
Stealing Bandwidth via Link-targeted Interference Attacks∗

MINA GUIRGUIS AZER BESTAVROS IBRAHIM MATTA
msg@cs.bu.edu best@cs.bu.edu matta@cs.bu.edu

Computer Science Department
Boston University
Boston, MA 02215

JULY 8, 2004

Abstract

We expose an adversarial attack scheme that aims to steal
bandwidth for the benefit of a particular set of flows through
lunching a distributed interference attack streams on com-
peting flows. The extent to which the interference attack
streams were successful in reducing or denying bandwidth
from competing flows determines the amount of bandwidth
stolen. Given such a goal, our exposed scheme stands
in sharp contrast to sustained high-rate Denial-of-Service
(DoS) attacks targeted directly at a specific resource or a set
of flows. We demonstrate two schemes for the construction
of an interference attack stream that would evade detection,
and thus challenging counter-DoS techniques. Our results
show the vulnerability of the current Internet to those new
forms of attacks that could be easily mounted with a few
number of zombie clients. We validate our findings through
simple analysis, simulations and real Internet experiments.

Keywords: Internet; Denial-of-Service (DoS) Attacks;
TCP; Performance Evaluation.

1. Introduction

This paper exposes a distributed interference attack scheme
that would compromise a set of links so as to provide ad-
ditional bandwidth to a particular set of flows. Given such
a goal, this scheme stands in sharp contrast to lunching at-
tacks just for the sake of shutting off some flows [12] or
crashing a particular web site [3].

DoS [4] and DDoS [7] attacks have become a major threat
for almost every Internet service. Recently, MyDoom
crashed SCO Group’s web site through lunching a DDoS
attack that involved 100K-200K zombies; MyDoom had
cost the global economy over $26.1B [15]. Having compro-
mised that huge number of zombie clients, the possibilities
for the kind of damage are abound.

Our exposed scheme for illegitimately giving a particular

∗This work was supported in part by NSF grants ANI-0095988, ANI-
9986397, EIA-0202067 and ITR ANI-0205294, and by grants from Sprint
Labs and Motorola Labs.

set of flows (we refer to them as supported flows) additional
bandwidth relies on limiting the throughput of other flows
that would potentially compete with the supported flows
over a limited amount of bandwidth. Such limitation is
achieved through attacking other links (we refer to them as
victim or target links). Clearly, victim links are not being
traversed by the supported flows.

When the supported set of flows share an Internet link
with other flows, they get their fair-share of resources as
would be allocated by the widely used Transmission Con-
trol Protocol (TCP) [6]. As more bandwidth becomes
available, TCP’s probing mechanism through its additive-
increase would enable flows to utilize such bandwidth,
keeping the network operating at high utilization. At the
same time, experiencing packet losses would trigger TCP’s
multiplicative-decrease where the window is halved to alle-
viate congestion.

The interference attacks that we envision would cause com-
peting flows to experience different levels of packet losses.
Hence, their throughput would decrease, limited by the
damage as opposed to their network fair-share, yielding a
slack of resources. This slack of resources would be nat-
urally acquired by the supported flows, causing them to
acquire more bandwidth allocation. As will be discussed
throughout the paper, depending on the feasibility of the
attack in terms of identifying potential links to attack and
the magnitude of the attack, different bandwidth allocations
could be (illegitimately) provided to the set of supported
flows.

Figure 1 depicts our envisioned setup; we assume the pres-
ence of a number of zombie clients scattered around the
globe. These clients are controlled by an attack controller.1

An entity responsible for a set of flows illegitimately re-
quests the aid of an attacker, possibly through out-of-band
communication, providing the attack controller with the In-
ternet path the set of supported flows are traversing. The

1These machines are usually compromised by a virus or a worm. It is
outside the scope of this paper how this setup was formed. Suffices to say
that recent attacks in [7] were all carried out by similar setups.

1

Zombie Zombie

Zombie

Alice Bob

Attack Controller

B

A

C

D

E F

Supported flows

Attacked flows

Bottleneck link

Figure 1: Adversarial scheme we envision

attack controller, in return, would broadcast such informa-
tion to the zombie clients. The zombie clients would run
a Network Inference Algorithm that would enable them
to identify a set of target links and a set of destinations
through which their interference traffic is sent. Figure 1
depicts one of possibly many scenarios where the supported
flows are traversing between Alice and Bob through the path
A − B − C − D. The bottleneck link in this case is BC
and the throughput between Alice and Bob is limited by the
fair-share given at the bottleneck link. The zombie clients
would then identify links EB and CF as potential target
links. Interference with the traffic on links EB and CF ,
would limit the achievable throughput for flows on those
links, causing Alice and Bob to receive more than their fair
share of resources on link BC. It is worth mentioning that
it could be the case that no victim links could be identified
by the zombies, hence lunching the attack is not carried out.
We will present simple analysis showing that this will not
happen with a high probability, providing a lower bound on
the required number of zombie clients.

Evading detection is one of the most important challenges
faced by the attack controller as well as by the zombie
clients; we identify two possible schemes for evading de-
tection. Such schemes rely on timing orchestration while
consuming a fairly low intensity traffic per attack stream.
Hence, the attack traffic may not be detected by regular
counter-DoS techniques. More to the point, the challenge
with this new form of interference attack is that it does not
require a complete denial of service on the victim links, but
rather it only aims to limit the aggregate bandwidth of vic-
tim flows.

Paper Outline: The rest of the paper is organized as fol-
lows. Section 2 describes our exposed scheme in detail.
Performance evaluation is presented through simulations
and real Internet experiments in Section 3. We revisit re-
lated work in Section 4. Section 5 concludes the paper.

2. Attack Orchestration

2.1 Interference Attack Construction

End-system protocols (e.g., TCP) rely on feedback mech-
anisms to adapt their sending rates to match their “fair
share” of network resources. TCP reduces its sending rate
on packet loss/marking and increases its rate on successful
packet transmission. Typically, the decrease in rate, which
is needed to protect against congestion collapse, is drastic—
e.g., by halving the sending rate—whereas the increase in
rate, which is needed to probe for available bandwidth,
is slow—e.g., by linearly increasing the sending rate over
time. Additive-Increase-Multiplicative-Decrease (AIMD)
rules2 ensure that flows react adequately to congestion in a
“friendly” manner to one another—hence the TCP-friendly
label [9]. Moreover, these protocols react even more swiftly
to excessive losses by completely shutting off their sending
rates for a long period of time (e.g., timing out in TCP).

The adaptation strategies of transmission control protocols
such as TCP, while crucial for alleviating congestion, make
them vulnerable to losses that are generated through other
processes—namely losses that are not the result of persis-
tent congestion (e.g., wireless losses). The impact of such
losses on TCP performance was considered in many stud-
ies; examples include [1]. In these studies, however, the
processes interfering with TCP’s adaptation could be con-
sidered “non adversarial” in the sense that the losses were
more or less the result of (say) a random process as opposed
to a calculated attack. Indeed, in recent work, it was shown
that an attacker could potentially shut off the communica-
tion between two parties (e.g., Alice and Bob) by mounting
what is termed as a “shrew” attack [12]—an attack that ex-
ploits TCP’s time-out mechanism, which is how TCP adapts
to persistent congestion.

As we hinted in the introduction and as the results in this pa-
per will demonstrate, illegitinately giving a particular set of
flows additional bandwidth doesn’t require a complete shut-
off of the competing flows, but rather only limiting their
achievable throughput. Hence, lunching a “shrew” attack
would be an over-kill, not to mention the suspicious behav-
ior it may cause. We consider an interference attack com-
prising a burst of M packets (or bytes) transmitted at the
rate of δ packets (or bytes) per second over a short period
of time τ , where M = δτ . This process is repeated every T
units of time. We call M the magnitude of the attack, δ the
amplitude of the attack, τ the duration of the attack, and T
the period of the attack. Typically τ should be smaller than

2Other TCP-friendly increase/decrease rules have also been proposed
and evaluated [2]. All would be susceptible with various degrees to the
same issues we consider in this paper.

2

T . Thus the interference traffic, I(t), at time t is given by:

I(t) =
{

δ t mod T ≤ τ
0 otherwise

(1)

Such a square-wave attack traffic is advantageous to an at-
tacker in two ways: First, it provides the freedom of varying
the attack parameters (δ, τ and T) causing different levels
of damage; Second, it allows the zombies’ traffic to go un-
noticed through having an average attack traffic M

T that is
much lower than the peak rate δ. This gives one degree of
freedom to evade detection. A second degree of freedom is
addressed in the next subsection, where the traffic M

T would
be distributed across different attack streams.

It is worth mentioning that it is the same AIMD mecha-
nism that the interference attacks exploit, is the one that
allows the supported flows to take advantage of available
bandwidth once victim flows back-off.

2.2 Selecting the Targeted links

In this subsection, we turn our attention to how the interfer-
ence attacks can be routed through the network. In particu-
lar, how can the zombie clients identify the potential target
links through which they should send their traffic. Poten-
tial target links are those links that are more likely to carry
traffic that is competing with the supported flows. Figure 2
depicts a more detailed view of Figure 1, where Alice and
Bob are communicating through the path A − B − C −D
and are limited by their fair-share at link BC.

Figure 2 shows a subset of four potential target links (GB,
EB, CF and CH) that could carry traffic through link BC.
Notice that the problem of identifying those potential target
links is the same as discovering the neighborhood (and in-
terfaces) of both routers of the bottleneck link. We present
a three-step algorithm that would allow the zombie clients
to discover the area around each router with high probabil-
ity. Then, we give a lower bound on the number of zombie
clients that would cause a complete discovery of the neigh-
borhood.

Initially, each zombie client receives the common path tra-
versed by the supported flows from the attack controller.
For ease of presentation, we assume they only receive the
IP addresses of both routers along the path of the supported
flows that represent the bottleneck link. In the first step of
our algorithm, each zombie client would trace the route to
those two routers. This will lead to the discovery of those
routers along the path between the zombies and the two
initial routers. This step corresponds to the discovery of
routers E, F , G and H in Figure 2. In particular, zombie
Z1 would know about E and F , while zombie Z2 would
know about G and H . We refer to this list of routers as the
“previous-hop” list.

Z1

Alice

Bob

B

A

C

D

E

F

Supported flows

G

H

x

xZ2

Attack Path

Traceroute

G H

E F

G

E F

Figure 2: A more detailed view of the adversarial scheme
we consider

In the second step, the zombie clients exchange their
“previous-hop” lists. Through exchanging these lists, each
side of the zombies would know about the routers located
on the other side of the bottleneck link. Exchanging these
lists are made possible through the attack controller. De-
centralized approaches are also feasible but would require
more work from the zombie clients. This step corresponds
the discovery of routers E and F by zombie Z2 and routers
G and H by zombie Z1 as illustrated in Figure 2.

The third and final step is another traceroute, now to the op-
posite side (e.g. zombie Z2 traceroutes to routers E and
F), to remove any paths that contain any segment over
which the supported flows traverse. Thus avoiding a sce-
nario where the attack traffic is traversing along the same
paths as the supported flows. The destination to be used
for the attack traffic could by any valid IP address that be-
longs to a target router. For example, zombie Z2 sends its
attack traffic to router F as illustrated in Figure 2—Given
that some flow(s) competing with the supported flows and
traversing CF back-off due to losses from the attack, the
supported flows can then acquire their bandwidth. In prac-
tice, the longer the path of the supported flows, the more
chance the zombie clients have to identify more potential
target links.

Notice that an obvious attack is to send interference
traffic destined directly to the bottleneck routers. How-
ever, this would result in overloading those routers as they
process these attack packets rather than simply forwarding
them, thus negatively impacting the performance of the sup-
ported flows. The above inference algorithm targets links
that are not on the path of the supported flows.

2.3 A Lower Bound on Zombies

Having described what constitutes an interference attack
and how they are being routed through the network, we
show that such attacks are feasible with a small number of

3

zombies. Let the number of zombies be denoted by N and
assume that there is only one router of degree d that we
would like to discover its neighborhood (i.e. the d adjacent
routers). We are interested in finding the minimum number
of zombies that would cause the discovery of the d neigh-
bors with high probability. In particular, the probability of
missing an interface after N traceroutes from the N zom-
bies,3 assuming uniform distribution among the router’s d
neighbors, is given by:

(1 − 1
d
)N ≈ e−

N
d (2)

Fixing the above probability to α, a lower bound on N , N−

is given by:

N− = −d× ln(α) (3)

For any distribution of traffic, equation (2) can be modified
to:

(1 − P d
min)N ≈ e

− N

P d
min (4)

where P d
min is the minimum probability over all d inter-

faces.

0 % 10 % 20 % 30 % 40 % 50 %
0

5

10

15

20

25

30

35

40

Probability

Lo
w

er
 B

ou
nd

 o
n

Z
om

bi
es

Degree 4
Degree 8

Figure 3: Lower bound N− for different probabilities and
degrees 4 and 8 using uniform distribution

Figure 3 shows the lower bound N− as a function of chang-
ing α, and degrees d = 4 and d = 8 assuming a uniform
distribution among a router’s interfaces. One can see that
even for a small probability of 1%, the minimum number of
zombies is very small (less than 20 for the case of d = 4
and twice as much for d = 8).4

Going back to our second degree of freedom for evading
detection— that of spoofing the sources and destinations

3Notice that this problem is the same as throwing M balls in K bins
problem. The same analysis could be applied.

4Notice that in Figure 3, the line corresponding to a degree d would
represent the same lower bound on the number of zombies for any dis-
tribution of traffic over interfaces if the minimum probability across the
interfaces is P d

min = 1
d

.

IP addresses. Unlike traditional DoS, every attack traffic
packet could be sent from a source to a different destination.
Moreover, as long as they are known to be routed through
the resource under attack, these destinations do not even
have to be legitimate or live addresses. As far as a detec-
tion mechanism in the middle could tell, the packets going
through are between different sources and destinations. All
these packets could be produced by a single zombie client.
However, dividing the attack magnitude over few zombies
would be less suspicious at the ingress link the zombie is
connected to.

3. Performance Evaluation

In this section, we present results from ns-2 [8] simulation
experiments we conducted to assess the effect of DoS and
interference attacks on other flows, for improving the band-
width allocated to the supported flows. We then validate our
simulation results through live Internet Experiments per-
formed inside our laboratory.

3.1 Simulations

A B C

Sources and Receivers

Access Links

Supported flows

Other flows

Figure 4: The two-link topology used in ns-2 simulation
experiments.

Figure 4 depicts the topology under consideration. We
have two links AB and BC of capacity 100 Mbps each.
All links have a one-way propagation delay of 1 msec. A
total of 20 FTP connections, with unlimited data to send,
traverse the topology from A to C. We refer to these as the
AC flows. In addition, two groups of 10 FTP connections
each traverse exactly one of the links in the topology. We
refer to these as the AB and BC flows. Sources as well as
receivers of these FTP flows connect to the routersA,B and
C through access links. RED is used as the queue manage-
ment at the links AB and BC. We set RED’s minimum and
maximum buffer thresholds to 50 and 120 packets, respec-
tively. The weight parameter β was set to 0.0001 and Pmax

was set to 0.1. The buffer size is chosen to be 250 pack-
ets at each link. All packets are 1,000 bytes in size. Since
flows AC traverse two bottleneck links, they tend to have
less throughput than flows AB and BC. So we adjusted the

4

0 20 40 60 80 100
30

40

50

60

70

80

90

DoS Attack (Mbps)

A
llo

ca
te

d
B

an
dw

id
th

 (
M

bp
s)

Figure 5: Improvement in allocated bandwidth as the level
of DoS attack increases

0 20 40 60 80
30

40

50

60

70

80

Tau (msec)

A
llo

ca
te

d
B

an
dw

id
th

 (
M

bp
s)

Figure 6: Improvement in allocated bandwidth as τ changes
for a fixed T of 0.5 and δ of 110 Mbps

propagation delay on the access links so that all connections
have the same round-trip time. The attack traffic traverses
through linkBC. Our goal is to interfere with the flowsAC
for an improved allocated bandwidth for flows AB.

Figure 5 represents our first experiment, where the attack-
ing sources use regular sustained high-level of DoS streams.
One can see that the improvement in throughput allocated
to flows AB increases linearly with the magnitude of the
attack. Clearly, this is a feasible way to attack, but it has
the drawback of sending a lot of attack traffic. It is worth
mentioning that this form of attack still could evade detec-
tion using spoofed sources and destinations, but still it is not
considered a low-rate attack.

Our next experiment improves the previous result signifi-
cantly where we put the interference attacks we expose into
play. We adjusted the attack period T to 0.5 seconds, the
attack rate δ to 110 Mpbs and we varied the attack duration
τ from 0 (no interference attack is lunched) to 90 msec.
Figure 6 shows the effect of τ on the allocated throughput
for flows AB. As τ increases, the bandwidth allocated to
flows AB increases. Notice that doubling the bandwidth

for flows AB from 31 Mbps to 60 Mbps required a DoS at-
tack of an average rate of 60 Mbps. However, for a τ value
of 60 msec, the same bandwidth allocation was achieved for
an average attack traffic of 11 Mbps. Almost a factor of 6
improvement!

A

B C

E

D

F

Figure 7: The five-link topology used in ns-2 simulation
experiments.

We next turn our attention to a topological setting that
would likely arise through our exposed DoS scheme, where
the zombie clients will be injecting interference streams on
the ingress points of some router and the egress points of
another router. Figure 7 depicts such a topology. We have
five linksAB,EB,BC,CD andCF of capacity 100 Mbps
each. All links have a one-way propagation delay of 1 msec.
A total of 20 FTP connections, with unlimited data to send,
traverse the topology from A to D and from E to F . In
addition, five groups of 10 FTP connections each traverse
exactly one of the links in the topology. We refer to these
as the AB, EB, BC, CD and CF flows. RED is used as
the queue management on all the links and is parameterized
as above. Sources as well as receivers of these FTP flows
connect to the routers E, A, B, C, D and F through ac-
cess links of propagation delay of 8 msec. We consider an
attack whose goal is to improve the bandwidth allocated to
BC flows, through interfering with flows AD and EF . The
zombie clients, after running their inference algorithm, will
discover the links AB, EB, CD and CF .

Figure 8 shows the different bandwidth allocations to flows
BC, from ID 1 to 10, as the inteference attack was succesful
in identifying and hiting one link (AB), two links (AB and
EB) and the four links (AB, EB, CD and CF). All attack
traffic followed the same paramters of τ = 50 msec, δ =
110 and T = 0.5 sec. Two things to note here; First, when
the interference attack was lunched on link AB, the slack
bandwidth was divided between the BC and the EF flows,
thus the improvement is not very high (from a total of 15
Mbps under no attack to 22 Mbps). Once the link EB is
attacked, the improvement was much more pronounced (up
to 43 Mbps). Second, the improvement from attacking the
four links didn’t buy as much improvement as attacking two
links (now BC flows can get up to 46 Mbps). This is due
to hitting the same flows on two links. The total average
attack traffic on any attacked link was around 9.5 Mbps.

5

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

Connection ID

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

M
bp

s)

No Attack
Attack on AB
Attack on AB−EB
Attack on AB−EB−CD−CF

Figure 8: Throughput allocated to each flow from the BC
flows.

C1

C2

C3

Switch

10 Mbps

AK
AS

S0

RO R1

C4

Local
Intranet

Figure 9: The experimental setup used to conduct our Inter-
net experiments

This means having three zombies is enough to ensure that
the attack traffic from each consumes less than its resource
fair-share, thus evading detection. This is because each 100
Mbps link, except for BC which is shared by 50 flows, is
100 Mbps shared by 30 flows, thus a fair share of 3.3 Mbps
per flow.

3.2 Internet Experiments

Figure 9 depicts the experimental setup we used for our In-
ternet experiments. It consists of two routers (R0 andR1), a
local content server (S0), four client machines (C1, C2, C3

and C4), a source of attack traffic (As) and a sink of attack
traffic (Ak). The router’s server-side interface is connected
to a 100 Mbps switch that connects to the content server ma-
chine (S0) and the attack source (As). The router’s client-
side interface is connected to another 100 Mbps switch that
connects it to the local subnet where client machines (C1,
C2, and C3) and attack sink (Ak) reside. The network in-
terface cards on all machines run at 100 Mbps except for
the router’s client-side interface, representing the bottleneck
link, which runs at 10 Mbps. All machines run Linux Red-
Hat version 2.4.20. The router uses iproute2 and tc [11] to
run different packet scheduling disciplines. In all experi-
ments we report on in this paper, we used a packetized ver-
sion of FIFO (called pfifo). A client (Ci) is configured to

0 20 40 60 80 100 120
0

1

2

3

4

5

6

Time

T
hr

ou
gh

pu
t (

M
bp

s)

Figure 10: Throughput allocated to connection C4-S0. At-
tack is lunched at time 60 between As and Ak, parameter-
ized by δ = 9.5 Mbps, τ = 60 msec and T = 0.5 sec. Average
attack traffic passing through R0 is 0.6 Mbps

request local data transfers from the local server S0. As
described in Section 2, the attack source (As) injects UDP
packets destined to sink (Ak)5 following the square wave
pattern with parameters δ, τ and T .

In this experiment, each of the 4 clients opens a TCP con-
nection to the server S0 for a total of 3 TCP flows traversing
throughR0 and 4 TCP flows traversing throughR1. R1 was
the bottlneck for all the flows. Consider that the TCP flow
from C4 to S0 requests additional bandwidth from the at-
tacker. This in return triggers an interference attack through
R0 to cripple the other 3 TCP flows. Figure 10 shows how
the throughput allocated between C4 and S0 improves once
the attack is lunched at time 60. This attack had a value of
τ of 60 msec, T of 0.5 sec and δ of 9.5 Mbps. The average
attack traffic was 0.6 Mbps.

4. Related Work

DoS attacks [4, 3] and its many variants [5] could be char-
acterized as targeting one dimension of a system’s service
quality–namely, its availability. There are a number of pa-
pers that classify various forms of DoS attacks; examples
include [10, 14, 13]. In this paper, we have focused on at-
tacks whose perpetrators are not focused on denying access,
but rather interfering with other competing flows. More im-
portantly, in this paper, we have focused on the harder-to-
detect, low-intensity attacks, i.e., with modest aggressive-
ness compared to the aggressiveness required for DoS at-
tacks. The “Shrew” attack proposed in [12] is an example of
a low-intensity, harder to detect attack which is targeted at

5Unlike traditional DoS attacks, Ak is not the target of the attack, but
rather a bystander which does not even have to be on-line (as long as pack-
ets destined to it are routed through the target of the attack—namely router
R0).

6

a subset of flows going through a network link, with the in-
tension of shutting off these flows by synchronizing the at-
tack traffic in such a way to cause these flows to perpetually
timeout. For the purpose of this paper, the “shrew” attack
would be an over-kill, not to mention the suspicious concern
it may trigger. Moreover, it can’t be tuned to achieve dif-
ferent levels of damage. Our interference attacks could be
tuned, through adjusting the parameters, to cause the min-
imum damage possible for achieving its goal, that of pro-
viding additional bandwidth to a set of flows by stealing it
from competing flows.

5. Conclusion

In this paper, we have exposed an adversarial scheme ca-
pable of providing additional bandwidth to a particular set
of flows by stealing it from competing flows. This is done
by sending enough attack traffic to interfere with competing
flows on links unused by supported flows. Our results show
that such attacks could be orchestrated with very few num-
ber of zombie clients while evading detection. We believe
that shedding light on such vlunerabilities and how they can
be exploited is crucial as it motivates the need for the de-
velopment of more resilient mechanisms towards these new
forms of attacks.

Acknowledgment: We would like to thank Jeffrey
Considine for his comments and fruitful discussions on this
work.

References

[1] Hari Balakrishnan, V. Padmanabhan, S. Seshan, and
R. Kartz. A Comparison of Mechanisms for Improving TCP
Performance over Wireless Links. In Proceedings of ACM
SIGCOMM’96, 1996.

[2] D. Bansal and H. Balakrishnan. Binomial congestion control
algorithms. In Proceedings of INFOCOM’2001, 2001.

[3] CERT Coordination Center. CERT Advisory CA-
1996-21 TCP SYN Flooding and IP Spoofing At-
tacks Original issue date: September 19, 1996.
http://www.cert.org/advisories/CA-1996-21.html.

[4] CERT Coordination Center. Denial of Service Attacks.
http://www.cert.org/tech tips/denial of service.html.

[5] CERT Coordination Center. Trends in Denial
of Service Attack Technology, October 2001.
http://www.cert.org/archive/pdf/DoS trends.pdf.

[6] D.M. Chiu and R. Jain. Analysis of the Increase and De-
crease Algorithms for Congestion Avoidance in Computer
Networks. Computer Networks and ISDN Systems, 17:1–14,
1989.

[7] Distributed Denial of Service (DDoS) Attacks/tools .
http://staff.washington.edu/dittrich/misc/ddos/.

[8] E. Amir et al. UCB/LBNL/VINT Network Simulator - ns
(version 2). Available at http://www.isi.edu/nsnam/ns/.

[9] The PSC Networking group. The TCP-Friendly Website.
http://www.psc.edu/networking/tcp friendly.html.

[10] A. Hussain, J. Heidemann, and C. Papadopoulos. A frame-
work for classifying denial of service attacks. In Proceedings
of the 2003 conference on Applications, technologies, archi-
tectures, and protocols for computer communications, pages
99–110. ACM Press, 2003.

[11] iproute2 and tc. http://snafu.freedom.org/linux2.2/iproute-
notes.html.

[12] A. Kuzmanovic and E. Knightly. Low-Rate TCP-Targeted
Denial of Service Attacks (The Shrew vs. the Mice and Ele-
phants). In Proceedings ACM SIGCOMM’03, karlsruhe ,
Germany, August 2003.

[13] C. Meadows. A formal framework and evaluation method for
network denial of servic. In Proceedings of the 12th IEEE
Computer Security Foundations Workshop, June 1999.

[14] J. Mirkovic, J. Martin, and P. Reiher. A Taxonomy of DDoS
Attacks and DDoS Defense Mechanisms. Technical report
020018 Computer Science Department, University of Cali-
fornia, Los Angeles .

[15] The Salt Lake Tribune. As forecast, worm takes
SCO offline (February 2, 2004). Available from
http://www.sltrib.com/2004/Feb/02022004/utah/134908.asp.

7

