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Abstract. The Transmission Control Protocol (TCP) has been the protocol of choice for
many Internet applications requiring reliable connections. The design of TCP has been chal-
lenged by the extension of connections over wireless links. In this paper, we investigate a
Bayesian approach to infer at the source host the reason of a packet loss, whether conges-
tion or wireless transmission error. Our approach is “mostly” end-to-end since it requires
only one long-term average quantity (namely, long-term average packet loss probability over
the wireless segment) that may be best obtained with help from the network (e.g. wireless
access agent). Specifically, we use Maximum Likelihood Ratio tests to evaluate TCP as a
classifier of the type of packet loss. We study the effectiveness of short-term classification
of packet errors (congestion vs. wireless), given stationary prior error probabilities and dis-
tributions of packet delays conditioned on the type of packet loss (measured over a longer
time scale). Using our Bayesian-based approach and extensive simulations, we demonstrate
that an efficient online error classifier can be built as long as congestion-induced losses
and losses due to wireless transmission errors produce sufficiently different statistics. We
introduce a simple queueing model to underline the conditional delay distributions arising
from different kinds of packet losses over a heterogeneous wired/wireless path. To infer
conditional delay distributions, we consider Hidden Markov Model (HMM) which explic-
itly considers discretized delay values observed by TCP as part of its state definition, in
addition to an HMM which does not as in [9]. We demonstrate how estimation accuracy
is influenced by different proportions of congestion versus wireless losses and penalties on
incorrect classification.

1 Introduction

Many studies have analyzed the performance of transport protocols, notably TCP [7]. TCP carries most
of the traffic—around 90% of the bytes—in the Internet [2]. TCP has been designed to do congestion
control to achieve efficient and fair allocation of resources within the network.

In a wired network, congested links cause packets to get lost when the bottleneck buffer overflows. If
a TCP connection traverses a wireless link, for example a WLAN network, packets may be corrupted and
get lost due to fading or shadowing. Such wireless losses are not an indication of resource scarcity in the
routers and it is intuitive that an informed transport protocol would treat such packet losses differently.
The performance of an ideal informed TCP has been shown in [5] in which the TCP sender does not
back off on wireless losses. But for an end-to-end protocol, inferring the nature of loss without any aid
from the network is challenging. Nevertheless, many proposals [9, 6] attempted to infer (implicitly or
explicitly) the reason of a packet loss, in an end-to-end way, by analyzing measured delays, throughput
or other metric.

Our approach is explicit and “mostly” end-to-end. We say “mostly” since our technique requires
only one long-term average quantity (namely, long-term average packet loss probability over the wireless
segment) that may be best obtained with help from the network (e.g. wireless access agent). We elucidate
� This work was supported in part by NSF grants ANI-0095988, EIA-0202067, and ITR ANI-0205294. An abbreviated
version of this paper appears in WiOpt’04: Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks,
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Networks.”



the difference in the output (measured) statistics under different type of losses (congestion vs. wireless),
and exploit those using signal estimation techniques such as Maximum Likelihood Estimation. It is
to be disclaimed that we are not overlooking the better performance that may result from “heavier”
infrastructure support, e.g. XCP [8] and Snoop [4]. Such infrastructures have their own cost of deployment
and may not be effective, for example with IPsec [11].

In distinguishing the cause of packet loss, we exploit the temporal correlation between losses and the
measured end-to-end metrics. Congestion-induced losses are associated with (close to) full buffer size at
the bottleneck, whereas wireless losses often sample any queue size and associated delays. This leads to
distinguishable distributions of the measured samples of network response at the times of different type
of loss.

Figure 1 shows our model where measured samples are noisy observations in the vicinity of the losses.
Network conditions result in an output (e.g. packet loss due to congestion or wireless error), which we
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Figure 1. Elements of the Detection Problem

classify by a hypothesis and denote by H. This outcome generated by the network state is carried by
packet samples after a certain time lag, thus the samples are probabilistically affected and serve as
observation samples Y . Based on the observation samples, we intend to design a rule to decide what
the cause of the loss is (i.e., whether the hypothesis that the loss is due to congestion or wireless error
holds). Such a model assumes knowledge of the apriori (actual) probability of a hypothesis, denoted by
P (H), and the probability distribution of the observed metric Y conditioned on the hypothesis being
true, denoted by P (Y |H). We later discuss how this prior knowledge can be obtained.

Our goal is to obtain the best possible estimate, Ĥ (representing the classification of a packet loss
as congestion-induced or due to wireless error), that minimizes the average penalty of misclassifying the
type of loss. This would give us a handle on the theoretical limits and gains of end-to-end packet error
classification.

To that end, we use Bayes Decision Rules and Maximum Likelihood Ratio Tests. The penalty function
should measure the dissatisfaction of the application of its performance. For example, if the network is
congested and the protocol misclassifies a packet loss, i.e. the loss is not attributed to congestion rather
to a wireless loss, this congestion loss misclassification may incur more cost than an otherwise wireless
loss misclassification. This could be due to increased congestion as the source did not react appropriately
(backed off) in response to actual congestion. Therefore, it makes sense to map any observation to a
hypothesis which will reduce the cost of classification error. Using Bayes Rule, we have

P (H|Y ) = P (Y |H)P (H)
P (Y )

(1)

From Equation (1), it follows that if we know the prior probability of Y under some hypothesis H, the
prior probabilitiesH and the unconditional probability of Y , we can derive the probability of a hypothesis
from Y . In practice, the priors – P (Y |H) and P (H) – will be measured/estimated over time scale that
is longer than that of the short-term goal of packet error classification.

Paper Contributions: We use Maximum Likelihood Ratio tests to evaluate TCP as a detector/estimator
of the type of packet loss. We study the effectiveness of short-term classification of packet errors (conges-
tion vs. wireless) given stationary prior error probabilities and conditional delay distributions measured
over a longer time scale. Using our model-based approach and extensive simulations, we demonstrate
that an efficient online detector can be built as long as congestion-induced losses and losses due to wire-
less transmission errors produce sufficiently different statistics. We introduce a simple queueing model
to underline the conditional delay distributions arising from different kinds of packet losses over a het-
erogeneous wired/wireless path. To infer conditional delay distributions, we consider Hidden Markov
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Model (HMM) which explicitly considers discretized delay values observed by TCP as part of its state
definition, in addition to an HMM which does not as in [9]. We train the HMM using either all measured
delays or only those delays measured by loss pairs—a loss pair is a pair of back-to-back packets where
one packet is lost and the other one is used to infer the state of the path around the time of loss [9]. We
demonstrate how estimation accuracy is influenced by different proportions of congestion versus wireless
losses and penalties on incorrect estimation.

Paper Outline: Section 2 introduces Bayesian hypothesis testing for making a binary decision. Section 3
presents a queueing model and simple analysis of delay distributions conditioned on the type of loss, and
discusses an HMM-based scheme to infer conditional delay distributions. Section 4 instantiates Bayesian
binary testing assuming Gaussian conditional delay distributions. The accuracy of classification is defined
in Section 5, and Section 6 presents validation results using ns-2 simulation [3]. Section 7 concludes the
paper with future work.

2 Bayesian Binary Hypothesis Testing

In this section, we use Bayesian binary hypothesis testing to infer the reason of packet loss. We consider
the simplest classification—a packet loss is either due to congestion (i.e. buffer overflow) or due to wireless
(i.e. transmission error). So we have two possible network states, which we label through hypotheses C,
corresponding to “congestion loss hypothesis”, and W, corresponding to “wireless loss hypothesis.” In
our approach we have three models: (i) a model of the network state, (ii) a model of the observations,
and (iii) decision rules. The model of the network state is captured by the prior probabilities, P (C) and
P (W )—the actual probabilities of a congestion-induced and wireless loss, respectively. The observation
model captures the relationship between the observed quantity y and P (C) or P (W ) (measured over a
long time scale) by the conditional densities P (y|C) or P (y|W ). Our decision rule D(y) is obtained by
minimizing the average cost (“Bayes risk”).

Let Rwc denote the cost of deciding that D(y) = W when the actual cause of loss is congestion (i.e.,
misclassifying congestion loss). Similarly, we denote by Rcw the cost of deciding that D(y) = C when the
actual cause of loss is wireless (i.e., misclassifying wireless loss). In our formulation, we assume that the
penalty of misclassification of losses is constant. Then the Bayes risk of the decision rule is given by:

E[RD(y)] = RcwP (D(y) = C,W ) +RwcP (D(y) = W, C)

= E[E[RD(y)|y]] =
∫
E[RD(y)|y]P (y)dy (2)

From Equation (2), we can minimize the penalty of misclassification by minimizing E[RD(y)|y] for
each value of the observed sample, y. Thus, the optimal decision is to choose the hypothesis that yields
the smallest value of the conditional penalty cost E[RD(y)|y] for a given value of y. The conditional
expected penalty is given by:

E[RD(y)|y] = RcwP (D(y) = C,W |y) +RwcP (D(y) = W, C|y) (3)

For a given observation value y, the expected value of the conditional penalty if we choose to assign
the observation to W or C is given by:

If D(y) = W : E[RD(y)|y] = RwcP (C|y) (4)
If D(y) = C : E[RD(y)|y] = RcwP (W |y) (5)

Given the above conditions, the optimal decision is one that results in the smaller of the two condi-
tional costs. Using Bayes rule and reorganizing Equations (4) and (5), we have:

P (C)RwcP (y|C)
C
>
<
W

P (W )RcwP (y|W )

L(y) =
[
P (y|C)
P (y|W )

]
C
>
<
W

RcwP (W )
RwcP (C)

≡ Γ (6)

where
C
>
<
W

denotes choosing C (i.e., classifying a packet loss due to congestion) if the inequality is >,

and choosing W (i.e., classifying a packet loss due to wireless error) if the inequality is <.
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In the network, the packet samples carry the network state information to the receivers or senders
delayed by propagation time. Moreover, those samples which make their way through the network are
only discrete samples of the network state. But due to temporal and spatial locality, we assume that
samples received immediately around the time of loss have most energy and information of the state.
This is also an objective of our expedition to know how effective are these samples.

The test (i.e., sufficient statistics) in Equation (6) assumes the knowledge of priors, P (C) and P (W )
and conditional delay distributions, P (y|C) and P (y|W ) which are in general very difficult to obtain. If
we can know these unknowns or at least estimate them accurately, we can apply the Bayesian Likelihood
tests in Equation (6). Our next section is devoted to describing how we can obtain conditional delay
distributions for a simple queueing system, or in practice how we can estimate them using Hidden Markov
Models. We can estimate long-term average values of the priors, P (C) and P (W ), using different existing
tools [10, 12] with router support. For example, the TCP receiver can measure the long-term wireless link
error rate with support from the base station and inform the TCP sender. Given P (W ) and the end-to-
end loss probability measured by the sender, the sender can obtain P (C). Note that in the subsequent
queueing model, we easily estimate the prior P (C), which is simply the packet drop probability when
the buffer overflows.

3 Estimation of Conditional Delay Distributions

3.1 Queueing Model

Assume the TCP receiver measures one-way delay of the packets which are in the same transmission
window as the packet which is dropped. We derive the conditional probabilities of delays based on the
assumption that there is one bottleneck (M/M/1/B) queue, where a packet is dropped if the packet
arrives to a full queue. We model that packets are only delayed but not dropped in the upstream queues
using an (M/M/1/∞) queue. Packets are also dropped due to wireless error on links which may be
located before or after. Here we assume wireless links appear after the wired bottleneck, although the
location of wireless links before the wired bottleneck will not change the analysis. If delay statistics are
collected by the packets immediately preceding the dropped packet, we analyze the conditional delay
probabilities for such packets.

TCP  packets

Cross Traffic Packets

λ1
λ2

µ

λ3

1 µ 2

W

B

Cross Traffic Packets

Figure 2. Arrival of TCP packets at Bottleneck

Consider Figure 2 that shows TCP packets as bursty Poisson arrivals with average rate λ1 to an
(M/M/1/∞) queue, where W is assumed to be the burst (window) size. The queue is shared by cross
traffic packets which arrive according to a Poisson distribution at average rate λ2. Thus, the load on the
queue is given by ρ1 = λ1W+λ2

µ1
. For simplicity we assume a fixed burst size—in general burst sizes are

correlated in TCP—and we also assume there is no packet loss in this queue.
Next we consider a downstream queue (M/M/1/B). We assume packets after leaving the first non-

bottleneck queue still remain bursty poisson arrivals. TCP packets arrive in bursts with average rate λ1.
Cross traffic packets arrive with average rate λ3. The packet loss probability of the TCP flow is given
by:

P (C) = π(B) + π(B − 1)W−1
W + · · ·+ π(B −W + 1) 1

W (7)

= (1−ρ2)ρ
B
2

1−ρB+1
2

[
1−( 1

ρ2
)W

1− 1
ρ2

−
1

W + W−1
W ρW

2
− 1

ρ
W−1
2

ρ2(1− 1
ρ2

)2

]
(8)
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Figure 3. Conditional Delay Distributions for (a) B = 50, ρ1 = 0.6, ρ2 = 0.7; (b) B = 50, ρ1 = 0.95, ρ2 = 0.85

where π is the stationary distribution of the total number of packets in the bottleneck queue. The load
on the bottleneck queue is given by ρ2 = λ1W+λ3

µ2
. We consider that there exists a wireless link further

downstream in which packets are dropped with average loss rate of P (W ).
First, we derive the delay distribution of the packet preceding the dropped one conditioned on con-

gestion loss. Note that the minimum delay of such a packet is at least B + 1 (i.e., B − 1 of the bot-
tleneck queue size and 2 due to packet being in service twice) because the dropped packet arrives
to the bottleneck queue when its size is B. Also, the same packet experiences some delay in the up-
stream queue. If x ≥ B + 1, where x is end-to-end delay in terms of packets, then P (X = x|C) =
(1− ρ1)ρx−B

1 [π(B − 1)B + π(B − 2)B + · · ·+ π(B −W + 1)B]. Thus, we have:

P (X = x|C) =
{
(1− ρ1)ρx−B

1
B(1−ρ2)

W+1ρB−1
2

1−ρB+1
2

if x ≥ B + 1

0 otherwise
(9)

where X is a random variable representing end-to-end delay.
Now, we consider the delay distribution of the packet preceding the dropped one on the wireless link.

Note that both the dropped packet and its previous packet make it through the bottleneck queue. Thus,
the previous packet experiences an end-to-end delay which is cumulative of the queueing delays from

both the queues. If x ≥ B+1, then we have P (X = x|W ) =
B∑

m=1
(1− ρ1)ρx−m

1
(1−ρ2)ρ

m
2

1−ρB+1
2

, and if x < B+1

then P (X = x|W ) =
x∑

m=1
(1− ρ1)ρx−m

1
(1−ρ2)ρ

m
2

1−ρB+1
2

. Thus, we have,

P (X = x|W ) =




(1−ρ1)(1−ρ2)

1−ρB+1
2

ρx−1
1 ρ2

1−(
ρ2
ρ1

)x

1− ρ2
ρ1

if x < B + 1

(1−ρ1)(1−ρ2)

1−ρB+1
2

ρx−1
1 ρ2

1−(
ρ2
ρ1

)B

1− ρ2
ρ1

otherwise
(10)

We plot the delay distribution of the packet preceding the lost one conditioned on congestion loss
(Equation 9) and wireless loss (Equation 10) in Figure 3.

The main emphasis is to portray the fact that the conditional delay distributions are distinguishable.
We do notice that due to the simplistic assumptions of the queueing model, the analytical distributions
may not be identical to empirical distributions but our intent is to highlight the difference between the
two conditional distributions and gain insight of the loss phenomenon through an intuitive model. All
the previous works have tried to identify or distinguish the nature of loss without providing any detailed
queueing model but using some measurement heuristics. It is a future research direction to develop a
complete queueing model so that TCP can be evaluated more accurately and also desired control can be
incorporated into the TCP error control mechanism. Note that as the system becomes more overloaded,
the two conditional distributions tend to overlap, which increases the likelihood of error in classification.
This fact was also emphasized experimentally in [9].
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3.2 An EM Algorithm to infer the Conditional Delay Distributions

We now describe the inference for P (y|C) and P (y|W ), using a Hidden Markov Model which explicitly
considers discretized delay values as part of its state definition (similar to the one developed in [15]).
We refer to a discretized RTT delay as delay symbol. Suppose there are M delay symbols and N hidden
states. Each state of the model Zt contains two components: the hidden state Xt ∈ {1, 2, . . . , N} and
the delay symbols Yt ∈ {1, 2, . . . ,M}. That is Zt = (Xt, Yt).

Let π denote the initial distribution of the states. Let P denote the probability transition matrix. An
element in the transition matrix P is denoted as P(i,j)(k,l), which represents the transition probability
from state (i, j) to state (k, l). Let yt be the observation value of Yt. If at time t, the observation is a loss,
we regard it as a delay with a missing value and use yt = ∗ to denote it. A loss observation has a certain
probability of having a delay symbol of j, 1 ≤ j ≤ M . Let s(j) be the conditional probability that an
observation is a loss given that its delay symbol is j (if it were not lost). That is, s(j) = P (yt = ∗|yt = j).
Let s(i, j) be the conditional probability that an observation is a loss given that its delay symbol is j
and the hidden state is i. That is, s(i, j) = P (yt = ∗|Zt = (i, j)). Let λ = (P, π, s) denote the complete
parameter set of the model. An Expectation Maximization (EM) algorithm is an iterative procedure
to infer λ from a sequence of T observations. Given λ, we can determine P (Zt = (i, j)|yt = ∗). Thus,
given that hidden state i corresponds to a congestion state, we associate a loss observation to congestion.
Otherwise, we associate a loss observation to wireless error. Throughout this paper, we classify the state
corresponding to higher mean delay as “congestion” state and the other as “wireless error” state. The
EM algorithm ends when a certain convergence threshold is reached. Unless otherwise specified, we show
results for N = 2 and M = 10.

C
C

W

W
σ

p(cw)

p(wc)

µ

µ
σ

W C

Figure 4. Hidden Markov Model

c2c1w2w1

Figure 5. Hidden Markov Model with hidden delay
dimension

In order to estimate the conditional delay distributions, we obtain the empirical delay distributions
estimated by the HMMs illustrated in Figures 4 and 5. Figure 4 is a regular HMM which is trained
using loss pairs. From such a trained HMM, we obtain conditional delay distributions assuming that the
state corresponding to higher mean delay represents congestion while the other state represents wireless
error. We denote the mean and variance of the delay distributions at the congestion state by µc and σc,
respectively, and similarly at the wireless state, by µw and σw. We denote the transition probability from
the wireless state to the congestion state by Pwc, and the reverse transition probability by Pcw.

In Figure 5, we illustrate the HMM (with hidden dimension) through an instance in which N = 2
and M = 2. Therefore, wireless states coupled with discretized delay symbols are represented by w1 and
w2. Similarly, congestion states are represented by c1 and c2. The delay symbols represent part of each
state and thus this HMM model can capture temporal correlation well and such a model can be trained
using any delay sample and not just loss pairs.

4 Gaussian Model

We present a simple case in which we approximate conditional delay distributions by Gaussian distribu-
tions. On average, all packet samples before congestion losses should see an almost full bottleneck queue
size.1 Denote the corresponding average delay by µc. Since cross traffic and the measurement process
1 How close to a full buffer depends on the behavior of the cross-traffic.
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introduce noise, we see a perturbed sample value. We assume that noise is white Gaussian with zero
mean and variance σ2

c .
Prior to wireless losses, the delay samples see a lower average delay. Denote the corresponding average

delay by µw. Again, we assume that noise is white Gaussian with zero mean and variance σ2
w.We can

now pose the detection or classification of congestion versus wireless loss as a scalar Gaussian detection
problem:

C : y = µc +N(0, σ2
c ) W : y = µw +N(0, σ2

w)

Substituting in Equation (6), we get:

L(y) =




(
1√
2πσ2

c

)
e
− (y−µc)2

2σ2
c(

1√
2πσ2

w

)
e
− (y−µw)2

2σ2
w


 C

>
<
W

RcwP (W )
RwcP (C)

(11)

Taking natural logarithm on both sides and rearranging the terms, we have:

− (y − µc)2

2σ2
c

+
(y − µw)2

2σ2
w

C
>
<
W

ln(
σcΓ

σw
) (12)

where Γ = RcwP (W )
RwcP (C) . Figure 6 illustrates the two possible loss scenarios. Γ determines the degree of

correct classification (or misclassification). The area denoted by PD represents the correct classification
of congestion (henceforth denoted by P (C|C)), whereas the area denoted by PF represents the misclassi-
fication of wireless loss as congestion-induced (henceforth denoted by P (C|W )). The value of Γ depends
on the penalties of misclassification as well as the ratio of wireless to congestion loss probabilities. Note
that in practice, the two penalties of misclassifying loss type, Rcw and Rwc, are not necessarily equal
and greatly depend on the source behavior, in our case, TCP. Furthermore, the degree of wireless losses,
P (W ), affects the sending rate of TCP, which in turn determines the degree of congestion losses, P (C).
In this paper, we vary the value of Γ so we quantify the potential gains and limits of end-to-end error
classification.
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Figure 6. Scalar Gaussian case for binary hypothesis
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Figure 7. PD and PF for the setup in Figure 8

5 Accuracy of Classification

To evaluate the performance of a decision rule, we consider the probability of misclassification error,
Pr[Error] expressed using Bayes rule as follows:

Pr[Error] = P (W|C)P (C) + P (C|W )P (W ) (13)

Note that P (C|C) + P (W|C) = 1, and that P (C|W ) + P (W|W ) = 1. Thus, we can determine
the performance of a decision by calculating the probabilities of correct loss-type classification, P (C|C)
and P (W|W ), which should be maximized. We know that Maximum Likelihood Tests are optimal and
thus we focus on knowing the values of P (C|C) and P (W|W ) for every possible value of the threshold,
Γ = RcwP (W )

RwcP (C) (cf. Equation (6)).
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To that end, from Equation (6), expressing a general decision rule test as L(y)
C
>
<
W
Γ where L(y) is a

random variable, we have:

P (C|C) =
∫

{y|C}

P (y|C)dy =
∫

L>Γ

P (L|C)dL

P (W|W ) = 1− P (C|W ) = 1−
∫

{y|C}

P (y|W )dy = 1−
∫

L>Γ

P (L|W )dL

In our scalar Gaussian detection problem (cf. Equation (11)), we have P (C|C) = Q
(

Γ−µc

σc

)
and

P (W|W ) = 1 − Q
(

Γ−µw

σw

)
where Q(x) is the error function2 [14]. In Figure 7, we plot the curves of

PD = P (C|C) and PF = (1−P (W|W )) as function of the threshold, Γ . Ideally, we would like to identify
the threshold value which maximizes the difference between PD and PF . These results correspond to
the experimental setup of Figure 8. We have a number of TCP traffic source-destination pairs. The link
from router 1 to each TCP traffic sink has been assigned 2Mbps bandwidth and 0.01ms propagation
delay. These links represent access wireless links with transmission errors. All other links are error free
with 10Mbps bandwidth and 1ms propagation delay except the shared (bottleneck) wired link 0 → 1
whose bandwidth is 10Mbps and delay is 25ms. The buffer size at 0 → 1 is equal to the bandwidth-delay
product and all other buffer sizes are set to default value of 50 packets. All the TCP sources and On/Off
cross traffic UDP sources are started randomly between 0 sec and 3 sec and the simulations are run till
200 sec. For each cross connection, the On and Off periods are Pareto distributed with average duration
of 100ms each and shape parameter of 1.5.

In this case, we have P (C) = 2.95%, P (W ) = 2.5%, µc = 0.0744, σc = 0.0044, µw = 0.0712,
σw = 0.0075.3 The optimal value of Γ is found to be 0.0667 which corresponds to a misclassification
penalty ratio of Rcw

Rwc
= 0.0787.

0 1

TCP Sources TCP Sinks

UDP Sources UDP Sinks

10Mbps, 1ms

10Mbps, 25ms

2Mb, 0.01ms

10Mbps, 1ms 10Mbps, 1ms

Figure 8. Wireless last-hop Topology I

6 Validation

In this section, we describe some of the tests we conducted to evaluate the characteristics of delays
experienced by TCP flows in the presence of congestion and wireless losses. We conducted our experiments
using the ns-2 network simulator [3]. The network topology used in the simulation is shown in Figure 9.
All TCP connections traverse the links (0 ↔ 1 ↔ 2 ↔ 3) shared with cross traffic On/Off UDP sources
as in Topology I. We assume here that the misclassification penalties, Rcw and Rwc, are equal. The rate
of cross-traffic connections is controlled to induce certain P (C) and P (W ) values.

Table 1 shows the accuracy of using empirically-obtained conditional delay distributions in Bayesian
Maximum Likelihood tests. Unless otherwise specified, we used a packet trace of 800 seconds. We use
this same packet trace to do both the training of the HMM to estimate the conditional delay distribu-
tions, P (y|C) and P (y|W ), as well as to evaluate the accuracy of the classification. We notice that the
Bayesian classification method even using empirical delay distributions is not perfectly accurate. The
misclassification error rate is in the range 0.2 − 0.8%, depending on the prior values, P (C) and P (W ),

2 Q(x) = 1√
2π

∫ ∞
x e−

t2
2 dt.

3 Note that if a TCP source, augmented by such Bayesian error classification, is modified to take different transmission
control actions in response to different types of losses or network state, these values are likely to change.
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and their ratios. Furthermore, the more P (y|C) and P (y|W ) overlap, the Bayesian classification method
becomes less accurate.

Table 2 compares the accuracy of our Bayesian error classification method and that of Viterbi [13]
used in [9], using conditional delay distributions estimated from a two-state HMM trained using samples
from loss pairs. The HMM does not explicitly consider discretized delay values as part of its state
definition (as in [9]). We observe that the Bayesian classification method performs as well while being
computationally much more efficient— the computational complexity of the Bayesian method is O(1)
whereas that of Viterbi is O(N2T ) where N is the number of states of the HMM (here N=2) and T is
the number of delay samples (here the samples are coming from loss pairs).

Table 3 shows the accuracy of the Bayesian classification method using conditional delay distributions
estimated from an HMM that explicitly considers discretized delay values as part of its state definition
(cf. Section 3.2), trained using either all delay samples or only loss pairs. Considering all delay samples in
training the HMM would be useful for delay-based estimation of the state of the communication path (as
in [15]), but is bound to produce classification error when the goal is to estimate the reason of a packet
loss as states that do not correspond to either congestion loss nor wireless loss get classified as such. We
observe that the inaccuracy in packet-loss classification is less than 2%. Using an HMM with explicit
delay component generally performs better, however at the expense of increased computational cost due
to increased state space—the complexity is O(N2M2T ) as opposed to O(N2T ) for a regular HMM. We
also observe that in training the HMM, as expected, using all delay samples does not necessarily improve
performance over using loss-pair samples only since the latter samples are more relevant to the problem
of classifying congestion versus wireless losses as they capture delay properties around loss instants.

Priors Correct Classification Prob. P[Error]

P (C) P (W ) P (C|C) P (W|W ) P (C)P (W|C)+
P (W )P (C|W )

0.0196 0.0094 0.935 0.4865 0.00614
0.0081 0.0193 0.198 0.941 0.00763
0.0028 0.0287 0.510 0.971 0.0022
0.0291 0.0181 0.930 0.683 0.00777

Table 1. Accuracy of Bayesian Maximum Likelihood using Empirically-obtained Conditional Delay Distributions.

Priors Accuracy (Bayesian) P[Error](Bayesian) Accuracy (Viterbi) P[Error](Viterbi)

P (C) P (W ) P (C|C) P (W|W ) P (C)P (W|C)+ P (C|C) P (W|W ) P (C)P (W|C)+
P (W )P (C|W ) P (W )P (C|W )

0.0196 0.0094 0.403 0.589 0.01556 0.41 0.649 0.01487
0.0081 0.0193 0.095 0.734 0.01246 0.75 0.458 0.01252
0.0028 0.0287 0.351 0.9 0.00475 0.77 0.525 0.01433
0.0291 0.0181 0.857 0.281 0.01723 0.696 0.449 0.01882

Table 2. Accuracy of Bayesian Maximum Likelihood and Viterbi using Conditional Delay Distributions derived
from 2-state HMM trained using samples from loss pairs.

In Table 4, we evaluate the accuracy of the Viterbi algorithm using conditional delay distributions
estimated from both kinds of HMM—one that is regular and the other one with hidden delay dimension
in its state definition (denoted by HMM++). Both HMMs are 2-states—the former one is trained using
loss pairs only and the latter one using all delay samples. We observe that the inaccuracy in packet-loss
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Priors Accuracy(all-samples) P[Error](all-samples) Accuracy(loss-pairs) P[Error](loss-pairs)

P (C) P (W ) P (C|C) P (W|W ) P (C)P (W|C)+ P (C|C) P (W|W ) P (C)P (W|C)+
P (W )P (C|W ) P (W )P (C|W )

0.0196 0.0094 0.8914 0.0524 0.01111 0.973 0.015 0.00979
0.0081 0.0193 0.089 0.996 0.0206 0 1 0.0081
0.0028 0.0287 0.000 1.000 0.0028 0 1 0.0028
0.0291 0.0181 0.987 0.004 0.0185 0.909 0.086 0.01919

Table 3. Accuracy of Bayesian Maximum Likelihood using Conditional Delay Distributions estimated from
2-state HMM with explicit delay component, trained using all samples and using loss pairs.

Priors HMM/Viterbi HMM++/Viterbi

P (C) P (W ) P (C|C) P (W|W ) P[Error] P (C|C) P (W|W ) P[Error]
0.04 0.02 0.42 0.58 0.0316 0.43 0.57 0.0314
0.02 0.03 0.64 0.36 0.0264 0.59 0.55 0.0217
0.04 0.01 0.60 0.44 0.0216 0.66 0.30 0.0206
0.03 0.02 0.61 0.48 0.0221 0.66 0.36 0.0180
0.02 0.01 0.58 0.61 0.0123 0.62 0.47 0.0129

Table 4. Accuracy of Viterbi Algorithm using Conditional Delay Distributions estimated from 2-state HMM
trained using loss pairs and 2-state HMM trained using all delay samples but HMM considers delay as part of
the state

classification is less than 3.5%. We also observe that the performance of HMM++ with Viterbi is at least
as good as HMM with Viterbi.

Priors N = 2 N = 3 N = 4
P (C) P (W ) P (C|C) P (W|W ) P[Error] P (C|C) P (W|W ) P[Error] P (C|C) P (W|W ) P[Error]
0.04 0.02 0.426 0.569 0.03158 0.384 0.671 0.03122 0.529 0.431 0.03022
0.02 0.03 0.593 0.546 0.02176 0.419 0.596 0.02374 0.439 0.560 0.02442
0.04 0.01 0.661 0.299 0.02057 0.421 0.637 0.02679 0.482 0.471 0.02601
0.03 0.02 0.656 0.375 0.02282 0.466 0.519 0.02564 0.436 0.518 0.02656
0.02 0.01 0.622 0.470 0.01286 0.322 0.743 0.01613 0.472 0.448 0.01608

Table 5. Accuracy of Viterbi using Conditional Delay Distributions derived from 2-state HMM with explicit
delay component trained using all delay samples for different values of number of states

In Table 5, we observe the accuracy of Viterbi using conditional delay distributions estimated from
HMM that explicitly considers delay values as part of its state definition. The HMM is trained using
all delay samples for M = 10 and different values of N . Since using all delay samples introduces noise,
increasing the number of states may not give improved packet-loss classification. But we observe that
N = 2 works well. It is to be noted that similar experiments cannot be done to evaluate the accuracy of
Bayesian Maximum Likelihood for N > 2 since the test is formulated as a binary (congestion vs. wireless
error) decision (cf. Equation (6)).

7 Conclusion and Future Work

With the fast growth of the Internet in scope and scale, the congestion-oriented design of TCP has
been challenged. Many studies have reported on the degradation in TCP performance in heterogeneous
settings, and many have proposed modifications to TCP or the network itself. In this paper, we step back
and examine how well can TCP estimate the error conditions of the path from its observed packet delay
samples. We formulated the estimation problem as a statistical hypothesis testing and used Maximum
Likelihood Ratio Tests. To infer delay distributions conditioned on loss type (congestion versus wireless),
we used Hidden Markov Model together with a simple state classification heuristic (higher mean delay
representing congestion state). We also examine the inclusion of discretized delay values as part of the
definition of HMM state.

Our analytical and simulation results show that an efficient online error classifier can be built as
long as congestion-induced losses and losses due to wireless transmission errors produce sufficiently
different statistics. A simple Bayesian classification method performs as well as a Viterbi-based method.
Furthermore, the explicit inclusion of delay makes the HMM-based inference more accurate at the expense
of increased computational cost. Loss pairs are also found to give less noisy results than those obtained
from all delay samples. Although loss pairs maybe few for short connections, a loss-type classifier maybe
applied jointly to connections sharing a common network path.
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In general, the TCP detector should attempt to maximize P (W|W ) subject to a high P (C|C) ≥ α.
This way congestion control actions are taken in response to congestion, while avoiding a degradation in
TCP throughput during wireless losses. Future work remains to investigate such loss-type-aware TCP
schemes. As we also pointed out, a delay-based estimation which considers all delay samples could be
used. We plan to investigate further such delay-based schemes and develop corresponding transmission
control rules.
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