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Elementary Queuing Analysis  
 

Basics and M/M/1 Analysis 
 
Of all the analysis techniques that enable us to do "back of the envelope" estimation of computing 
systems performance, queuing analysis is by far the most important.  
 

Introduction to Queuing Systems 
The basic entities in a queuing system are:  

Customers:  

These are the individual requests for service (e.g. a request for I/O, or a request by a 
customer in a bank, etc.)  

Queues:  

These are waiting areas where requests for service wait for server(s) (e.g. the ready queue 
of processes waiting for CPU, or the waiting room at a doctor's office).   

Servers:  

These are the entities or resources that are capable of satisfying the service requests (e.g. 
CPU, disk, bank teller, etc.)  

 

In addition to the above entities, we must discuss a number of other issues, including: 

! Dispatching Discipline: Once a server is done serving a customer, it must pick the next 
customer out of some queue. The algorithm used to do so is termed the dispatching 
discipline. Possibilities (e.g. for scheduling purposes) include First-Come-First-Serve 
(FCFS) also called First-In-First-Out (FIFO), Shortest-Job-First, Earliest-Deadline-First, 
etc. We will see the impact of these scheduling techniques later in the course. For the 
purposes of this course we will restrict our analysis to FCFS. 

! Distribution of Arrivals: For the purposes of this class we will restrict our analysis to a 
Poisson process for the arrival of customers (from the outside world) to the system. The 
rate of arrivals is λ. In other words, the number of customers coming into the system every 
period T is λΤ. As we have discussed in earlier lectures, a Poisson arrival process implies 
that the arrivals are independent. 
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! Distribution of Service Time: How long does it take a server to service a customer's 
request? Well, the service time may be the same for all customers (e.g. all customers 
request exactly the same service and it takes exactly the same time to serve each and every 
one of them). Alternatively, and more realistically, the service time is likely to be variable. 
For the purposes of this class we will restrict our analysis to the case in which the service 
time is a random variable that is exponentially distributed with a mean service time Ts. If 
the average time it takes a server to service a request is Ts, then it follows that the average 
rate of service (if the server has an infinite supply of requests to work on) would be µ=1/Τs.  

 
For the purposes of our introductory treatment of queuing theory, we make the following 
assumptions:  

! Population: We assume that Requests for service are generated from an infinite 
population. The significance of this assumption is that the arrival of a request to the system 
does not influence "future" arrivals. For example, the likelihood of a new customer walking 
into the bank in a given interval of time has nothing to do with other customers walking in 
and out of the bank.  

! Queue Size: We assume that queues have infinite capacity. The significance of this 
assumption is that it will never be the case (in our analysis, that is) that requests for service 
will be "lost" or will affect the likelihood of other requests joining the queue. For example, 
we exclude the likelihood that a patient will not be able to see a doctor because there was 
no waiting space for them in the doctor's office. A more computing-system-related example 
would be the arrival of IP packets to the buffer of a router. Under our assumption, packets 
can always be buffered and thus cannot be lost! Of course, any real system must have a 
finite capacity (e.g. network buffers, etc.) and it is possible (albeit more complex) to 
analyze queuing systems with finite queues. However, this assumption simplifies analysis 
greatly and provides an acceptable approximation.  
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Single-Queue Single-Server System 

We are interested in studying the performance of the system below in the steady state.  

 

 = 1/µ 

Queue 

Requests are generated 
through a Poisson process 
with rate λ 

FCFS 
dispatching 
discipline 

Service time is exponentially 
distributed with mean 
service time

 Server 
 
 
 
 
 
 
 

Notation: 
! Let w denote the number of customers waiting in the queue 

! Let q denote the total number of customers in the system (waiting + being served) 

! Let Ts denote the service time (the time it takes the server to serve a customer). 

! Let Tw denote the waiting time in the queue. 

! Let Tq denote the turnaround time (waiting time + service time). 

! Let ρ denote the utilization of the system, which is the ratio between the rate of arrivals and 
the rate of service ρ = λ/µ. 

 

Obviously, in the steady state, the rate at which requests are queued cannot exceed the rate at 
which the server is able to serve them. Thus, we have: 

λ < µ 

ρ < 1 
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Some Basic Queuing Relationships 
 
Little's Formula 
The following two relationships are true of any "steady state" queuing system (i.e. a queuing 
system in equilibrium). They are known as Little's Formulae (or Little's Theorem, or Little's Law). 

q = λ .Τq 

w = λ .Τw 

 

 
System

Tq = Mean Time in System 

λ = Steady-state flow rate  

 

The intuition behind these two formulas is that over a period of time T, the number of arrival in the 
system is λ Τ.  At equilibrium, every customer will wait (on the average) an amount of time  Τq in 
the system. From the instant a customer arrives and until that customer leaves (i.e. after Τq units of 
time) λΤq "new" customers would have joined the system (on the average). Thus at the time the 
customer leaves the system a total of λΤq customers would be in the system. Obviously, the same 
applies at the time any other customer leaves the system (and in general at any instant of time!)  
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Relationship between Turnaround, Queuing, and Service Times 
In a queuing system, a customer's time is spent either waiting for service or getting service. Thus, 
we get the following additional (obvious) relationship: 

Tq = Tw + Ts 

 

Multiplying the above equation by the arrival rate λ and applying Little's formula, we get: 

q = w + λTs = w + λ /µ = w + ρ 

 

Analysis of an M/M/1 Queuing System 

M/M/1 Queues 

An M/M/1 queuing system is a single-queue single-server queuing system in which arrivals are 
Poisson and service time is exponential. The notation M/M/1 describes the "queue" in the system 
as having a Markovian arrival process (i.e. Poisson) and a Markovian (i.e. exponential) service 
discipline with 1 server.  

Birth and death probabilities for M/M/1 

Consider a very small interval of time of length h. Assume that this interval of time (h) is so small 
that a maximum of one arrival can realistically occur in that period of time. Since the rate of arrival 
is λ requests per unit time, then it follows that the rate of arrival per interval is λh. 

During an interval h one of two things can happen: either no requests arrive during that small 
interval of time, or one request does arrive. We call the event of an arrival of a request to the 
system a “birth” event. 

We know that the probability density of the Poisson distribution is: 
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Given that the rate of arrival per interval h is λh, the probability of x arrivals per interval h is  
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According to the above, the probability that there will be no arrivals during a given interval h is 
e−λh  and, thus, the probability that at least1 one arrival (i.e. a birth) will occur is: 
                                                           
1 Recall that we assume that the period is so small that we can assume that a maximum of one arrival is possible during 
that period of time. 
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Pr(birth) = 1 - Pr[no arrivals] 
Pr(birth) = 1- e−λh   
Pr(birth) = 1 - (1 - λh + (λh)2/2!  - (λh)3/3! - …)  

 
For very small period h, we can use the first order approximation, which results in the following 
probability: 
 

Pr(birth) = λh  
 
Similarly, we can show that the probability that a customer will leave the system (i.e. a customer 
for whom service was finished) given that somebody is in the system in the first place is µh. We 
call such an event a "death" event.  
 

Pr(death) = µh 
 

State (rate) transition diagram for M/M/1 

Consider a M/M/1 system at steady state (i.e. equilibrium). Such a system will have a variable 
number of customers. In particular, at any point of time, a customer may be added to the system 
through a birth event, or a customer may be removed from the system due to a death event. 

Consider the state of the system when exactly j customers are in the system. We denote such a 
state by Sj. In order to compute many important properties of an M/M/1 queuing system, it will be 
necessary to calculate the probability that at steady state, the system is in a state Sj (for any j=0, 1, 
2, …)  

Consider the system at a given instant. Let the state of the system at that instant be Sj. How could 
the system be in such a state? Well, to answer this question, consider the system at an interval h 
earlier (where h is very small). There are three scenarios that would result in the system moving 
into state Sj (see the figure below): 

 

(a) The system was in state Sj-1 and a birth occurred. The probability of that happening is λh. 
(b) The system was in state Sj+1 and a death occurred. The probability of that happening is µh. 
(c) The system was in state Sj and, neither a birth nor a death occurred. The probability of that 

happening is 1−λh−µh. 
 
The diagram below shows the above transitions. Solid arrows denote the transitions that result into 
entering state Sj. 
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 1 − λh − µh  
 

µh 

λh 

Sj-1 

µh 

λh 

Sj Sj+1 

 
 
 
 
 
 
 
 

From the above, we have the following relationship: 

Pr(Sj)= λh Pr(Sj-1) +  µh Pr(Sj+1) + (1-λh−µh) Pr(Sj) 

 

Rearranging terms, we get 

µ Prob(Sj+1) = (µ+λ) Prob(Sj) −λ Prob(Sj-1) 

Prob(Sj+1) =  (1+ρ) Prob(Sj) − ρ Prob(Sj-1) 

S0 is obviously a special case (since there is no S-1). Thus we get: 

Prob(S0) = µ Prob(S1) + (1-λ) Prob(S0) 

Prob(S1) = ρ Prob(S0) 

 

By successive substitution of Pr(S1) and Pr(S0) in the equation for Pr(Sj+1), we obtain Pr(S2), 
Pr(S3), Pr(S4), … Namely: 

    Pr(Sj) = ρj Pr(S0)             

Moreover, since the overall probability density must add up to 1, we get: 

Pr(S0) + ρ Pr(S0) + ρ2 Pr(S0) + ρ3 Pr(S0) + ρ4 Pr(S0) … = 1 

Pr(S0) [ 1 + ρ + ρ2 + ρ3 + ρ4 … ] = 1 

    Pr(S0) =  (1-ρ)     

 

To appreciate the above relationship, let us look at the probability of having j customers in the 
system (i.e. Pr(Sj)) as a function of the utilization. This is shown in the figure below for j=0, 1, 2, 
4, 8, and 16. 
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Probably, a better visualization of the relationship between the number of pending requests (i.e. 
number of customers in the system) and utilization is that relating the probability that less than n 
customers are in the system. We derive this next.  

Average number of customer in a M/M/1 System 

The average number of customers in a M/M/1 system could be calculated as follows: 

q = E[Number of customers] = 0 * Pr(S0) + 1 * Pr(S1) + 2 * Pr(S2) + … 

 

Substituting from the formulas above, we obtain: 

q = (ρ + 2ρ2 + 3ρ3 + 4ρ4)*(1-ρ) 

    q = ρ/(1−ρ)     

 

To appreciate the above relationship, let us plot the number of pending requests (i.e. q) as a 
function of the utilization of the system. This is shown below. 
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Average number of customers waiting for service in a M/M/1 system 

We know that q = w + ρ. Thus,  

w = ρ/(1−ρ) − ρ 

    w = ρ2/(1−ρ)     

Average Time in a M/M/1 system 

Using Little's formula, we get 

Tq= q/λ 

    Tq= 1/µ(1−ρ)     

Average Time waiting in a M/M/1 queue 

Using Little's formula, we get 

Tw= w/λ 

     Tw= ρ/µ(1−ρ)     

Variability Measures 

The above measures average-case behaviors. As we explained earlier, it would be interesting to 
estimate the variability around these averages. Using similar derivations, one can derive the 
standard deviations of the above metrics. In particular, we can calculate the standard deviation in 
the number of customers in an M/M/1 system (i.e. q) 
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