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1. INTRODUCTION
Previous job scheduling studies indicate that providing rapid re-
sponse to interactive jobs which place frequent but small demands,
can reduce the overall system average response time [1], especially
when the job size distribution is skewed (see [2] and references
therein). Since the distribution of Internet flows is skewed, it is
natural to design a network system that favors short file transfers
through service differentiation. However, to maintain system scal-
ability, detailed per-flow state such as flow length is generally not
available inside the network. As a result, we usually resort to a
threshold-based heuristic to identify and give preference to short
flows. Specifically, packets from a new flow are always given the
highest priority. However, the priority is reduced once the flow has
transferred a certain amount of packets.

In this paper, we use the MultiLevel (ML) feedback queue [3] to
characterize this discriminatory system. However, the solution given
in [3] is in the form of an integral equation, and to date the equa-
tion has been solved only for job size distribution that has the form
of mixed exponential functions. We adopt an alternative approach,
namely using a conservation law by Kleinrock [1], to solve for the
average response time in such system. To that end, we approximate
the average response time of jobs by a linear function in the job size
and solve for the stretch (service slowdown) factors. We show by
simulation that such approximation works well for job (flow) size
distributions that possess the heavy-tailed property [2], although it
does not work so well for exponential distributions.

Due to the limited space available, in Section 2 we briefly describe
the queueing model and summarize our approximation approach to
solving for the average response time of the M/G/1/ML queueing
system. We conclude our paper in Section 3.

2. THE M/G/1/ML QUEUEING SYSTEM
We use the MultiLevel (ML) processor sharing queueing model
to describe a discriminatory service system made of a finite num-
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ber of classes, without knowledge on input job sizes. In such a
system, the priority of a job depends on the amount of service
already received by the job. For a set of predefined thresholds
0 = b0 < b1 < ... < bM = ∞, once the job has received
more than bi−1 units of service, its priority is reduced to i. Jobs of
the same class are served by a processor-sharing scheduler, while
jobs with different priorities can be served by a priority queue-
ing (PRIO) algorithm or by a (weighted) Discriminatory Processor
Sharing (DPS) algorithm. With the DPS scheduling algorithm, if
there are Ni jobs of class i present, i = 1, 2, ..., M , then the ser-
vice rate received by class-i jobs depends on class-i weight gi and
is given by:

ri =
giNi∑M

j=1 gjNj

C i = 1, 2, ..., M

C denotes the total service rate. We refer to the first system as the
ML-PRIO queue, and the second as the ML-DPS queue. In the
special case of 2 job classes (M = 2) and g1 = ∞, the two sys-
tems are equivalent. We assume jobs arrive according to a Poisson
process with total rate λ, and the service distribution is arbitrary.
Thus, the queueing system is referred to as M/G/1/ML-SR system,
where SR can be either PRIO or DPS.

Our goal is to solve for the average (expected) response time for
jobs which require x total service, denoted by T (x). For conve-
nience, we define Ti(xi) as the expected time to serve xi units of
size while the job is at class i. Thus, we have, for bi−1 < x ≤ bi,

T (x) =

i−1∑
j=1

Tj(bj − bj−1) + Ti(x − bi−1)

To date, we are only able to obtain the exact solution to T (x) for
the special case of M = 2 in the form of integral equations and a
closed-form solution may only exist for specific distributions. Ap-
proximation is needed to attack more general cases.

2.1 Approximation Approach to Solve for T (x)
The main idea of our analysis is to apply the Conservation Law
for Work-conserving Time-Shared Systems, proposed and proven by
Kleinrock ([1], pages 197-199). Formally, it states the following:

Theorem 1. Kleinrock’s Conservation Law for Time-Shared
Systems. For any M/G/1 system and any work-conserving queue-
ing discipline, the average response time T (x) for jobs of length x,
satisfies the following equation:∫ ∞

0−
T (x)[1 − B(x)]dx =

X2

2(1 − ρ)

where ρ, B(x) and X2 represent the average load of the system,
the cumulative distribution of job sizes and the second moment of
the job size distribution, respectively.
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Figure 1: Performance Comparison of PS, ML-PRIO and ML-DPS

Therefore, if T (x) has only one free variable, we can utilize the
Conservation Law to solve for the closed-form of T (x), given the
job size distribution and average system load.

We next approximate the multi-class M/G/1/ML-DPS system by
multiple loosely coupled M/G/1 processor sharing systems so that
we can represent each Ti(xi) by a linear function in xi, i.e. Ti(xi) =
θixi, where θi’s are the so-called stretch factors. The detailed so-
lution is given in the full version of this paper. The set of equations
have degree of freedom of M (θi’s) and we have M independent
linear equations, we can thus solve for T (x).

2.2 Validation by Simulation
Notice that the solution above applies to general distributions which
have finite first and second moments. We now study the accuracy
of our analysis for different job size distributions. As an exam-
ple, we show here the cases where job sizes follow the Bounded
Pareto distribution BBP (x, α, k, p) and the generalized Exponen-
tial distribution BEXP (x, µ, k) [4]. The Bounded Pareto distribu-
tions have finite first and second moments, but they do possess the
Heavy Tailed (HT) property, as defined in [2]. On the contrary, the
generalized Exponential distribution does not have such property
since the probability of having large jobs is very small.

We study the case of a two-level system and the cutoff size is set
to b1 = 50 (about two times the average size). For the ML-DPS
system, we set the weight factor to be g = (5, 1), i.e., each class-
1 job gets 5 times unit of service as each class-2 job. We also
let g1 = ∞ to obtain results for the ML-PRIO scheme. Fig-
ures 1(a) and 1(b) show the simulation as well as analytical re-
sults for cases in which job sizes follow BBP (x, 1.2, 4, 200000)
and BEXP (x, 17.243, 4), respectively. We assume C = 2000 and
λ = 91.32. Thus, the total load on the system is approximately
0.97. In the figures, PS denotes the nominal processor sharing
scheme (where gi’s are all equal to 1).

3. CONCLUSION
• For bounded Pareto input, the response time function at the second-
level queue (i.e., job sizes greater than 50) can be well-approximated
by a linear function, thus our analysis gives very accurate predic-
tion. On the contrary, our analysis is not accurate for Exponential
input. The actual response function further penalizes jobs whose
sizes are just above the cutoff threshold. We also notice that our
analysis still gives relatively good approximation under ML-DPS
when the relative weight of the low priority jobs is not too small.

• When the job size distribution has the HT property, size-aware
scheduling significantly reduces the response time of small jobs
but only slightly increases the response time of long jobs. The ML-
PRIO scheme, which gives absolute priority to short jobs, can re-
duce small job response time by a factor of 15, while only increase
long job response time by a factor of 1.008. The ML-DPS scheme
performs between ML-PRIO and the PS scheme.

• In case of exponential distributions which have very light tails,
the benefit of giving preferential treatment to short jobs (e.g. in
ML-PRIO, a factor of 4.02) is achieved at the expense of signif-
icantly sacrificing long jobs’ performance (by a factor of 8.29 in
ML-PRIO). Moreover, although a very large weight (a factor of
5) is given to short jobs, the overall performance enhancement by
employing the DPS scheduling algorithm is limited (a factor of
1.323). This is vastly different from what we observed in the previ-
ous scenario where file sizes possess the HT property, in which case
the same DPS scheduling algorithm can reduce short job response
times by a factor of 3.25.

We now give an intuitive explanation of why a linear response time
function is a good approximation for job size distributions with a
HT property but not for those without. We notice that the asymp-
totic behavior of T (x) as x → ∞ is always T (x) ∼ x

1−ρ
[5]. With

our analysis, when the job size distribution has the HT property, the
worst case penalty factor for large jobs (generating most of the load
of the system) is already very close to 1

1−ρ
, thus the approximation

is good.
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