traffic using HTTPERF [36]. All
machines are of 1 Ghz/256 MB AMD Athlon(tm) and running
Linux 2.4.20. We modified MINIHTTPD and HTTPERF to com-
municate with the load balancer, which is responsible for se-
lecting a server for each client request. For each connection
request, the load balancer will select a MINIHTTPD server ac-
cording to the load balancing policy. As a result, the client
initiating the request will establish a normal HTTP connection
with the selected MINIHTTPD server. Feedback information is
sent by every MINIHTTPD server periodically to the load bal-
ancer. Linux does not provide any system calls for applications
to get the listen queue size. Thus, we use the number of active
requests (accepted connections) as an approximation of the to-
tal number of pending requests, which constitute the feedback
signal to the load balancer. This is similar to what most soft-
ware monitoring solutions report to load balancers in practice.
Since MINIHTTPD will fork a new thread for each new accepted
connection, the queue size is also the number of currently run-
ning threads that deal with the requests in the system. The

multithreaded nature of MINIHTTPD implies that multiple re-
quests can be handled by different threads in a round-robin
manner (as opposed to a pure queuing model).

In our experiments, we set the number of servers to two. Each
experiment lasts for 310 s. The attack requests are sent to one
of the server bypassing the load balancer. As mentioned before,
this can be achieved in practice by using the sticky connection
feature found in most load balancers. The request service time
follows a Pareto distribution to reflect the highly variable nature
of HTTP connection time—e.g., due to the heavy-tailed nature
of file size distributions [5], for example. The parameters of
the Pareto service time distribution was set to (2,0.05) with an
upper bound of 250 s and a mean of 100 ms. Request arrivals
follow a Poisson process with a mean rate of 15 requests/s. The
attack workload was chosen to consist of 100 attack requests
that are injected every 50 s for five times. All experiments are al-
lowed to warm-up for 60 s before measurements were collected.
Fig. 10 shows the queue size for both servers under no attack
(left), when attack traffic is smoothed (center) and under attack
(right). The above experiments resulted in an attack potency of
more than 50 using the absolute damage metric and more than
40 using the sensitivity damage metric. Additional experiments
could be found here [22].

332 M. Guirguis et al. / J. Parallel Distrib. Comput. 67 (2007) 318–335

5. RoQ implications and defense mechanisms

5.1. Measurement-based on-line tuning of RoQ attacks

The knowledge of the exact recovery time enables an at-
tacker mounting RoQ exploits to optimize its attack parameters
so that bursts would arrive in the correct time. If the attacker
under estimates the exact recovery time, two bursts would be
close to each other and would result in an increase in the over-
all “cost” in mounting the attack. Similarly, if the attacker over
estimates the exact recovery time, two bursts would be far from
each other and would decrease the overall “damage”. In both
cases, the attacker would still cause harm, but only with a lower
potency value. In some settings, the knowledge of the system
recovery time is easy to obtain. For example, an attacker mount-
ing a RoQ exploit on a content adaptation controller can de-
termine exactly when the system has recovered, by observing
the quality of the content serviced. In other settings, this could
be more challenging. A promising approach to correctly time
the attack traffic is to use measurements to probe the state of
the system. Consider RoQ exploits on admission controllers; it
is reasonable to assume that the attacker can send few prob-
ing requests over time and following an attack burst. Based
on the number of these probes that got admitted, an attacker
can estimate the admission ratio (perhaps with some measure-
ment error). This will enable the attacker to effectively figure
out whether the admission controller has recovered or not and
more importantly when is the best time to repeat its attack. A
similar approach would be used in a load balancing setting,
based on the response time of the attacker’s own requests. Once
requests start taking the minimum response time, the attacker
can tell that the load balancer has recovered. Notice that such
measurement-based on-line tuning of RoQ attacks could ren-
der some defenses ineffective, if such defenses rely on figuring
out the attack periodicity, for example.

5.2. Detection and trace-back

An adversary mounting a RoQ attack does not have to
overwhelm the system constantly in order for its attack to be

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Time

R
a
ti
o

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Time

R
a
ti
o

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Time

R
a
ti
o

Fig. 11. Simulation results for the admission ratio for a single server under a proportional balancing policy: � fixed at 0.003 (left), � fixed at 0.03 (center),
and � is adapted over time to mitigate the impact of the attack (right).

effective. Moreover, the transients induced by the attack are
not much different from those that are possible under normal
operation (except that they do not subside). These dimensions
of RoQ attacks make it challenging for an end-system to even
realize that it is under attack. Notice that tracing back the per-
petrators and taking counter measures is challenging since the
attacker could be launching its attack through zombie clients,
with different IP addresses. This adds to the complexity of de-
tection and trace-back.

5.3. Possible defense mechanisms

From our analysis and experimental evaluation of the various
exploits of system dynamics, it is evident that tuning control
parameters—such as K in the admission controller and � in the
proportional control load balancer—results in different system
behaviors. In particular, these parameters expose the tradeoffs
between efficiency and tolerance to RoQ exploits. Tuning them
to achieve the best performance may lead to settings that would
make the system quite vulnerable to RoQ exploits. On the other
hand, selecting parameters that may minimize the damage from
RoQ exploits may lead to very inefficient (or sluggish) “normal”
operation. This suggest that it could be advantageous for these
parameters to be adjusted on-line, based on whether or not
the system is suspected to be under a RoQ exploit. The goal
of a defense mechanism is to mitigate the effect of the attack
without compromising the performance when no attacks are
present.

To that end, we give a flavor of such possible defense mecha-
nism based on some simulation results, in which we adapted in
an on-line fashion the parameter � for the proportional-control
load balancer.

For load balancers, Fig. 11(left) shows the admission ratio
for one of the two servers in our experiments when � was set to
0.003. Fig. 11(center) shows the admission ratio for one of the
two servers when � was set to 0.03. Fig. 11(right) shows the ad-
mission ratio for one of the two servers when � was allowed to
dynamically adapt. One can easily see that such adaptation has
the benefit of reacting fast to sudden changes (during attack)

M. Guirguis et al. / J. Parallel Distrib. Comput. 67 (2007) 318–335 333

and also of having a smooth operation when changes are not
significant (legitimate burstiness).

Similarly, for admission controllers, the parameter K (the
gain of the admission controller) could be adjusted in an on-
line fashion, so as to react faster when there are sudden changes
and slower when the changes are not significant.

6. Related work

The work presented in this paper relates to a fairly large body
of literature. We briefly exemplify the different dimensions of
this body of work below.

6.1. End-system adaptation mechanisms

End-systems employ different forms of adaptation mecha-
nisms. (1) Admission control strategies are employed in op-
erating systems (by suspending or terminating processes) to
ensure that virtual memory performance is not compromised
as a result of excessive swapping [47,45]. They are employed
in real-time and multimedia systems to ensure that the QoS of
admitted tasks is not compromised when additional tasks are
admitted into the system [27,11,14,41]. They are employed in
web/media server designs to ensure that a maximum response
time is not exceeded [25,42,12,13,43]. (2) Content adaptation
mechanisms are employed to mitigate the overload conditions
by reducing the quality/quantity of the content serviced. They
are employed in a wide range of setups; from web content
adaptation [1,39] to multimedia service rate adjustments [44],
among others. (3) Load balancers are integrated in the design
of most scalable and distributed applications and services. Typ-
ically, they are embedded as part of the infrastructure support-
ing these applications and services—e.g., as part of routers
and network switches [15,16], routing protocols [19], firewall
and traffic shapers [37,18], HTTP and database server farms
[31–33,24], among others. These techniques, however, did not
investigate the adversarial exploitation of the adaptation dynam-
ics for the purpose of reducing one or more aspects of service
quality, or of efficiency. Rather, they focused mostly on tuning
the adaptation mechanism to ensure the quiescent operation of
the end-system behind it.

6.2. Control-theoretic modeling and analysis

Marshaling techniques from control and optimization the-
ory has been a fruitful direction as evidenced by the works in
[3,40,2,7,29,17]. In that respect, we single out the works in
[3,40], which investigated the use of a PI controller to adjust the
admission ratio for an Apache Web server in order to operate
in a stable manner. In [2], a feedback control loop was incorpo-
rated in an Apache web server in order to adjust the relative de-
lays for different classes through dynamic scheduling. In [29],
Q-PID, a new admission control mechanism, was introduced.
The idea is to adjust the admission ratio in order to guarantee
a bounded response time for the users. In [7], nonlinear opti-
mization theory was used to optimize the performance of web

servers through breaking sessions into stages and performing
admission control with an eye on maximizing an application-
specific reward function. Again, these studies did not focus on
the adversarial aspect we considered in this paper, but rather
on controlling and optimizing the web server behavior. Indeed,
they did not even recognize or consider the adaptation strate-
gies that they advocated as potential vulnerabilities worthy of
characterization.

6.3. RoQ versus other attacks

DoS attacks [10,8] and its many variants [9] could be char-
acterized as targeting one dimension of a system’s service
quality—namely, its availability. There are a number of papers
that classify various forms of DoS attacks; examples include
[23,35,30]. Using our model, DoS attacks could be classified
as RoQ attacks with an infinite aggressiveness index (defined
in Section 2), which imply that the attacker’s ultimate goal is
to maximize the damage at any cost. In this paper, we have fo-
cused on attacks whose perpetrators are not focused on denying
access (i.e., targeting availability), but rather they are focused
on bleeding the system of its capacity, or simply pushing it to
operate in inefficient operating regions to reduce some aspect
of service quality. More importantly, in this paper, we have fo-
cused on the harder-to-detect, low-intensity attacks, i.e., with
modest aggressiveness compared to the aggressiveness required
for DoS attacks. On the other hand, the “shrew” attack pro-
posed in [28] is an example of a low-intensity, harder to detect
attack which targets a set of flows to cause them to timeout.
Clearly, the scope of shrew attacks is limited to targeting TCP
flows which employ the timeout mechanism. RoQ attacks have
much broader scope for targeting adaptation mechanisms that
can be found in modern computing systems.

7. Conclusion

In this work, we exposed variants of RoQ attacks that target
end-systems through exploiting the transients of their adapta-
tion mechanisms. RoQ attacks are identified as those attempt-
ing to maximize the marginal utility of the attacker’s workload
(attack “Potency”). We used a control-theoretic framework to
underline the complex interplay between the efficiency–load
behavior of a resource and the adaptation mechanisms of both
the resource and its consumers. We have instantiated this frame-
work, using more detailed models, on admission controllers
and load balancers. We have shown that RoQ attacks can in-
troduce significant inefficiencies or can increase the response
time of legitimate requests, while evading detection by con-
suming a small portion of the hijacked capacity over long-
time scales. We confirmed our findings through real Internet
experiments performed in our lab. We believe that it is very
important to develop a general understanding of the design prin-
ciples that could be adopted to protect against RoQ exploits.
In particular, the tradeoff between performance under normal
operation and resiliency against RoQ exploits is important to
highlight.

334 M. Guirguis et al. / J. Parallel Distrib. Comput. 67 (2007) 318–335

References

[1] T.F. Abdelzaher, N. Bhatti, Web content adaptation to improve server
overload behavior, Comput. Networks 31 (11–16) (1999) 1563–1577.

[2] T. Abdelzaher, C. Lu, Modeling and performance control of internet
servers, in: Proceedings of the 39th IEEE Conference on Decision and
Control (ICDC), Sydney, Australia, 2000.

[3] M. Andersson, M. Kihl, A. Robertsson, Modelling and design of
admission control mechanisms for Web servers using non-linear control
theory, in: Proceedings of ITCom, 2003.

[4] Apache HTTP Server, 〈http://httpd.apache.org〉.
[5] M. Balter, M. Crovella, C. Murta, On choosing a task assignment policy

for a distributed server system, J. Parallel Distrib. Comput. 59 (2) (1999)
204–228.

[6] A. Bestavros, N. Katagai, J. Londono, Admission control and scheduling
for high performance World Wide Web servers, Technical Report BUCS-
TR-1997-015, Boston University, Computer Science Department (August
1997).

[7] J. Carlstrom, R. Rom, Application-aware admission control and
scheduling in web servers, in: Proceedings of Infocom, 2002.

[8] C.C. Center, CERT Advisory CA-1996-21 TCP SYN Flooding and
IP Spoofing Attacks, 〈http://www.cert.org/advisories/CA-1996-21.html〉,
Original issue date: September 19, 1996.

[9] C.C. Center, Trends in Denial of Service Attack Technology—October
2001, 〈http://www.cert.org/archive/pdf/DoS_trends.pdf〉.

[10] C.C. Center, Denial of Service Attacks, 〈http://www.cert.org/tech_
tips/denial_of_service.html〉.

[11] S. Chatterjee, J.K. Strosnider, A generalized admissions control strategy
for heterogeneous, distributed multimedia systems, ACM Multimedia
(1995) 345–356.

[12] L. Cherkasova, P. Phaal, Session based admission control: a mechanism
for improving the performance of an overloaded Web server, Technical
Report HPL-98-119, HP Labs (June 1998).

[13] L. Cherkasova, P. Phaal, Predictive admission control strategy
for overloaded commercial Web server, in: Proceedings of Eighth
International Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems (MASCOTS), 2000.

[14] T. Chiueh, M. Vernick, An empirical study of admission control strategies
in video servers, in: Proceedings of the 1998 International Conference
on Parallel Processing, Minneapolis, MN, 1998, pp. 313–320.

[15] Cisco, Configuring Load Balancing on the CSS 11500,
〈http://www.cisco.com/warp/public/117/methods_load_bal.pdf〉.

[16] Cisco, Network Implementation, 〈http://www.cisco.com/univercd/cc/td/
doc/product/iaabu/localdir/ld20rns/ldicgd/ld3_ch3.pdf〉.

[17] Y. Diao, N. Gandhi, S. Parekh, J. Hellerstein, D. Tilbury, Using
mimo feedback control to enforce policies for interrelated metrics
with application to the apache web server, in: Proceedings of the
Network Operations and Management Symposium 2002, Florence, Italy,
2002.

[18] F5, BIG-IP Load Balancer Limited, 〈http://www.f5.com/f5products/
products/bigip/ltm/lbl.html〉.

[19] B. Fortz, M. Thorup, Internet traffic engineering by optimizing OSPF
weights, in: Proceedings of IEEE INFOCOM, 2000.

[20] M. Guirguis, A. Bestavros, I. Matta, Exploiting the transients of
adaptation for RoQ attacks on Internet resources, in: Proceedings of
the 12th IEEE International Conference on Network Protocols (ICNP),
2004.

[21] M. Guirguis, A. Bestavros, I. Matta, Y. Zhang, Reduction of quality
(RoQ) attacks on Internet end systems, in: Proceedings of INFOCOM,
2005.

[22] M. Guirguis, A. Bestavros, I. Matta, Y. Zhang, Adversarial exploits
of load balancers: vulnerability assessment and design tradeoffs, in:
Proceedings of INFOCOM, May, 2005.

[23] A. Hussain, J. Heidemann, C. Papadopoulos, A framework for classifying
denial of service attacks, in: Proceedings of the 2003 Conference on
Applications, Technologies, Architectures, and Protocols for Computer
Communications, ACM Press, New York, 2003, pp. 99–110.

[24] IBM, DB2 connection routing using Linux load balancing,
〈http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-
0410wright/〉.

[25] X. Jiang, P. Mohapatra, An aggressive admission control algorithms
for multimedia servers, in: Proceedings of International Conference on
Multimedia Computing and Systems, 1997, pp. 620–621.

[26] S. Kandula, D. Katabi, M. Jacob, A. Berger, Botz-4-Sale: surviving
organized DDoS attacks that mimic flash crowds, in: Proceedings of
NSDI, Boston, MA, 2005.

[27] E. Knightly, N. Shroff, Admission control for statistical QoS: theory and
practice, IEEE Network 13 (2) (1999) 20–29.

[28] A. Kuzmanovic, E. Knightly, Low-rate TCP-targeted denial of service
attacks (The Shrew vs. the Mice and Elephants), in: Proceedings of
ACM SIGCOMM’03, karlsruhe, Germany, 2003.

[29] S. Lim, C. Lee, C. Ahn, C. Lee, K. Park, An adaptive admission control
mechanism for a cluster-based web server system, in: Proceedings of
International Parallel and Distributed Processing Symposium (IPDPS),
Fort Lauderdale, FL, 2002.

[30] C. Meadows, A formal framework and evaluation method for network
denial of service, in: Proceedings of the 12th IEEE Computer Security
Foundations Workshop, 1999.

[31] Microsoft, SharePoint Services, 〈http://www.microsoft.com/resources/
documentation/wss/2/all/adminguide/en-us/stsf15.mspx〉.

[32] Microsoft, Network Load Balancing Technical Overview,
〈http://www.microsoft.com/technet/prodtechnol/windows2000serv/
deploy/confeat/nlbovw.mspx〉.

[33] Microsoft, SQL Server 2000 High Availability Series: Imple-
menting Network Load Balancing, 〈http://www.microsoft.com/technet/
prodtechnol/sql/2000/deploy/hasog04.mspx〉.

[34] mini_httpd: small HTTP server, 〈http://www.acme.com/software/
mini_httpd〉.

[35] J. Mirkovic, J. Martin, P. Reiher, A taxonomy of DDoS attacks and
DDoS defense mechanisms, Technical Report 020018, Computer Science
Department, University of California, Los Angeles.

[36] D. Mosberger, T. Jin, Httperf: a tool for measuring web server
performance, in: Proceedings of the First Workshop on Internet Server
Performance (WISP ’98), Madison, WI, 1998.

[37] Nortel, Alteon Web OS Traffic Control, 〈http://www.
nortelnetworks.com/products/01/webos/index.html〉.

[38] K. Ogata, Modern Control Engineering, fourth ed., Prentice-Hall,
Englewood Cliffs, NJ, 2002.

[39] R. Pradhan, M. Claypool, Adaptive content delivery for scalable Web
servers, in: Proceedings of the International Network Conference (INC),
Plymouth, United Kingdom, 2002.

[40] A. Robertsson, B. Wittenmark, M. Kihl, Analysis and design of admission
control systems in Web-server systems, in: Proceedings of American
Control Conference (ACC), 2003.

[41] S. Son, K. Kang, QoS Management in Web-based real-time data
services, in: Proceedings of the Fourth IEEE International Workshop on
Advanced Issues of E-Commerce and Web-Based Information Systems
(WECWIS’02), Newport Beach, California, 2002.

[42] T. Voigt, Overload behaviour and protection of event-driven Web servers,
in: Proceedings of International Workshop on Web Engineering (in
conjunction with Networking 2002), Pisa, Italy, 2002.

[43] T. Voigt, P. Gunningberg, Handling multiple bottlenecks in Web servers
using adaptive inbound controls, in: Proceedings of Protocols for High-
Speed Networks, 2002, pp. 50–68.

[44] X. Wang, H. Schulzrinne, Adaptive reservation: a new framework
for multimedia adaptation, in: Proceedings of the IEEE International
Conference on Multimedia and Expo (ICME), New York, NY, 2000.

[45] M. Welsh, D. Culler, Overload management as a fundamental service
design primitive, in: Proceedings of the Tenth ACM SIGOPS European
Workshop, Saint-Emilion, France, 2002.

[46] M. Welsh, D. Culler, Adaptive Overload Control for Busy Internet
Servers, in: Proceedings of the 4th USENIX Conference on Internet
Technologies and Systems (USITS), 2003.

[47] M. Welsh, D.E. Culler, E.A. Brewer, SEDA: an architecture for well-
conditioned, scalable Internet services, in: Symposium on Operating
Systems Principles, 2001, pp. 230–243.

http://httpd.apache.org
http://www.cert.org/advisories/CA-1996-21.html
http://www.cert.org/archive/pdf/DoSprotect LY1	extunderscore trends.pdf
http://www.cert.org/techprotect LY1	extunderscore tips/denialprotect LY1	extunderscore ofprotect LY1	extunderscore service.html
http://www.cert.org/techprotect LY1	extunderscore tips/denialprotect LY1	extunderscore ofprotect LY1	extunderscore service.html
http://www.cisco.com/warp/public/117/methodsprotect LY1	extunderscore loadprotect LY1	extunderscore bal.pdf
http://www.cisco.com/univercd/cc/td/doc/product/iaabu/localdir/ld20rns/ldicgd/ld3protect LY1	extunderscore ch3.pdf
http://www.cisco.com/univercd/cc/td/doc/product/iaabu/localdir/ld20rns/ldicgd/ld3protect LY1	extunderscore ch3.pdf
http://www.f5.com/f5products/products/bigip/ltm/lbl.html
http://www.f5.com/f5products/products/bigip/ltm/lbl.html
http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0410wright/
http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0410wright/
http://www.microsoft.com/resources/documentation/wss/2/all/adminguide/en-us/stsf15.mspx
http://www.microsoft.com/resources/documentation/wss/2/all/adminguide/en-us/stsf15.mspx
http://www.microsoft.com/technet/prodtechnol/windows2000serv/deploy/confeat/nlbovw.mspx
http://www.microsoft.com/technet/prodtechnol/windows2000serv/deploy/confeat/nlbovw.mspx
http://www.microsoft.com/technet/prodtechnol/sql/2000/deploy/hasog04.mspx
http://www.microsoft.com/technet/prodtechnol/sql/2000/deploy/hasog04.mspx
http://www.acme.com/software/miniprotect LY1	extunderscore httpd
http://www.acme.com/software/miniprotect LY1	extunderscore httpd
http://www.nortelnetworks.com/products/01/webos/index.html
http://www.nortelnetworks.com/products/01/webos/index.html

M. Guirguis et al. / J. Parallel Distrib. Comput. 67 (2007) 318–335 335

Mina Guirguis is assistant professor of com-
puter science at Texas State University. He com-
pleted his Ph.D. in computer science at Boston
University in 2006. He received his Bachelor
degree in computer science and automatic con-
trol from Alexandria University in 1999 and his
MA degree in computer science from Boston
University in 2005. His research interests in-
clude security aspects in computing systems and
networks, sensor networks, overlays and P2P
networks.

Azer Bestavros obtained Ph.D. in Computer
Science from Harvard University in 1992. He
is Professor and Chairman of Computer Sci-
ence at Boston University. His research inter-
ests are in the general areas of networking and
real-time systems. His seminal works include
his probabilistic generalization of classical rate-
monotonic analysis, his pioneering of the push
model for Internet content distribution adopted
years later by CDNs, and his characterization of
Web traffic self-similarity and reference local-
ity. His research work has culminated so far in

10 Ph.D. theses, over 80 masters and undergraduate student projects, and two
startup companies. With over 3000 citations to his papers, CiteSeer ranks him
in the top 5% of its list of 10,000 most-cited authors in Computer Science.
His research has been funded by government and industry grants totaling
over $15M. He received distinguished service awards from both the ACM
and the IEEE, and is a distinguished speaker of the IEEE.

Ibrahim Matta received his Ph.D. in computer
science from the University of Maryland at Col-
lege Park in 1995. He is an associate professor
of computer science at Boston University. His
research involves routing and transport proto-
cols, focusing on resiliency and safety aspects.
He published over 70 refereed technical papers,
and was guest co-editor of three special jour-
nal issues. He received the National Science
Foundation CAREER award in 1997. He is on
the Editorial Board of the Computer Networks
Journal. He was General Chair of WiOpt’06,

Technical Program Co-chair of ICNP’05, Technical Program Co-chair of
SenMetrics’05, Internet Co-chair of Infocom’05, Publication Chair of Info-
com’03, and Tutorial and Panel Chair of Hot Interconnects’01. He was co-
organizer and Technical Program Co-chair of the EU-US NeXtworking’03.

Yuting Zhang completed her Ph.D. in Com-
puter Science at Boston University in 2006. She
received her Bachelor and Master degrees in
computer science from the University of Science
and Technology in Beijing. During the summer
of 2005 and the spring of 2006, she worked
at VMware as an intern in the resource man-
agement group. Currently, she is assistant pro-
fessor of computer science at Allegheny Col-
lege. Her research interests are in the general
areas of operating systems and networks. Her
research includes scheduling in multimedia and

embedded real-time systems, resource management in virtual execution en-
vironments, and network security. She has authored or co-authored about 10
papers published in different conferences and journals such as RTSS, INFO-
COMM, VEE, RTCSA, TOC. She has also served as a reviewer for RTAS’06,
RTSS’05, ECRTS’05, RTSS’04 and ISCC’04.

