U.S. copyright law (title 17 of U.S. code) governs the reproduction and redistribution of
copyrighted material.

ure of a CV value
as far as the first
nciple an indicator
header is followed
mpractical because
needed for that (if
: prefer to confine
1ses where needed.
of permitting sub-
¢ an extra byte is
: to preserve gener-
serve CVN =0 for
g substructures,
J reserve the value
vould reduce over-
CVs, but it would
: CVs. Then a defi-

definition is com-
«d from the remote
cepted the defini-
here is not enough

1¢er study,

version as proposed
‘OM VII/11, July 1,

cess Protocol Specifi-
/stem, Ottawa, March

On the Exchange of |
tagung Aachen, Infor-

Protocol, PIX/HLP/

narks on Negotiation
ling, INWG Protocol

xd Interprocess Com-
¢ Users’ Workshop,
{/HLP/GMD/77/02.

I John G. Fletcher and Richard W. Watson

. Lawrence Livermore Laboratory, Livermore, California

[94550, UsA

Timer-based protocol mechanisms are developed for

L reliable and efficient transmission of both single-message and
f message-stream traffic, That is,
. assured in the face of lost, damaged, duplicate, and out-of-

correct data delivery is

, sequence packets. The protocol mechanisms seem particu-

f larly useful in a high-speed local network environment.

. Current reliable protocol design approaches are not well

b suited for single-message ‘modes of communication appro-

" priate, for example, to distributed network operating

j systems. The timer intervals that must be maintained for

' sender and receiver are developed along with the rules for
" timer operation, packet acceptance, and connection opening
and closing. The underlying assumptions about network
. characteristics required for the timer-based approach to work
' correctly are discussed, particularly that maximum packet
8 lifetime can be bounded, The timer-based mechanisms are
f compared with mechanisms designed to deal with the same
¥ problems using the exchange of multiple messages to open

E and close logical connections or virtual circuits,

Keywords: Computer network, transport protocol, inter-
Process communication, host-to-host proto-
col, end-to-end protocol, timer protocol, con-
nections, connection management, reliable
communication, transaction communijcation,
maximum packet lifetime, 3 way handshake,
packet switching, network operating system

! This paper has been presented at the Computer Network

Protocols Symposium, held in Liege (Belgium) in February
1978 and organized by the University of Liege. The permis-
sion to reprint this paper is gratefully acknowledged.

© North-Holland Publishing Company
Computer Networks 2 (1978) 271290

271

Mechanisms for a Reliable Timer-Based
i Protocol

1. Introduction

This article discusses a number of important
problems in the design of a reliable end-to-end
(process-to-process) communication protocol (EEP)
for a packet-switched network. Timer-based mecha.
nisms are presented that appear to offer an efficient
and effective solution to these problems.

One can usefully view the design of an EEP gas
consisting of three main problem areas, and one

———

John G. Fletcher was trained as a
physicist specializing in general
relativity. He received a B.S. from the
George Washington University and an
M.A. and PHD from Princeton
University. He has spent most of his
working life at the Lawrence Liver-
more Labotatory, having joined the
staff in 1962, About a dozen years
ago his interests changed from
physics to computer science. He has
been one of the chief architects of

Richard W. Watson received his B.S.
from Princeton University in 1959,
and his M.S. and Ph.D. from the
University of California, Berkeley in
1962, and 1965. All degrees were in
Electrical Engineering and Computer
Science. During the years 1964-—
1966, he was a member of Stanford
University’s Computer Science
Department. He has been affiliated
with the University of California
(Berkeley, Davis) as a lectqrer part

machine interface, operating systems, and computer network-
ing. He is author of the book Timesharing System Design
Concepts.

We wish to acknowledge the useful discussions with V.G,
Cerf, Y. Dalal, J.E. Donnelley, L.L. Garlick, R. Rom and
J.B. Postel. We also wish to thank LJ. Sloan for his careful
reading of the paper and valuable suggestions. The work
reported here was sponsored by the United States Depart-
ment of Energy, under contract No. W-7405-Eng-48.

272 J.G. Fletcher, R.W, Watson ! A reliable timer-bagedq protocol

would like to find as small and as simple a set of
mechanisms as possible to solve the problems in al]
three classes. The areas are:

* Routing and interfacing: Issues in this area include
addressing, routing, packet fragmentation at internet-
work gateways, and reassembly [21].

* Assurance: Issues in this area include detection of
and recovery from lost, damaged, or duplicate
packets; detection and handling of Packets that arrive
out of sequence, and provision of reliable mechanisms
for protection of control information [4,6,8,13].

- Efficiency: Issues in this area include the interac- .

tion of flow cantrol and buffer-management strate-
gies, header size, use of negative acknowledgment,
packet size, and the numbers of packets that must be
exchanged to reliably transmit one or more data
packets [2,3,7,13,15,18,22].

This paper is concerned primarily with the assur-
ance issues in an environment where it is desired to
minimize the number of packets exchanged to
reliably transmit one or more information packets.
The network environment for which the timer-based
mechanisms discussed here are being considered has
the following characteristics:

* High-speed local internode connections using a
variety of technologies. Technologies in use include
low-delay store-and-forward nodes interconnected
with 5-50 Kb serial links, point-to-point paralle] 5-
40 Mb links, and planned 50 Mb shared coaxial cable
buses [12,16].

* The maximum packet lifetime (MPL) can be
bounded and is appropriately small, as defined later,

- Planned connections among several local net-
works, and possible future connection to other
government or public geographically distributed
networks. (We assume maximum packet lifetime can
be bounded if this protocol is to be used across
networks, or that a gateway will translate between
different protocols.)

* The need for packet fragmentation and reassems-
bly because of the constraints of the different net-
works and the variety of internode link technologies,

* The possibility, with low probability, of out-of.
Sequence arrivals through store-and-forward subnet.
works, lost or damaged packets, and creation of
duplicates within the network.

* The creation of duplicates at the source due to
the use of a positive acknowledgment mechanism for
recovery from lost or damaged packets,

The computers between which it is desired to
provide communication cover the range from micro-

. Teasonable in an environment in which the exchange

is the conclusion ar

PTOCEssors to supercomputers, The types of traffic to o
glgorithm for the tin

be exchanged include: messages between service
machines and interactive terminals; small, medium,
and large files; raster display frames; real time data
collection; and single-message traffic between “user”
processes and distributed “network operating
system” services.

Of all the environmental factors listed above, the
one that makes our needs different from those for
which other EEPs have been designed is the desire to
make use of the potential offered by the high-speed
local network environment for the design of network-
based distributed operating systems built around
efficient reliable single and double (data and acknow-
ledgment) message exchanges, Existing EEPs or those
under design [4—7,13,14,19,20] deal with some of
the reliability issues to be discussed by first exchanging
two or more messages to reliably establish a virtual
circuit or logical connection between communicating
Processes, then carrying out their data exchanges, and
finally exchanging two or more messages to reliably
close the connection, Several authors have expressed
the desire for message-based protocols as opposed to
connection-based protocols, but have not dealt with
the assurance issues [1,10,15,17,24,25]. Belsnes has
shown that to reliably send a single data message
requires the exchange of five messages, unless state
information is retained after logical connections are
severed [2]. We felt that this packet overhead was not

2. Protocol context

We briefly outling
without justificatior
in the three areas 1
¥ reader a full concre
 visualize the tin
mechanisms are i

decisions, and so oth
| Packets consist ¢
address and contro
Header-only packets
I Many of the 1
(including those d
§ some of the assuran
those of packet fra
cal information to
uniquely indentifi;
messages, message s
bits. We call the uni
the state informatio:
end, these units ar
numbering them, T
number (DSN) of
view of the mechar
unit chosen as the b
preference for an
sequence-number o
The number of g;
the packet header t
the data-sequence-n
f contained in the pa
g to use a hierarchic
B associated routing s.
f rules for header fo;
b tion cannot be giv.
§ mentation is as desc
f 1o deal with the
} to use the positive
] mechanism for deal
packet checksum -
§ dealing with damag;
: sequence numbers
f cribed, for handling
| tions. The retransr
important to the ti
§ as duplicates can b

of single data messages might be very common and 50
began to examine the mechanisms and algorithms
necessary to tradeoff the retention of state informa.
tion for the exchange of several messages in order to
achieve both reliable single-message and message-
stream communication,

The organization of the paper is the following,
Section 2 outlines the protocol context in which the
specific mechanisms developed in detail later are
embedded. It is included for possible reader interest
and to provide a specific protocol environment for
the timer mechanism as an example. Section 3 and 4
define the assurance problems that the timer-based
mechanisms are designed to solve by showing a cur- ,
rent solution using an explicit exchange of messages,
Sections S and 6 present the timer-based mechanisms
and show how these constitute another solution to
the problems of Sections 3 and 4. Section 7 discusses
the factors requiring practical bounds on timer inter-
vals. Section 8 compares the timer-based mechanisms
with the exchange of message mechanisms. Section 9

is the conclusion and the Appendix gives a detailed

€ types of traffic to
algorithm for the timer protocol.

s between service
als; small, medium,
mes; real time data
ffic between “user”
letwork operating

2. Protocol context

, We briefly outline our protocol design preferences,
. without justification, for solving the main problems
in the three areas listed above in order to give the
reader a full concrete protocol context in which to
visualize the timer mechanisms. The timer
mechanisms are independent of most of these
decisions, and so other choices could be made.
Packets consist of two parts, a header containing
i address and control information, and a data part.
i Header-only packets are possible.
; Many of the mechanisms developed to date
(including those described here) for dealing with
8 some of the. assurance and efficiency issues, as well as
E those of packet fragmentation, assume that the logi-
 cal information to be exchanged is broken up into
b uniquely indentifiable indivisible units such as
| messages, message segments, octets (8-bit bytes), or
f bits. We call the unit chosen an element. To minimize
¢ the state information required at each communicating
i end, these units are usually named by sequentially
3 numbering them. This number is the data-sequence-
b number (DSN) of the element. From the point of
i view of the mechanisms to be described, the size of
L unit chosen as the basic element does not matter. Our
 preference for an element is the octet. The data-
' sequence-number of a packet names the first element,
| The number of data elements is also recorded in
f'the packet header to enable the rapid computation of
i the data-sequence-number of the last data element
f contained in the packet. Our choice for addressing is
10 use a hierarchical cluster or area addressing and
¥ associated routing scheme. Detailed discussion of the
-rules for header formation during packet fragmenta-
{ tion cannot be given here. Handling the data frag.
| mentation is as described for TCP in ref, [4].
_“ To deal with the assurance issues, we have chosen
ito use the positive acknowledgment/retransmission
. mechanism for dealing with lost packets; an optional
ipacket checksum over both header and data for
jdeah'ng with damaged packets; and a combination of
psequence numbers and timer approaches, to be des-
icribed, for handling packet duplicates and transposi-
Htions. The retransmission interval and strategy are
important to the timer mechanisms to be discussed,
fas duplicates can be generated at the sender node if

s listed above, the
ent from those for
3ned is the desire to
1 by the high-speed
: design of network-
tems built around
¢ (data and acknow-
isting EEPs or those
deal with some of
by first exchanging
/ establish a virtual
‘een communicating
data exchanges, and
messages to reliably
hors have expressed
ocols as opposed to
have not dealt with
24,25]. Belsnes has
ingle data message
:ssages, unless state
cal connections are
et overhead was not
which the exchange
ery common and so
sms and algorithms
m of state informa-
nessages in order to
isage and message-

i is the following.
ontext in which the
in detail later are
sible reader interest
ol environment for
ale. Section 3 and 4
hat the timer-based |
e by showing a cur- .
change of messages.
1-based mechanisms
another solution to
. Section 7 discusses
inds on timer inter-
r-based mechanisms
«chanisms. Section 9

LRI R

J.G. Fletcher, R.W. Watson ! A reliable timer-based protocol 273

an acknowledgment is delayed, for whatever reason,
beyond the retransmission interval,

Our current view regarding protection of control
information is that its meaning should be so formu-
lated that its loss or duplication does not matter. This
is accomplished by requiring it to fit one of three
conditions: report status about the sender, report the
sender’s current view of its partner’s status, or describe
the data in the packet in some way [8]. Then; if
a packet is lost under the first condition, status
information, possibly more up-to-date, will appear in
later packets and if duplicated it will just cause the
overwriting with an identical value of some register
content. In the second condition, loss or duplication

- will be detected at the receiver and the appropriate

contro! information regenerated or discarded as
appropriate. In the third case, loss or duplication is
associated with the data, and the mechanisms for
dealing with data loss or duplication will be invoked
and lead to appropriate recovery, Control informa-
tion requiring frequent communication will be in a
fixed-field header that will contain sender and
receiver addresses, the data-sequence-number (DSN),
the acknowledge-sequence-number (ASN) acknow-
ledging all preceding elements, some control flags, the
checksum, and a window size for flow control [4,5,
14,18,19].

Listing of design choices in the efficiency area is
beyond this paper except to repeat that a window
flowcontrol scheme is used. Receiver buffering is
assumed to be by logically endless buffers or by
explicit buffer quantization known by the sender.
Negative acknowledgments are allowed to speed
retransmission. The number of packets required to
reliably transmit one or more packets is minimized by
the timer mechanisms.

The above brief summary should give a flavor for
the overall protocol within which the timer mecha-
nisms to be described in Sections § and 6 are to be
used. Of the issues mentioned above, the only ones
discussed here are those interrelating the assurance
issues, the desire being to achieve both an efficient
single message and a message-stream capability.

We want to allow both simplex and full-duplex
communication. (Half-duplex is a special case of full-
duplex.) During communication, each side maintains
a connection record where it records the status of its
end of the conversation and its best current know-
ledge of the state of its partner. Because of network
delays, the latter is likely to always be a little out of
date.

274 J.G. Fletcher, R.W. Watson / A reliable timer-based protocol

A simplex connection exists or is established when In the timer-based mechanisms there is no OPEN fla
both sides have connection records with their instead a packet starting a “run” of contiguo
partner’s address recorded and one side has a connec- Sequence numbers has a data-run-flag (DRF) on. Mor
tion record in which is recorded a valid next expected . i
data-sequence-number of its partner. A full-duplex
connection exists or is established when both sides
have connection records in which are recorded their

sequence-number that B
(user) level. The reason f
| by assuming that the in
i old duplicate. B has no
! responds as above, Howe
+ ledgment of this old du;
| recognize that it does n

partner’s addresses and both contain a valid next
expected data-sequence-number. A connection may
exist very briefly during the exchange of a data
packet and its acknowledgment or over a prolonged
period during the exchange of a sequence of packets.

We now proceed to discuss the duplicate-detection
and connection opening and closing problems that
the timer mechanism is designed to solve. In order to
compare the timer mechanisms with existing multi-
packet exchange mechanisms to solve these problems,
the issues are introduced using the multipacket
exchange mechanisms.

3. Reliably opening a connection, and duplicate
detection

We want to provide the following forms of dupli-
cate protection: '

a) If no connection exists and the receiver is willing
to receive, then no duplicate packets from a
previously closed connection should cause a
connection to be opened and duplicate data
accepted by the next level (user) program. This is
the “replay” problem, where a series of old dupli-
cates could cause a connection to be opened and
the data replayed to the receiver from one or more
packets.

b) If a connection exists, then no duplicate packets
from a previously closed connection should be
acceptable within the current connection.

¢) If a connection exists, then no duplicate packets
from the current connection should be accepted.

Let us consider these problems in order.

Problem (a) results because there has to be some
way to indicate that a new connection is being
established and what its initial data-sequence number
is to be. This “opening” indication is usually made by
the use of a control flag in the packet header. A
packet with such a flag “on” is a dangerous packet,
particularly if it should contain data. In the three-
way-handshake mechanisms, discussed below, we call
this flag the “OPEN flag”. The OPEN flag only
appears on in the first packet sent over a connection.

with appropriate data-sequence-numbers following a
packet with the OPEN flag on, it was passed on to the

next-level program; then the arrival of an old dupli- §
cate OPEN packet with data from a previous connec- §
tion would be accepted and the data passed on to the

next level. Further, even if the old OPEN packet did
not contain data, but was followed by old duplicate
data packets with appropriate contiguous sequence
numbers to that contained in the old OPEN packet,
then they would be accepted and passed on to the
next level program as an undetected replay, These
conditions result because the receiver has discarded
all state information about a connection once it has
closed the connection and thus has no way to recog-
nize an incoming packet with the OPEN flag on as an
old duplicate, When such a packet arrives, the receiver
proceeds to open a connection. When the receiver is
closed, receipt of an old duplicate data packet with
the OPEN flag off can be ignored.

To guard against this problem two mechanisms
have been previously proposed, the three-way hand-
shake [6], and the unique socket address [20]. 1t is
our view that the latter is just a modified version of
the former as it effectively relies on an exchange of
confirmation messages to detect the duplication.
Therefore, we will limit our discussion to the explicit
three-way handshake. The three-way hand-shake
protects against replay by not allowing data to be
passed to the next level program until the successful
exchange of three messages. It works as follows:
Assume that node A wishes to communicate with
node B in a full-duplex conversation.

(1) A sends B a packet with the OPEN flag on and an
initjal data-sequence-number.

(2) B acknowledges the receipt of this sequence
number in a packet with the OPEN flag on and
containing its own initial ‘data-sequence-number,

" (3) A in a third message acknowledges receipt of B’s

initial data-sequence-number.

A could include data with the first or third mes-
sages, but it is only on arrival of the successful
acknowledgment by “A” of “B’s” initial data-

_

4
.l number that it has sent.

A can perform this r

- closed with respect to]

opening a connection tc
sequence-number larger
connections with B. Th
be chosen in a variet:
mapping the value of
timer into the data-sequ

~ of this field must be ¢

the mapping will not w
packet lifetime. It is th
three-way-handshake ap
assumption about a bo
time in its choice of
length.

Given that A can rec
ledging a valid sequence

| error or reset signal raf

of B’s initial data-seque
absence of any state ir

- tion, B checks whether

duplicate by asking A tc
If a connection is n

" duplicate from a previo

the OPEN flag on, the
rejected.

There are a number
procedure above, such :
three messages get lost
open simultaneously. *
detail in refs. {2,6].

An alternative' appr
three-way handshake is
priate previous sequen
period of time, so th
arrives either from an
within the “current” co
fact. In this case, no coi
is required. We will
remembering something
time the At mechanisn
on maximum packet lif
arise as to what to retai

«ere is no OPEN flag,
run” of contiguous
flag (DRF) on. More
may have the DRF
-Problem (a) results,
dnnection had just
ite ready for a new
- rule that when data
he OPEN flag on, or
wmbers following a
was passed on to the
ival of an old dupli-
n a previous connec-
lata passed on to the
Id OPEN packet did
ed by old duplicate
‘ontiguous sequence
e old OPEN packet,
d passed on to the
ected replay. These
seiver has discarded
Inection once it has
as no way to recog-
OPEN flag on as an
arrives, the receiver
Vhen the receiver is
te data packet with

n two mechanisms
‘he three-way hand-
t address [20]. It is
modified version of
on an exchange of
:t the duplication.
ssion to the explicit
ee-way hand-shake
dlowing data to be
until the successful
works as follows:
communicate with
n,

'PEN flag on and an

of this sequence
OPEN flag on and
a-sequence-number,
>dges receipt of B’s

: first or third mes-
of the successful
‘B’s” initial data-

J.G. Fletcher, R.W. Watson / A reliable timer-based protocol 275

sequence-number that B would pass data to the next
(user) level. The reason for this restriction can be seen
by assuming that the initial message from A was an
old duplicate. B has no way of knowing this, so it
responds as above. However, when A gets B’s acknow-
ledgment of this old duplicate opening packet, it can
recognize that it does not acknowledge any sequence
number that it has sent.

A can perform this recognition because either it is
closed with respect to B or, if it is in the process of
opening a connection to B, it picks a new initial data-
sequence-number larger than any used on “recent”
connections with B. This initial sequence number can
be chosen in a variety of ways; for example, by
mapping the value of a monotonically increasing
timer into the data-sequence-number field. The length
of this field must be chosen large enough such that
the mapping will not wraparound within a maximum
packet lifetime. It is thus important to note that the
three-way-handshake approach does make an implicit
assumption about a bound on maximum packet life-
time in its choice of data-sequence-number field
length.

Given that A can recognize that B is not acknow-
ledging a valid sequence number it can reply with an
error or reset signal rather than an acknowledgment
of B’s initial data-sequence-number. In effect, in the
absence of any state information from past connec-
tion, B checks whether or not the OPEN packet is a
duplicate by asking A to confirm it.

If a connection is not yet established and an old
duplicate from a previous connection arrives without
the OPEN flag on, then the old duplicate will be
rejected. '

There are a number of subtleties with the opening
procedure above, such as what happens if any of the
three messages get lost, or if both A and B try to
open simultaneously. These are discussed in some
detail in refs. [2,6].

An alternative approach presented here to the
three-way handshake is for B to remember an appro-
priate previous sequence number of A’s for some
period of time, so that when a duplicate packet
arrives either from an “old” connection or from
within the “current” connection, B can recognize this
fact. In this case, no confirming exchange of messages
is required. We will call the approach based on
remembering something for some interval (delta) of
time the At mechanism. It requires explicit bounds
on maximum packet lifetime. Questions immediately
arise as to what to retain; how to choose the length of

time At for the retention; what reliability and
efficiency differences exist between a three-way
handshake and a At algorithm; how a At approach is
used both with streams of data packets (i.c., long-
term connections, such as for use with interactive
terminals or transmission of large multipacket files)
and with single messages or bursts of single messages;
what happens if simultaneous opens are attempted;
etc. We discuss these issues in the sections to follow.

Problem (b) exists when there is an open connec-
tion and a packet from a previous connection arrives.
For the three-way handshake there are two cases:
either the OPEN flag is on or it is off. If the OPEN
flag is on, it is rejected immediately as it is recognized
as being an old duplicate for this reason. If the OPEN
flag is off, there is no way to distinguish this packet
from a valid one for this connection if jts data-
sequence-number is within the receiver’s window of
acceptable DSN values,

The three-way handshake solves this problem by
trying to choose an initial sequence number for a
connection that makes this case acceptably improb-
able as discussed above. A number of difficulties can
occur with this approach that can lead to the need to
change sequence numbers in mid-connection. These
problems are not discussed here. These difficulties
were one motivation for the unique-socket-number
mechanism[19,20] being developed, and are fully
discussed in Refs. [9,13,23].

The At mechanism avoids these problems by
having the receiver wait until all duplicates have died
out before destroying its connection record. On
recovery from a crash the receiver also waits a time
necessary for packets from a previous connection to
have died out before receiving again. This solution
would also solve the problem for the three-way-hand-
shake approach.

Handling Problem (c) of detecting duplicates from
the current connection is simply done by comparing
the data-sequence-number of the received packet
against the sequence number maintained in the
connection record of the last contiguous element
received. This technique is used in both the three-
way-handshake and At approaches. The full accep-
tance algorithm for the timer mechanism is given in
the Appendix.

4. The closing problem

A connection has been closed if the connection
record either no longer exists or could be discarded.

Y

276 J.G. Fletcher, R.W, Watson | A religble timer-based protocol

Assume that a full-duplex connection has been
established, that an exchange of data has been taking
place, and that one side A has no more data to send
and wishes to close the connection. The main
problem is to achieve a graceful close; namely A
should stay open not only until it has received all
information B wishes to send but also until it knows
that B knows that its final data has been received, and
vice versa. Other forms of closing are possible where
one side unilaterally ends the conversation or will no
longer receive. We are not concerned with these here.
The following exchange will accomplish the graceful
close in the three-way-handshake approach:

(1) A sends an indication to B that it is ready to
close, i.e., has no more data to send,

(2) B acknowledges receipt of this signal in some
reliable way and continues sending its data.

(3) B eventually indicates with a final data packet
that it has no more to send.

(4) A acknowledges the last data element sent by B
and acknowledges B’s desire to close.

(5) B, on receipt of this acknowledgment, tells A to
actually complete the close. B can destroy its
record at this point.

Even though A knew earlier, after step 3, that both it

and B had no more data to send, it cannot close, since

its acknowledgment of B’s final data might have
gotten lost, causing B to retransmit. On receipt of this
retransmission, had A closed, A would have either
ignored the retransmission or returned an error indi-
cation of some kind. The met result in either case
would have been to leave B in a state of confusion,
where it does not know whether its last data had
actually been received by A. The result of this
possible confusion is that B might assume A had
crashed before receipt of its last data and therefore
open a new connection to resend the last data, thus

causing duplication. With the above algorithm, if B’s

final “close it” message gets lost the worst that can

happen is that A is left with an inactive connection
record.

~Since connection-record space may be an impor-
tant resource to A, it can protect itself with an
appropriate time-out after step 4. The length of such

a time-out contains another form of implicit assump-

tion about maximum packet lifetime and the length

of time B will continue to try and retransmit if the
acknowledgment(s) from A is (are) not getting
through; a subtle point, but one dealt with explicitly
with the Ar mechanism. Some protocol designers
have assumed that the probability of A’s acknow-

ledgments getting lost is low and have not required
the final message of step 5 above (6). We have

included it in the interest of describing the safest |

algorithm. Thus, in the absence of retaining special

state information, anouter threeway handshake is ¥
required for a graceful close from the point where the |

last data is sent and final closing can be performed.

The condition for a reliable, graceful close requires § A
each side to know that the other side has gotten its |

final data and to allow for reliable retransmission if
an acknowledgment does not arrive. The above condi-
tion can be met without a three-way handshake using
a timer-based approach, if (a) the sender as well as the
receiver has a timer and (b) appropriate rules are
established governing use of data-sequence-numbers,
use of control flags, and the restarting of the timers,

5. The At mechanism

The. At mechanism is based on both sender and
receiver maintaining state information long enough so

that duplicates can be detected, information flow is |

smooth, and transmissions, retransmissions, and
acknowledgments will have arrived at their destina-
tions, if they are ever going to arrive. We must derive
bounds on the interval values for the send and receive

. timers, and develop rules for when the timers get

initiated, when a node can terminate a connectjon

(delete its connection record), and how the sender ;
should choose data-sequence-numbers. The rules for |
the At mechanism are quite simple, but their justifi- :

cation involves a number of subtle points,

The At mechanism developed here is based on the :
assumption that the data sent from a node A to node |
B can be considered essentially an infinite stream of
elements. The goal is to deliver these elements in j
sequence, and without element losses or duplicates. If
it is desired to impose additional structures on top of
this element stream, such as that of logical messages,

this can be done and is independent of the mecha-
nism described here. We first define the control
information used by the Ar mechanism and then
develop the timer values and rules for manipulating

that information. The control information exists in -

the packet headers and in the connection records and
other information at the two ends. Some readers may
find it useful to skim the Appendix at this point,
where this state information is defined in more detail,

For the purposes of the At mechanism, a packet
header contains two control flags, the data-run-flag

T T

(DRF) and the a
sequence number
(DSN) and the
(ASN); and two si
elements and the
assume WIN is an
the ASN field of tt
tain additional ce
logical message anc
here. The DREF, if
far as the sender is
as the beginning o;
numbers. As far as
in packets with th:
with what came b
indicates to the re
acknowledgment ¢
AREF, if on, indica
expecting a packet
in the ASN field is
the sequence num
the sender of the
implicitly acknow’
elements. Note th
CLOSE flag. Thel
a function similar
handshake. The di
only in the first p:
way handshake, 3
many, even all,)
Closing is handled
Let us now e
receiver must mair
must follow for h
for acceptance of i

5.1. Receiver rules

Because full-duj
two simplex conve
to consider just a s
sending data to a
function of the re
from being accept:
is to assure smoott
Consider that

connection record
Both A and B are
least one packet.
between A and |
exchange and the

!
1
|
!
%

have not required
ove (6). We have
scribing the safest
of retaining special
way handshake is
‘he point where the
n be performed.
ceful close requires
side has gotten its
le retransmission if
¢. The above condi-
ay handshake using
ender as well as the
propriate rules are
-sequence-numbers,
ing of the timers. .

1 both sender and
tion long enough so
information flow is
transmissions, and
ed at. their destina-
rive. We must derive
the send and receive
‘hen the timers get
ninate a connection
and how the sender
nbers. The rules for
ple, but their justifi-
€ points,
here is based on the
om a node A to node
an infinite stream of
:r these elements in
asses or duplicates. If
I structures on top of
t of logical messages,
ndent of the mecha-
define the control
nechanism and then
iles for manipulating
nformation exists in
nnection records and
1s. Some readers may
pendix at this point,
sfined in more detail,
mechanism, a packet

igs, the data-run-flag |

T

(DRF) and the acknowledged-run-flag (ARPF); two
sequence number fields, the data-sequence-number
(DSN) and the acknowledged-sequence-number
(ASN); and two size fields, the data length (LEN) in
elements and the window (WIN) in elements. We
assume WIN is an increment relative to the value in
the ASN field of the packet. The header will also con-
tain additional control flags for indicating end-of-
logical message and for other purposes not of interest
here. The DRF, if on, indicates to the receiver that as
far as the sender is concerned the DSN can be treated
as the beginning of a new run of contiguous sequence
numbers. As far as the recevier is concerned, the DSN
in packets with the DRF on need not be in sequence
with what came before, although it may. Implicitly it
indicates to the receiver that the sender has received
acknowledgment of all previously sent elements. The
ARF, if on, indicates that the sender of the packet is
expecting a packet with DRF on and that the number
in the ASN field is meaningless; otherwise the ASN is
the sequence number of the next data element that
the sender of the ASN expects to receive, and it
implicitly acknowledges receipt of all previous data
[elements. Note that there is no OPEN flag and no
E CLOSE flag. The DRF in the At mechanism performs
| a function similar to the OPEN flag in the three-way
t handshake. The difference is that the OPEN flag is on
i only in the first packet of a connection in the three-
| way handshake, whereas the DRF may be on in
i many, even all, packets using the Ar mechanism.
Closing is handled implicitly via timeouts.

Let us now examine what timer information a
E receiver must maintain and the rules that the receiver
j must follow for handling its timer, for closing, and
for acceptance of incoming packets.

5.1, Receiver rules and timer bound

Because full-duplex conversations can be treated as
i two simplex conversations, it simplifies the discussion
L to consider just a simplex conversation from a node A
| sending data to a node B willing to receive data. The
} function of the receiver rules is to prevent duplicates
 from being accepted. The function of the sender rules
is to assure smooth flow.

Consider that neither A nor B have an existing
connection record for a conversation with the other,
i Both A and B are assumed to have buffer space for at
f least one packet. We will examine the exchanges
between A and B, first for a single data message
exchange and then for bursts and longer message

J.G. Fletcher, R.W. Watson | A reliable timer-based protocol 277

streams, discussing the important design issues where
appropriate. A sends a packet to B containing:

DRF =on

ARF = on

DSN = x (any value can be used)
ASN = anything

LEN =/

In an expected full-duplex conversation, A would also
include a window size, WIN. The DREF is on because
the DSN in the packet begins a new contiguous run of
sequence numbers. The ARF is on because A has no
elements to acknowledge. The value x chosen for
DSN can be anything since it is assumed, due to the
rules discussed below of the Az mechanism, that there
are no existing old duplicate packets from previous
conversations between this pair of nodes; otherwise
there would be an existing connection record.

For purposes of this discussion the receive part of
the connection record for B containes three pieces of
state information: the input window left edge, the
receive timer, and the number of elements of buffer
space available (the input window size). On receipt of
A’s message B creates a connection record and
records x + [as the value of the next expected DSN
(input window left edge), decrements the input
window size by /, passes the data to the next level
(user) program, sets its receive timer (Riimer) to the
appropriate value, and generates an acknowledgement
packet.

How long should the interval be that is set.into
Rtimee? As a minimum, it must be long enough to
guarantee that any duplicate data that may have
been generated by the sender A or by the routing
network will have died out during the interval. We
will use R to denote the time period during which the
sender can retransmit and thus create duplicates. The
time period during which the routing network can
create duplicates and contain these duplicates of the
original packet is the maximum packet lifetime,
(MPL). To be precise, we are actually interested in
the maximum data element lifetime within the rout-
ing network, but it is the same as MPL on the assump-
tion that, if packet fragmentation occurs, all packets
generated propagate the age of the original packet..
These factors R and MPL establish a lower bound on
the value Ry, set into Riimer for conversations

between any pair of nodes to guarantee duplicate
detection:

Ryime >R + MPL

278 J.G. Fletcher, R,W. Watson / A reliable timer-based protocol

Sender Recsiver
Packet P, L

/
T N

Acks are lost

T

« Retransmissions of P

Lan
oy,
a""’"xu,,,,
or

;————v——MPL

Time

R time > R + MPL

Time

Fig. 1. Worst-case time for duplicate detection.

Later we discuss the-terms that make up R. Fig. 1
shows the worst case where the original packet arrives
“instantaneously” at the receiver, acknowledgements
do not get through and the sender keeps retransmitt-
ing for time R, and the last retransmission takes MPL
to arrive at the receiver.

For the At mechanism to work, R and MPL must
be bounded. We claim that, for any packet switched
network to achieve maximum transmission reliability,
MPL must have a firm upper bound. If this were not
the case, then there is the possibility that a packet
from a previous connection with an acceptable DSN
might exist. We have also seen that the three-way
handshake does depend on implicit assumptions about
MPL being bounded.

There are undoubtedly many mechanisms that
could be used to bound a packet lifetime. One
obvious one would be to bound the number of nodes
through which a packet can travel and the maximum
time spent in any node. These factors, combined with
knowledge of the maximum packet size and mini-
mum transmission rate, would allow the establish-
ment of a mechanism for enforcing a maximum
packet lifetime. Another mechanism for bounding
MPL would be to use a relative time or aging field in
the packet header that is incremented as the packet
travels through the network. When the value of this

field exceeds MPL, the packet would be destroyed.

There is one additional factor that must be
bounded, as developed later. This factor is the maxi-
mum time from the arrival of a data element within
the receiver protocol module until an acknowledge-
ment is sent, assuming it had arrived in proper order.
We call this the unacked time (UAT). The unacked
time can be bounded by use of a timer on arrival at
the receiver or by use of an aging field.

Having picked a lower bound on the value of
Riime for duplicate detection purposes, we can see
that it does not have to be a precise number as long
as it is at least R + MPL. Tables would not have to be
kept of Ryjme for all possible partners, but could be
abbreviated for worst case between nodes in partic-
ular areas or clusters or for the entire network.
Having discussed some issues affecting the value of
Riime, We consider the rules that the receiver, B,
must obey. Later we examine the term R in detail,
but first we have to discuss sender timing considera-
tions.

*Rule 1: Reset Ryjmer to Rijme every time the

receiver receives in proper order a data element with a
sequence number not previously acknowledged.

* Rule 2: The receiver part of a connection record
should be closed (the connection record considered as |
containing invalid information or destroyed) when |

Riimer goes to zero. All unacknowledged elements
are discarded at this point. The reason why the
receiver cannot maintain a record beyond Ryime is
discussed below when we develop the rules for the

sender. The receiver must maintain the record at least
Rtime as shown in fig. 1 to provide duplicate detec- |

tion.’

* Rule 3: Data elements are accepted according to the :

following two conditions:

1) If there is no valid connection record Rtimer]
equal to zero) then it is an implementation |
option whether or not a packet with the DRF ;
off will be accepted. Such a packet is out of
order and no data can be passed to the next

level program -or acknowledged until a packet
with DRF on arrives. Both options are con-
sidered in the Appendix. The initial packet with
DRF on can contain any DSN. Effectively a new
receive connection record is put into use.

2) If Ryjmer is nonzero, then only elements with
sequence numbers within the receiver’s input
window are accepted. The DRF is ignored. The
reason why many packets may have the DRF
on are developed below. (The receiver may

optionally
Accepted ele
Acknowledg
place withir
later.

B acknowledges A

DRF = on

ARF = off

DSN =y (can be a
ASN=x+1/

LEN = Q (we are ;
WIN = appropriat.

The rule fo
and DSN in a hea
be chosen accord
them for a data
because the DSN
initial value for)
assumption of a §
DSN will be the s;
receiver, The AR}
a valid acknowled
in the header th;
duplication as in
[6]. The LEN fiel
and the WIN field
relative to the val
receive. However,
duplex, B could ¢
onto a packet con

A receiver shc
response packet r
also when elemen
tance window. Th
sender know the 1
ing to clear up pc
delayed acknowle:

5.2. Sender rules ¢

We now need
state information
We also need to e
mission and for ¢!
considered.

1) We want to
bursts of loy
(messages) v
tion to time
as be able 1

1d be destroyed.

tor that must be
factor is the maxi-
ata element within
il an acknowledge-
ed in proper order.
JAT). The unacked
timer on arrival at
ield.

1 on the value of
rposes, we can see
:ise number as long
ould not have to be
tners, but could be
en nodes in partic-
1e entire network.
ecting the value of
at the receiver, B,
e term R in detail,
3r timing considera-

me €Very time the
data element with a
cknowledged.

. connection record
cecord considered as
i destroyed) when
1owledged elements
1e reason why the
rd beyond Ryjme is
sp the rules for the
n the record at least
ide duplicate detec-

ted according to the

tion record (Rijmer
an implementation
acket with the DRF
. a packet is out of
passed to the next
dged until a packet
th options are con-
1¢ initial packet with
N. Effectively a new
put into use.

only elements with
the receiver’s input
DREF is ignored. The
may have the DRF
(The receiver may

optionally ignore out-of-sequence packets.)
Accepted elements are acknowledged.
Acknowledgement for an element must take
place within a bounded interval as discussed
later.

B acknowledges A’s packet by sending:

DRF = on

ARF = off

DSN = y (can be any value)

ASN=x+/

LEN = O (we are assuming simplex connection)
WIN = appropriate value

The rule for choosing the values for the DRF
and DSN in a header only packet is that they should
be chosen according to the rules used for choosing
them for a data packet. Therefore, the DRF is on
because the DSN starts a new run. The value y is the
initial value for DSN. It can be any value. On the
assumption of a simplex connection the value in the
DSN will be the same for all packets generated by the
receiver. The ARF is off because the value of ASN is
a valid acknowledgement. There are no fields or flags
in the header that need protection against loss or
duplication as in some other protocols such as TCP
[6]. The LEN field is zero to indicate there is no data
and the WIN field indicates how many-more elements
relative to the value in the ASN field B is prepared to
receive. However, if the connection were to be full
duplex, B could “piggy-back” the acknowledgement
onto a packet containing data.

A receiver should be triggered into generating a
response packet not only when it accepts data, but
also when elements arrive that fall outside the accep-
tance window. The purpose of the latter is to let the
sender know the receiver’s current state thus attempt-
ing to clear up possible confusion arising from lost or
delayed acknowledgment packets.

5.2. Sender rules and timer bound

We now need to examine the timer and related
state information that the sender A must maintain.
We also need to establish the sender’s rules for trans-
mission and for closing. Three problem areas must be
considered.

1) We want to allow the sender the ability to send
bursts of logically independent sets of elements
(messages) without having to wait for a connec-
tion to timeout and close between each, as well
as be able to send a sequential stream of ele-

J.G. Fletcher, R.W, Watson / A reliable timer-based protocol 279

ments, and have their sequencing maintained
whethér or not they are so widely separated in
time that the connection has timed out. To
accomplish this we need to develop a mecha-
nism for a loose coupling between the sender’s
timer for sending, Symer, and the receiver’s
receive timer, Ryme. We further need to
develop rules for use of the DRF and the choice
of DSN,
2) We want to establish the rules and timing con-
-siderations for handling the case where at least
one data element has had its maximum number
of retransmissions and there are some new data
elements to transmit and/or some other data
elements outstanding that have been trans-
mitted, but not yet acknowledged.
3)We need to establish what information the
senider must maintain in order to bound R, the
interval during which retransmissions can take
place.
We now discuss the first problem. One possibility for
handling logical messages is to create a separate con-
nection record with its own Sy;mer, Rijmer and other
state information at both sender and receiver for each
message; in effect creating a separate connection
record for each message. We rejected this approach as
unwieldy and inefficient. Instead we choose to use
only a single connection record and consider all ele-
ments sent from a sender to a receiver to be an
infinite sequential stream. During the life of a connec-
tion, as viewed by the receiver, elements are only
accepted if their sequence numbers fall within the

- receiver’s acceptance window; the elements are

sequenced by the receiver, and acknowledgment is
only generated for an element when all preceding ele-
ments have arrived.

The price paid for this decision is that logical
messages must also arrive in sequence. That is, all the
elements of message | must arrive and be delivered
before message 2 can be delivered, even if all the
elements of message 2 arrive before all those of mes-
sage 1. Additional simple mechanism can be built on
that described here to remove this restriction, if
desired. We could imagine both applications where
sequencing of logical messages was important and
where it did not matter. This fact coupled with the
assumption that out-of-sequence message arrival
would either be rare, or in the case of single-packet
messages would normally occur with short spacing
between them, lead us to feel that the extra mecha-
nism- required to support out-of-sequence message

i
i

280 J.G. Fletcher, R.W. Watson | A religble timer-based protocol

arrival to be of questionable value.

According to Rule 3 above, for a sender to have an
element accepted while the receiver’s Rtimer is Tun-
ning, it must have a sequence number within the
receivers acceptance window. Because of network
delay uncertainties, the sender can never know
exactly when the receiver’s timer has run out, There-
fore, our goal is to find an initial value for a send
timer, Stimer, and a set of rules for its resetiing such
that we can quarantee that the sender’s Simer con-
tinues to run so long as the receiver’s Riimer is run-
ning. In this case the sender will maintain the sequence
number state information needed to assure that an
acceptable DSN will be placed in each packet as long
as the receiver’s Ryjmer is running. We must still
assure that the packet will be accepted if the
receiver’s timer has timed out.

Since the receiver pays no attention to the DRF
and only considers the element sequence number
when its receive time is running, one might consider
setting the DRF on in every packet, so that the
packet would be accepted whether it arrived before
or after the Ryjme had run out. If one could assume
that packets could not arrive out-of-sequence, this
would work and eliminate the need for a DRF. (If it
is always on, it is not needed.) However, there is the
following sequence problem: If the receiver’s timer
had gone to zero, the sender had sent a burst of
packets, and one of the later packets arrived at the
receiver out-of-sequence, then-. the receiver would
accept the clements in the packet and initialize its
connection record with input window left edge equal
to the value DSN+LEN contained in the first
received packet. Thus, when the logically preceding
packets arrive, containing elements with preceding
sequence numbers, thay would be rejected as if they
were old duplicates.

One solution to the problem would be to require
a packet’s clements to be acknowledged before allow-
ing succeeding elements to be sent. This would clearly
reduce throughput unnecessarily and therefore is
rejected.

Therefore, a flag, the DRF, is needed to indicate .

the start of a run of sequence numbers so that when
the receiver gets this flag, it can know that there are
no “earlier” numbers in this sequence that it may
receive. o

The following rules for the sender’s handling of
its timer, choice of a DSN for a packet, and the set-
ting of the DRF are now given.
" Rule 4: Reset the Stimer 10 Stime (derived below)

whenever a packet containing data is sent or resent, |
*Rule 5: If the sender’s Stimer IS nonzero, then
choose as a value for DSN in new packets the value
plus one of the sequence number for the last element 3
sent (excluding retransmissions); otherwise any value g

of DSN can be used.

" Rule 6: If all preceding data elements have been 3
acknowledged, then set the DRF on, otherwise set }

the DRF off. This is done for both new transmission
and retransmissions.

Rules 4 and 5 guarantee that the value of DSN will
be acceptable to the receiver when Riimer is nonzero, -

(The value of DSN does not affect acceptability when
Rtimer is zero.) This is so because Stimer iS 1e5€t aS
each packet is transmitted and the initial value for
Stimer i8 chosen to quarantee that it does not time
out before the receiver’s Riimer. Let us examine how
the setting of the DRF by Rule 6 solves the problem
cited above.

Assume that the receiver’s timer has run out and
that the sender transmits a burst of packets, the first
one with the DRF on and the later ones with the
DRF off. If one of those with the DRF off arrives
first, then it can be rejected, or it can be considered
an out-of-sequence packet and held, on the assump-
tion that the packet with the DRF on will arrive

shortly. This is an implementation choice. The . §

algorithm in the Appendix covers both options.
Rejecting a packet will eventually lead to its retrans-
mission. In any case, element sequencing is main-
tained.

The above discussion considered this situation near
the beginning of a run where the out-of-sequence
arrival of packets was a potential problem. A question
still remains whether or not a packet with the DRF
off could arrive at the receiver after its timer had
gone to zero. We demonstrate later, after discussing
the solution to the third problem above and introduc-
ing Rule 7, that this cannot happen. The net result of
these rules is that sequencing of elements is main-
tained even if the time between their transmission is
such that the receiver’s connection record may have
timed out and require reinitialization.

We now develop the bounds for the send timer
interval. The sender wants to keep its send part of the
connection record; a) as long as the receiver’s timer is
running, so as to generate an acceptable stream of
contiguous data sequence numbers, and b) long
enough to assure that it will receive all acknowledg-
ments that may arrive. Consider condition (a). The
receiver sets its Ryjmer at the point that it receives a

: new data element t
- time for a packet -
MPL. Therefore, ¢

val.

Stime = MPL + Ry,
as derived previous
Stime 2 2MPL + R
Case (b) above req
Stime = 2MPL + U

as both the pack.
each take MPL tc
the worst case f
acknowledgment.

i. R >UAT, and th
[gent condition on
¥ tion on Sy is:

' Sime > 2MPL + R

Let us now con

. lier, namely the ¢
: considerations for
:, least one data eler

and there may be

b some elements alr
. been acknowledge
¥ - blem, namely the t

We now define
time during which
retransmit an elen
for any element, -
longer transmit or
seems likely that
failure, Because t]
data is sent, the s
will then terminat
edgments arrive,
effect indicate t
have resumed fig
set to be any
sender and receive
some number of d.
choosing the time
slightly larger than
packet and its acl
and B. In this case

G=n#*6¢.

The term G is ¢

‘a is sent or resent.
. is nonzero, then
v packets the value
for the last element
itherwise any value

lements have been
" on, otherwise set
h new transmission

e value of DSN will
t Ryimer is nonzero.
acceptability when
€ Stimer 1S TeSCt as
he initial value for
it it does not time
-2t us examine how
solves the problem

er has run out and
of packets, the first
ater ones with the
1e DRF off arrives
- can be considered
1d, on the assump-
'RF on will arrive
ition choice. The
ers both options.
lead to its retrans-
!quencing is main-

| this situation near
ae -out-of-sequence
roblem. A question
ket with the DRF
after its timer had

er, after discussing

tbove and introduc-
n. The net result of
" elements is main-
heir transmission is
n record may have
on.

for the send timer
its send part of the
e receiver’s timer is

ceptable stream of
vers, and b) long
ive all acknowledg-
condition (a). The
at that it receives a

J.G. Fletcher, R.W. Watson | A relizble timer-based protocol 281

new data element to be acknowledged. The maximum
time for a packet to travel from sender to receiver is
MPL. Therefore, case (a) requires a send timer inter-
val.

Stime = MPL + Ry; ..., where Riime = MPL + R,
as derived previously; so

Stime = 2MPL + R .

Case (b) above requires:

Stime = 2MPL + UAT,

as both the packet and its acknowledgment might
each take MPL to get their destination and UAT is
the worst case for the receiver to generate the
acknowledgment. Below we demonstrate that
R >UAT, and thus case (a) imposes a more strin-
gent condition on the value of Stime: S0 the condi-
tion on Syjm, is:

Stime > 2MPL + R .

Let us now consider the second problem listed ear-
lier, namely the establishment of rules and timing
considerations for handling the situation when at
least one data element has had its last retransmission
and there may be some elements to transmit and/or
some elements already transmitted that have not yet
been acknowledged. We-also consider the third pro-
blem, namely the bound on R.

We now define a “giveup” interval G that is the
time during which the sender will continue to try and
Tetransmit an element. When the interval G runs out
for any element, the sender will give up; that is, no
longer transmit or retransmit data elements, since it

- seems likely that the connection is experiencing a

failure. Because the Stimer is refreshed only when
data is sent, the send part of the connection record

- will then terminate after Sy;m. unless new ackriowl-
- edgments arrive. These new acknowledgments in

effect indicate that the network and/or receiver

¥ have resumed functioning. The time G might be
[set to be any
* sender and receiver, but js probably set by choosing
- some number of desirable retransmissions, say n, and
i choosing the time between retransmissions, &¢, to be

arbitrarily agreed value between

slightly larger than the average round trip time for a

. packet and its acknowledgment moving between A
- and B. In this case the value for G is:

3G=n*5n

The term G is one component in the total retrans-

mission interval R, as discussed below.

How long should the sender wait after its last
retransmission of an element until it closes the con-
nection and reports the problem to its user program?
For maximum reliability it should wait until the
sender time interval has elapsed. This assures that, if
the last packet and its acknowledgment are each tak-
ing no more than MPL to be delivered, (due to some
temporary overloading or other factor of the net-
work) then transmissions can continue, although
slowly, and may return to normal when the cause of
the delay goes away. If there is a more serious
problem, and the sender closes after the send time
interval has elapsed and then later restarts transmis-
sion over again, the receiver’s timer will have gone to
zero and no old duplicate packets will exist.

What we want is a rule that will:

1) Allow a reliable close in a definite time period if
the receiver is down or the path to the receiver is
effectively cut,

2) guarantees that no packet sent with the DRF off,
that arrives at the receiver after a predecessor
packet with the DRF on, can arrive after the
receiver’s timer has run out.

3) guarantees that if elements sent their maximum
number of times are eventually acknowledged,
even if in the worst case, then the immediate suc-
cessor element will have at least one more retrans-
mission; or stated differently, if all elements that
have had their last retransmission are acknowl-
edged, then normal transmission can be resumed,

Condition 1 just stated that the sender does not want
to keep transmitting new packets and retransmitting
old packets indefinitely once trouble is suspected.
Condition 2 assures that the sender’s packets will not
be unnecessarily rejected and lead to unnccessary
retransmissions.
Condition 3 assures that the protocol can recover
from intermittent network troubles such as periods of
congestion or brief link failures. In fact the rule to be
given reduces the aggravation of the network loading
that might cause large delays. The rule that satisfies
the conditions above is:

* Rule 7: When an element is given its last retrans.

mission: suspend all transmissions and retransmission
of other elements, and suspend the G interval timers
for all elements awaiting acknowledgment. If the
acknowledgments of all elements having had their
last retransmission arrive before Stimer g0€S to zero,
then allow normal transmission and retransmission to
continue, and resume operation of the suspended G

!
i
i
t
i

282 J.G. Fletcher, R.W, Watson / A reliable timer-based protocol

Sender Recaiver

P, with DRF on

P, with DRF off

assume lost

Gfor P,

Retransmissions of Py

I
|
|
|
I
|
|
I
I
|
l
[
MR ——— G —y

Time

Time

Fig. 2. Worst case for packet with DRF off.

interval timers. If no acknowledgment arrives before
Stimer 80€S to zero, then send an appropriate indica-
tion to the next level program and close the connec-
tion. The send part of a connection can be normally
closed when Syj e g0es to zero.

We now need to demonstrate that the above three
conditions are satisfied by this rule. Condition 1 is
clearly satisfied as the value of the send timer is
refreshed at the point of the last transmission or
retransmission and not refreshed again unless all ele-
ments sent in that retransmission are acknowledged.
To see that condition 2 is met consider the follow-
ing argument based on fig. 2.

A packet P; with the DRF on is transmitted and
(in worst case for this problem) arrives “instanta-
neously” at the receiver, refreshing the receiver’s
timer. Shortly after P, is sent a packet P;,1 containing
additional elements is sent with DRF off. By Rule 7
packet Py with the DRF off can be sent or resent
only during the interval G after P; was sent. Either
the acknowledgment to P; would have arrived
within G and thus in retransmission of P;y7 DRF
would have been on per Rule 6, or no acknowl-
edgment of P; would have occurred and all retrans-
missions would be suspended. Thus, the latest time
after P; was sent that a packet Py can be sent with
DRF offis G. ‘

Now Py, could have taken MPL to arrive at the
receiver from the time of its last transmission, which
in worst case described in the previous paragraph is at
time G after P; was sent. Therefore, it will arrive at

the receiver in time MPL + G after the time P; was
sent (and in worst case received) and the receiver’s
timer was set. The receiver’s timer was set to Riime =
R+MPL>G+MPL (since R, the time during
which retransmissions can take place, must be no less
than G); thus, Ry is as long or longer than the
worst case for a copy of Py, to arrive with DREF off.
One can examine the case where additional packets
Piia-Pisp are sent during interval G after Py to see the
argument can be recursively applied relative to Py
and so on. Let us now consider consition 3 above.

The reason why a packet Pyy 1 might, without rule
7, have used up its retransmissions interval G before a
predecessor P;’s elements were acknowledged is that
the maximum round trip time for a packet and its
acknowledgment, 2MPL + UAT, is likely in practice
to be greater than G. Because the elements of Py,
have their G interval times suspended when P/s G
interval lapsed, on receipt of the acknowledgment of
the predecessor elements there will be some time left
in Pryy’s G interval. Thus Py.; will have at least one
retransmission left, and (barring network failure) it
will arrive at the receiver after Py has arrived. There-
fore, we see that Rule 7 satisfies the three desirable
conditions above for handling the closing of a send
connection record.

Let us now return to the total retransmission inter- :
valR and determine its component terms as illus. :

trated in fig. 3.
The worst case, longest retransmission interval,

occurs if the G interval timer has been suspended.

Using the example above, we can bound this suspend
time. If P;y; had been transmitted just before packet
Py’s G interval ran out it would have essentially its
entire G interval left when normal transmission
resumed.

We claim the worst case that must be considered
for duplicate arrival at the receiver occurs when the
original Py, arrives at the receiver very close to the
time that P; arrives, the acknowledgment to P; takes
UAT to leave the receiver and MPL to return to the
sender and then retransmissions of Pj4q continues for
an interval G (its acknowledgments being delayed or
lost). This implies that R = UAT + MPL + G. Thus,
substituting into the expressions derived earlier,

Riime > MPL+ R = 2MPL + UAT + G .

From the earlier discussion,

Stime > 2MPL + R = 3MPL + UAT +G .

Maintaining the value of MPL, UAT, and G for all

GforP o,

Sender

Time

Fig. 3.D

possible pairs of p:
essary burden. The

At =MPL + UAT +

so that each node
At, for conversatic
the same Ar), and |
* Rule 8:

Rijme = 2At,

as the appropriate
these values are la
slightly so, since M
of At. The reader
Rtime and Stime
value of Ryjme lar
Stime Must be cor
values used are
receiver pair.

The rule for clo:
* Rule 9: A side n
timers both equal

Because the sen
end are logically s
opened and closed,

This completes

1

1 the time P; was
and the receiver’s
was set to Ryjme =
the time during
¢, must be no less
or longer than the
tive with DRF off.
additional packets
¢ after Py to see the
ied relative to Py,
1sition 3 above.

night, without rule
interval G before a
knowledged is that
i a packet and its
3 likely in practice
e elements of Py,
ended when P;/s G
acknowledgment of
11 be some time left
11 have at least one
network failure) it
has arrived. There-
the three desirable
e closing of a send

-efransmission inter-
lent terms as illus-

ansmission interval,
as been suspended.
bound this suspend
d just before packet
have essentially its
ormmal transmission

must be considered
ver occurs when the
rer very close to the
edgment to P; takes
[PL to return to the
of P;+y continues for
nts being delayed or
T +MPL + G. Thus,
derived earlier,

tG.

\T+G.
UAT, and G for all

1

' Riime = 241,

J.G. Fletcher, R.W. Watson / A reliable timer-based protocol 283

Sender Receiver

GforP oy
l N

|

|

|

|

i

|

|

|

!

|

]

|

|

|

|

|

1

Il

|

i

|

|

T T R e—

————=f——f—UAT

——MPL— e G} mpy
[

Ack lost for P, , |

R

Glorb, ——

Time

R = UAT + G + MPL

Time

Fig. 3. Determining the value of R.

possible pairs of partners would seem to be an unnec-
essary burden. Therefore, we define

At=MPL + UAT + G

so that each node only needs to know a single value,

1 At, for conversations with any partner (both ends use

the same A7), and define:
* Rule 8: '

Stime = 34t

~ as the appropriate timer values to be used. While both
' these values are larger than necessary, they are only
. slightly so, since MPL s usually the major component
 of At. The reader can see that these values satisfy the
L Riime and Sgime inequalities. If a receiver uses a
E value of Ryjme larger than above, then the value of
b Stime must be correspondingly increased. The actual
f values used are negotiable between any sender/
[receiver pair. '

The rule for closing is:
* Rule 9: A side may close when its receive and send

| timers both equal zero.

Because the send and receive sides of a connection

end are logically separate, they can be independently

opened and closed, if desired.
This completes the discussion. of the considera-

tions for a simplex connection. Extension to a full-
duplex connection is straightforward as send and
receive rules operate independently. Each end has
both a send and a receive timer. The rules for use of
DSN’s and the DRF remain the same.

We have now finished the development and justi-
fication of the Ar mechanism as represented in the

. timer values and rules above. The simple rules above

yield a very easily implemented and efficient protocol
as shown in the Appendix.

6. Choice of an initial sequence number and crash
recovery

The problem of choosing an initial sequence num-
ber is not unique to the Af algorithm. It must also be
dealt with in the three-way-handshake approach [3].
The problem is the following.

When an initial sequence number is chosen for a
new connection, it must be such that no old dupli-
cates from previous connections could be accepted
within the new connection. On the assumption that
there has been no crash with loss of memory, the At
algorithm handles this problem by using the next con-
tiguous sequence number while the send timer is
non-zero. Once the send timer has gone to zero, by
the basic assumption of the algorithm that At can be
bounded, there are no old duplicates from previous
connections to worry about. Thus, any initial DSN
(such as zero) is acceptable.

A similar approach of remembering the last
sequence number of previous connections for a time
equivalent to At has been suggested for use with the
three-way-handshake mechanism [13].

The problem of initial sequence number choice
still exists on recovery from a crash with loss of
memory. In this case the system does not retain the
last DSN used or the value of the send and receive
timers. We feel that for any reasonable networks or
chain of networks A¢ will range from a few milli-
seconds to around 30 seconds and that the correct
solution on recovery from a crash is not to send or
receive from a given node until waiting one Sy;m.
interval. (There is a proposal from IFIP to CCITT
that the maximum packet lifetime through any chain
of networks be less than 30 seconds [S]. The recom-
mendation has not yet been accepted.)

Another case of failure is possible, namely that
there is no loss of memory during a crash, but timers
were not being decremented for some period. If the

284 J.G. Fletcher, R.W. Watson !/ A reliable timer-based protocol

timers were represented as time of day, then recovery
is possible. If the timers were relative, then we
recommend closing all connections and waiting a
Stime period for each connection before resuming
communication,

7. Bound on At

There are three factors that require that Az not be
overly large.
* Data sequence number space. The field size chosen
for the data-sequence-number is of finite length and
effectively wraps around modulo the largest integer
representable plus one. Therefore,

2 A= Rijme < (Max DSN/Max Element Transmission

rate)

* Crash recovery time: Because we want to assure
that old packets have died out before sending and
receiving after a crash, we must wait a 3A7 time. This
time should be a reasonable number. '

« Connection record Storage limitations: This issue is
discussed in more detail below but basically the
average number of connections expected per the
Stime and Ryyim. intervals should be low.

8. Comparison of the three-way-handshake and Ar
approaches

Let us examine the three-way-handshake and Ar
approaches in the areas of efficiency and reliability,

8.1. Efficiency

There are two aspects of efficiency, one involved
with the actual throughput, which includes message
and packet header overhead, and the second concern-
ing implementation issues such as code and state
information space required. =~ -

The header overhead in the two approaches is
essentially identical, plus or minus a few control flags,
as each could use the same size address, DSN, ASN,
window, and length fields. The throughput is primar-
ily determined by the interaction of the chosen flow-
control and buffering strategy, the retransmission
strategy, and implementation decisions. We have no
reason to assume any significant differences in these
areas between the two approaches.

The main area of difference between the }
approaches is in the overhead of opening and closing 1
connections. It is smaller in the As approach, which
makes it attractive for use with single message type }
applications. This is probably the main attraction of
the At approach. For longer-lived connections, such
as for interactive terminal sessions or transmissions of
large files, the extra overhead of the three-way ¢
approach would not seem very significant.

The rules for the At algorithm are quite simple, as
are those for use with the three-way handshake, and
we have no reason to Suppose one or the other to }
require more code space in its implementation.

The At approach does require state information
(connection records) to be maintained for possibly a §
period equal to At longer than might be necessary for
the three-way handshake, although the three-way |
handshake does have to maintain them for the time
necessary to exchange several close messages. In a
high-speed local network environment Ar will be .
quite small, probably less than 5 seconds and likely 4
less than 1 second. In a geographically distributed 1
network or chain of networks, we believe it can be |
kept around 1 minute or less. So that even assuming °
several thousand connections per hour for a local net. 1
work host or several hundred per hour for a geo- {
graphically distributed network host, we find that
the number of expected unused connections within a :
Riime OF Stime period waiting to close is quite low,
on the order of 2 to 30. If this number seems large or
should be higher occasionally, infrequently used con-]
nection records could be moved to secondary storage.
Connection-record space requirements do not seem to |
be an area of crucial difference between approaches. 3

The At algorithm depends 'on knowing the value °
for At to use between each pair of communicating
nodes. Each end must use the same value or a close
approximation thereto. The values used can be
checked in an exchange of control state information |
if desired. In fact, Ar must only be larger than a mini-
mum value between any pair of nodes and so we
would expect that it would be chosen to be the same
as the worst case for all nodes in a given cluster or
area. The three-way-handshake approach using a
positive acknowledgment retransmission mechanism
must also have built in assumptions or tables indicat-
ing the retransmission interval to be used between
nodes. It might even need a Artype interval to
prevent, on crash recovery, the problem of reuse of
an old sequence number, as mentioned above. We feel
the two approaches are about equivalent in the

amount of long-te
for timeout values

8.2. Reliability

The crucial dif
in dealing with t}
connections (they
assurance problem
MPL, and UAT ca
mechanisms to a
earlier. Therefore,
Actually getting
implement such b
cal problem in th
dard. Therefore,
applicable in a loc
we did point out
has some implici
on MPL built i
difference is in v
of hosts at either ¢
At approach crasl
to detect duplicat
problem was deal
resuming commu;
ular partner.

Waiting after a
the resyncronizat
three-way handsh:

There is one
approach not fo
approach, namely
the same value fo
ly. Let us conside
clock runs too s
problem introduc
required to maint
necessary. If the
receiver’s timer
problems are int;
be affected due to
by the receiver pc
ments with the [
arrive before the
practice the time
siderably for muc]
The one possib
runs too fast so tl
DRF on). In prac
off by a considers

ce between _ the
pening and closing
.t approach, which
ingle message type
main attraction of
connections, such
or transmissions of
of the three-way
ificant.
are quite simple, as
ay handshake, and
1e or the other to
ementation.

state information
ined for possibly a
ht be necessary for
1gh the three-way
them for the time
yse messages. In a
ument At will be
seconds and likely
hically distributed
e believe it can be
that even assuming
1our for a local net-
:r hour for a geo-
10st, we find that
onnections within a
close is quite low,
mber seems large or
requently used con-
» secondary storage.
ents do not seem to
‘ween approaches.
knowing the value
of communicating
me value or a close

lues used can be i

) state information

e larger than a mini- ::
f nodes and so we 3

.osen to be the same

n a given cluster or -
approach using a |
imission mechanism
»ns or tables indicat- 3
to be used between §
At-type interval to 1
problem of reuse of §
ioned above. We feel ;
t equivalent in the

J.G. Fletcher, R.W. Watson / A reliable timer-based protocol 285

amount of long-term information that has to be kept
for timeout values.

8.2. Reliability

The crucial difference between the two approaches
in dealing with the detection of duplicates between
connections (they are the same in handling the other
assurance problems) is the explicit assumption that G,
MPL, and UAT can be bounded. There are avariety of
mechanisms to accomplish this and one was given
earlier. Therefore, we see no technical problems here.
Actually getting existing networks and hosts to
implement such bound enforcement may be a politi-
cal problem in the absence of an international stan-
dard. Therefore, we see the At approach as most
applicable in a local network environment. However,
we did point out earlier that the three-way approach
has some implicit assumptions about the bound
on MPL built into it. Another area of possible
difference is in vulnerability to problems'if crashes
of hosts at either end should occur. If a host using the
Ar approach crashes losing memory, then its ability
to detect duplicates fails for a period of Ry;pe. This
problem was dealt with by waiting for Ry, before
resuming communication reception from a partic-
ular partner.

Waiting after a crash for MPL would also eliminate
the resyncronization problem documented in the
three-way handshake [6,9,13,23].

There is one more requirement with the At
approach not found using a three-way-handshake
approach, namely, that each end of a connection use
the same value for At and that the clocks run correct-
ly. Let us consider the different cases. If the sender’s
clock runs too slowly then there is no reliability
problem introduced, although the sender will be
required to maintain connection records longer than
necessary. If the sender’s timer runs too fast or the
receiver’s timer runs too slowly, no reliability
problems are introduced, although efficiency could
be affected due to unnecessary retransmissions caused
by the receiver possibly rejecting some packets or ele-

[ments with the DRF on and new initial DSNs that
i arrive before the receiver’s timer has run out. In
} practice the timer rates would have to be off con-
. siderably for much effect to take place.

The one possibly serious case is if the receiver timer

i runs too fast so that it cannot detect duplicates (with
5 DRF on). In practice the timer rate would have to be
| off by a considerable amount to cause significant pro-

i
i
3]

blems. We can, however, only conclude that timers on
systems using the A¢ protocol must be periodically
checked to avoid this possibility.

Is one or the other approach more susceptible to
lost or duplicated information due to uncertainty in
either partner as to whether or not a packet reached
its destination? On the assumption of waiting for 3A¢
on recovery for the At algorithm, we see no differ-
ence between the approaches, since similar scenarios
can be generated for either that would lead to lost or
duplicate information if one or the other host crashed
at a particular instant [2],

9. Conclusion

A timer-based approach to the development of a
simple efficient protocol for dealing with omission,
duplicate, and transposition detection problems was
presented. A number of necessary conditions were
discussed for its successful operation and rules
presented that guaranteed satisfaction of these con-
ditions. That these rules satisfied the required condi-
tions was demonstrated with informal arguments.
Future work would include implementation and
experimentation. Additional analytic work leading to
the development of both necessary and sufficient
conditions for reliable communication and a formal
proof that the rules of the Ar protocol met these
conditions would also be usefu).

The important assumptions requiring the bounding
of certain times were discussed, particularly that of
the maximum packet lifetime within the routing
network. We argued that these times could be
bounded and were small relative to the average num-
ber of connections per hour that are established, the
amount of time it is reasonable to wait on crash
recovery before sending or receiving packets, and the
“wrap around” time for sequence numbers.

The At protocol mechanism that has resulted is
simple and efficient for a wide range of applications
including both single data message and datastream
traffic. Because of the low message overhead for
reliable single-message transmission, it seems very
attractive in situations in which single messages are
numerous, particularly in high-speed local networks.

Another current direction of our work is to con-
sider the development of a hybrid protocol provid-
ing the advantage of both the Af and threeway-hand-
shake approaches with little increase in implementa-
tion complexity. Such a protocol would work with

Cp e

286 J.G. Fletcher, R.W. Watson / A reliable timer-based protocol

maximum efficiency (minimum message overhead) in
a local network environment when MPL can be
bounded, and could also operate in an internetting
environment involving vendor, commercial, or other
geographically distributed or local networks where an
MPL bound may not be guaranteed.

APPENDIX
Algorithms for a timer-based protocol

The protocol discussed in this Ppaper, like any end-to-end
protocol, is really defined by the intended interpretation of
the fields in packet headings. Each of the partner ends of a
connection may carry out any algorithms that are consistent
with that interpretation. The set of protocol algorithms that
follows is, therefore, only typical and necessarily involves
some assumptions about matters that are external to the
protocol and not required by it. An attempt has been made
to keep such assumptions to a minimum. The algorithms do
not constitute a complete end-to-end protocol but cover only
matters relating to the prevention of the omission, duplica-
tion, and transposition of data elements.

The protocol algorithms manipulate information found in
three places: in packet headings, in an interface to higher-
level (user) algorithms that generate data to be sent and
interpret data received, and in the connection record that is
the algorithms’ memory. In each of the three places, the
information falls into two independent categories: that
related to data sent and that related to data received. This
information is now summarized. All items listed are logical
concepts and should not be construed to imply an implemen-
tation. !

Packet heading

Packet heading fields relevant to data moving in the same
direction as the packets are as follows:

The data sequence number (DSN) is the sequence number
of the first data element in the packet. If there is no data
in the packet, no particular value for the DSN is required for
the purposes of the present algorithms.

The data run flag (DRF) is a boolean indicator which, if
on, signifies that the sender of the packet has received
acknowledgment of all data elements preceding the one
defined by the DSN. That is, the DSN is the-same as the
largest sequence number acknowledged to the sender or is
the initial sequence number of a new connection (in which
case no elements precede the one defined by the DSN).
Only if this flag is on may the packet begin a new run of
consecutively numbered elements.

The length (LEN) is the number of data elements in the
packet. The elements in the packet have, in order, sequence
numbers s in the range DSN < 5 < DSN + LEN.

Packet heading fields relevant to data moving in the
direction opposite to the packet, that is, to data that has
been received by the sender of the packet, are as follows:

The acknowledged Sequence . number (ASN) is the
sequence number of the data element that the sender of the

packet expects to receive next. The receipt of all preceding ‘_
elements is acknowledged.

The acknowledged run flag (ARF) is a boolean indicator
which, if on, signifies that the ASN in meaningless, that no

elements are being acknowledged, and that the sender of the
packel expects DRF to be on in the next packet it receives.

The window (WIN) is the number of data elements
beyond those acknowledged by the ASN that the sender of
the packet is prepared to receive, While this value is primarily
of interest for flow control purposes, it is necessary to the
algorithms discussed here for defining a valid range for the
sequence numbers s of data elements to be accepted by the
sender of the packet, namely ASN < s < ASN + WIN. (Since
sequence numbers use modulo arithmetic, all inequalities
must provide bounds from both sides.)

User interface

The interface to those user algorithms that send data must
include the following:

The output source generates, in order, the data elements
to be sent.

It is assumed here that the protocol algorithms are
prepared to buffer only what they believe the partner will
accept (as indicated by received values of WIN). Therefore,
flow control is required at the user interface. This could be
implemented in many ways, such as by a semaphore, by
direct control by the protocol algorithms over the user
algorithmg’ execution, or by a pair of pointers into a circ-
ular buffer. No matter how implemented, there is from a logi-
cal standpoint an owtput window size, a count of the num-
ber of additional elements that can be generated by the out-
put source. This count is decremented as elements are gener-
ated and incremented by the protocol algorithms as buffer
space becomes available. The algorithms given here adhere
literally to the window defined by the partner, even through
it might be reasonable to overrun it somewhat because the
WIN values received are usually a little out of date. Also, the
defined window size is never reduced because of a WIN value
received from the partner, since this is viewed as an illegitimate
renege on a promise.

A boolean output error indicator is turned on by the
protocol algorithms to indicate that not all data generated by
the output source was sent and acknowledged.

The interface to those user algorithms that receive data
must include the following:

The inpur sink consumes in order (as determined by
sequence number) the data elements received.

It is assumed here that the protocol algorithms are not
prepared to buffer elements that fall outside an input
window determined by flow control through the user inter-
face. As with output this can be implemented in many ways.
However implemented, there is logically an input window
size, a count of the number additional elements that can be
consumed by the input sink. This count is decremented as
elements are consumed and incremented by the user algo-
rithms as buffer space becomes available. A count of zero is
the indication that the user algorithms are unwilling to
receive; further indications in this regard (such as whether the
unwillingness is permanent) are viewed as being outside the
scope of the present algorithms.

v

R e et

A boolean input
pratocol algorithms t
' all data sent by the I
k' of this nature may o¢

Connection recorc

The aigorithms 1
be remembered in tt
The output list
generated by the o
the partner, but no:
associated its assign
ber of times that i
that counts down t
(The scheme used t
the one in which e:
times, rather than r
itly defined give-
sequence number, a
element in the list
compression teclinic
numbered element:
The output win.
ber of an element
oldest unacknowled
The next outpu;
ber to be assigned 1
put source. The se
exactly those in the
output window lef
ber.
The output windos
number plus output
The send timer
the sender portios
reinitialized.
The algorithms
to be remembered i
The input list i
received but not as
the sequence numt
list do not necessar
gaps because of trs
the possibility of g:
list, since elements
to the input sink
eliminate the need
received out of seq
the partner to prov
strictly sequential ¢
With each element
number. As with 1
seems to be called
list (and output lis -
space supplied by
cases when trans
after the initializa
possible to avoid ;
placed into the buff

W ot s s e et

ceipt of all preceding

s a boolean indicator
meaningless, that no
hat the sender of the
- packet it receives.

ir of data elements
N that the sender of
this valuc is primarily
it is necessary to the
a valid range for the
) be accepted by the
< ASN + WIN. (Since
ietic, all inequalities

s that send data must
21, the data elements

ocol algorithms are
ieve the partner will
of WIN). Therefore,
arface. This could be
by a semaphore, by
thms over the user
pointers into a circ-
I, there is from a logi-
a count of the num-
zenerated by the out-
18 elements are gener-
algorithms as buffer
ns given here adhere
partner, even through
ymewhat because the
out of date. Also, the
:cause of a WIN value
wed as an illegitimate

is turned on by the
all data generated by
2dged.

ims that receive data

r (as determined by
eived.

5l algorithms are not
il outside an input
irough the user inter-
aented in many ways.
Hy an input window
elements that can be
nt is decremented as
ted by the user algo-
‘e. A count of zero is
ms are unwilling to
1 (such as whether the
1 as being outside the

A boolean input error indicator is turned on by the
protocol algorithms to indicate that there is evidence that not
all data sent by the partner was received. However, a failure
of this nature may occur without leaving suitable evidence.

Connection record

The algorithms for sending data require the following to
be remembered in the connection record:
The output list is the set of data elements that have been
generated by the output source, sent zero or more times to
the partner, but not yet acknowledged. With each element is
associated its assigned sequence number, a count of the num-
ber of times that it has been transmitted, and a retry timer
that counts down the interval until the next retransmission.
(The scheme used here for giving up on data transmission is
the one in which each element is sent a maximum number of
times, rather than retransmissions being limited by an explic-
itly defined give-up interval.) Explicitly associating a
sequence number, a retry count, and a retry timer with each
element in the list is likely to be inefficient, and information
compression techniques (such as treating many consecutively
numbered elements as a unit) should probably be used.
The output window left edge is the lowest sequence num-
ber of an element in the output list, That element is the
oldest unacknowledged element.
The next output sequence number is the sequence num-
ber to be assigned to the next element generated by the out-
put source. The sequence numbers s in the output list are
exactly those in the range,
output window left edge < s < next output sequence num-
ber. '
The output window right edge equals next output sequence
number plus output window size.
The send timer (Sgjmer) counts down the interval until
the sender portion of the connection record should be
reinitialized.
The algorithms for receiving data require the following
to be remembered in the connection record:
The input list is the set of data elements that have been
received but not as yet delivered to the input sink. Unlike
the sequence numbers in the output list, those in the input
list do not necessarily form a consecutive run; there may be
gaps because of transpositions of the received data. In fact,
the possibility of gaps is the only reason for having an input
list, since elements that arrive in sequence can be delivered
to the input sink immediately. An implementation could
eliminate the need for an input list by ignoring elements
received out of sequence and relying on retransmissions by
the partner to provide them again; this considerably simpler
strictly sequential option is presented here as an alternative.
With each element in the input list is associated its sequence
number. As with the output list, information compression
seems to be called for in an efficient implementation. Input
list (and output list) elements could be buffered directly in
space supplied by the user algorithms; however, in certain
cases when transmitted data becomes transposed soon
after the initialization of the connection, it may not be
possible to avoid relocating elements after they have been
placed into the buffer.

J.G. Fletcher, R.W. Watson | A reliable timer-based protocol 28

The input window left edge is the sequence number of
the element expected to be received next; all preceding ele-
ments have been acknowledged to the partner. All sequence
numbers s in the input list ate in the input window defined
by

input window left edge < s < input window right edge,

which equals input window left edge plus input window size.

" The boolean run indicator is needed for treating the
possibility that the first packet sent on a new connection
gets transposed and is received after a subsequent packet.
It therefore is not needed if the strictly sequential option
is used. If on, it signifies that no packet with DRF = on has
been received since the receive connection has initialized.

The boolean respond indicator, if on, signifies that a
packet should be sent to the partner for the purpose of con-
veying information about data received.

The receive timer (Ryjmer) counts down the interval

until the receiver portion of the connection record should
be reinitialized.

Algorithms

The algorithms are given in a dialect of colloquial Algol.
The meanings of the reserved (italicized) words are con-
ventional. The scope of a construct is indicated solely by
indentation.

Figs. A1 and A2 outline the protocol and list structure.
Generate connection record

procedure for connection record generation:
comment This procedure is called implicitly whenever
reference is made to the connection record and it
does not exist.
if no connection record exists,
then
Allocate space for the record
output list + empty.
output window left edge + anything.
next output sequence number « output win-
dow left edge.
send timer « 0.
input list « empty.
input window left edge « any thing.
run indicator + on.
respond indicator « off.
receive timer « 0,
comment It is assumed that the user interface,

including the window sizes, already exists.
end

Abandon connection record

procedure for connection record abandonment:
comment This procedure should be called only when

there is need for the space occupied by the connec-
tion record.

288 J.G. Fletcher, R.W. Watson | A reliable timer-based protocol

Input Input window left edge Data seq # Output window left edge] Output
Window Run indic «—| Data Run Flag |« Next output sequence # | Window
size size
i Output list Output
Input Data Input list P Data P
El t: Elements
Sink ements INPUT PACKET OUTPUT Source
: Input ALGORITHMS Ack seq # ALGORITHMS Output
Fr:dr?: R timer] Ack !’tun Flag > S timer .Enr:’?g
Respond indic Window

Fig. A1, Overview block diagram of the simplex At protocol.

if send timer = 0 and receiver timer = 0 and
respond indicator = off,
then Deallocate space for the record.
end

Initialize sender part of connection record

procedure for sender connection record initialization:
comment This procedure is called when the send timer
becomes zero.
if send timer = 0,

then
if output list #+ empty,
then
output error indicator « on.
output list « empty.
respond indicator « on. comment The
response may include an error indica-
tion, which is regarded as outside the
scope of these algorithms.
— Largest ASN received i
j WIN received |
TTTTTTITTCY
EEEE
OUTPUT LIST P i
]
4 Jiol_alil!
J / i\ Output ___|
N window size
Entry contains:)
Output Osgta element Next output sequence number
window Sequence # (smallest saquence # of an
toft edge Retry count element not yet taken from
Retry timer output source)
Older * Nowsr ¢l

Largest DSN received consscutive with all preceeding OSN's receivad
/’ (largest saquance # of an element deliversd to inpart sink)

T iy b i T
Bl | T
INPUTLIST ! ' Vo
] i [
UL N R -4 P P P
JT‘“Wl window size (WIN sent) ——— .|
Input Entry contains:
window
Data element
left edge
(largest ASN sent) Sequance #

Fig. A2. Output and input lists and associated information,

output. window left edge + next
output sequence number.
end

Initialize receiver part of connection record

procedure for receiver connection record initialization
comment This procedure is called when the receive timer
becomes zero. It is not needed if the strictly sequential
option is used.
if receive timer = 0,
then
if input list # empty,
then
input error indicator « on.
input list < empty.
respond indicator < on. comment
The response may include an error
) indjcation,
run indicator « on.
end

Getting data through the user interface

procedure for taking elements from output source:
comment This procedure is called when an element is
available from the user program,
if an'element is present at output source
and output window size > 0,
then .
Remove the element from the output source and
place it into the output list.
its sequence number « next output sequence
number.
its retry count « 0.
its retry timer « 0.
next output sequence number « next output
sequence number + 1.
output window size + output window size - 1.
end

Generate a packet

procedure for generating a packet:
comment This procedure is called and the packet sent,

perhaps after s
should not ex:
defining At), v
ready to be se
addition to the
the respond in
window size is
if no retry coun
least one rets
means that th
then
DSN « leas
ready-ti
LEN « the
and the
ments
beginni
Copy into
defined
sequenc
+ LEN)
retry cour
elemen
retry time
elemen
send timer
else
DSN « ne»
LEN «0.
if DSN = output
then DRF + ¢
else DRF « of
ASN « input win
WIN « input wins
if receive timer =
then ARF « ¢
else ARF «+ of
respond indicator
end

Receiving a packe

procedure for treatin

comment This p:
received.

comment The f

acknowledged

if ARF = off an.

output list, th

edge < ASN <

then

Discard fi

elemen

satisfyi

output wir

if ARF=onor:

- then output

window sj

left edge -

comment The 1

L T

Output

ents
Source
ut

w

¥ left edge « next
smce number.

n record

1 initialization
‘hen the receive timer
the strictly sequential

on,

. comment
y include an error

face

out source:
when an element is

urce
2e output source and

t.
<t output sequence

-mber « next output

- window size - 1.

1 and the packet sent,

J.G. Fletcher, R,W. Watson | A reliable timer-based protocol 289
perhaps after a brief delay (which in certain instances included in the packet. It has one of two forms,
should not exceed the unacknowledged time used in depending on whether the strictly sequential option
defining At), whenever an element in the output list is is used.
ready to be sent and/or the respond indicator is on. In comment The simpler strictly sequential option is
addition to the occasions cited in the other algorithms, presented first.
the respond indicator is turned on whenever the input if LEN >0,
window size is increased by the user algorithms. then .
if no retry count in the output list = maximum and at if receive timer = (),]
least one retry timer in the output list =0 (which then if DRF = on,
means that the associated element is ready-to-be-sent), then input window left edge — DSN.
then else input window left edge «— DSN +
DSN «least sequence number of an element ; LEN (thereby assuring that the next test

ready-to-be-sent. will fail).

LEN + the smaller of the maximum packet size if input window size > 0 and the sequence number
and the number of consecutively numbered ele- of some element in the packet (equal to its
ments in the output list ready-to-be-sent, position in the packet + DSN) = input window
beginning with the element numbered by DSN. left edge, that is, DSN < input window left

Copy into the packet in order all the elements edge < DSN + LEN,
defined by DSN and LEN (that is, with then
sequence numbers s satisfying DSN < s < DSN : Place into the input sink in order all n > 0
+ LEN), all of which are ready-to-be-sent. elements from the packet that lie in the

retry count <« retry count+ 1, for each of those input window that is, have sequence

elements. numbers s satisfying input window left
retry timer < retry interval, for each of those edge < s < the smaller of input window
clements. . left edge + input window size and DSN
send timer « 3 At. + LEN.
else input window left edge « input window left
DSN + next output sequence number. edge + n.
LEN « 0. input window size « input window size - n,
if DSN = output window left edge, Teceive timer « 2 Ay,
then DRF + on. : respond indicator « on.
else DRF « off, comment The preceding statement used with the strictly
ASN « input window left edge. sequential option is replaced by the following if the
WIN « input window size. mote complex option, which does not ignore elements
if receive timer = 0, arriving out of sequence, is used.
then ARF « on. if LEN>O,
else ARF « off. then
respond indicator « off. if run indicator = on (which implies that no data
end with DRF = on has been received since the last ini-
tialization of the receiver connection, which emp-
- tied the input list and turned on the run indicator
Recelvmg a packet when the receiver timer went to zero).
then

procedure for treating a received packet: if receive timer = 0 (which means that no data

comment This procedure is called whenever a packet is at all has been received since the last initiali-
received, _ zation of the receiver connection),
comment The first part of the procedure treats data then
acknowledged by the packet. if input window size > 0,
if ARF = off and ASN acknowledges an element in the then teceive timer «+ 2At,
output list, that is, satifies output window left input window left edge + DSN.
edge < ASN < next ou tput sequence number, else if DSN does not lie in the input
then window defined by input window left
Discard from the output list all acknowledged edge < DSN < input window left edge +
elements (those with sequence numbers § input window size (which means that
satisfying output window left edge < s < ASN). the arriving data has been transposed
output window left edge + ASN. with all the data that has already arrived
if ARF = on or output window left edge = ASN, since the last initialization of the receiver
then output window size « the larger of output connection),
window size and the sum WIN + output window then input window left edge +— DSN.
left edge - next output sequence number. if DRF=on and input window size > 0,
comment The last part of the procedure treats data then run indicator « off,

290 J.G. Fletcher, R.W. Watson | A reliable timer-based protocol

Place into the input list in order all the elements in the
packet (cqual in number to LEN), each associated
with its sequence number (equal to its position in
the packet + DSN), discarding any duplicates
already in the input list.

if any sequence numbers s in the resulting input list do
not lie in the input window defined by input
window left edge < s < input window left edge +
input window size.
then

Discard from the input list all elements asso-
ciated with such sequence numbers.
respond indicator « on,

if run indicator = off and there are n > 0 consecutive
"sequence numbers in the input list beginning with
the input window left edge,
then

Remove from the input list in order the asso-
ciated n elements and place them into the
input sink.

input window left edge « input window left
edge + n.

input window size « input window size - n.

receive timer « 2At,

respond indicator « on.

end comment end of algorithms

References

[1] E. Akkoyunlu, A. Bernstein, and R. Schantz, “‘Inter-
process Communication Facilities for Network Operat-
ing Systems,” Computer 7, 6 (1974).

[2] D. Belsnes, “Single-Message Communication,” 1EEE
Transactions on Communications COM-24, No. 2
(1976).

[3] 1. Burchfiel et al, “Proposed Revisions to the TCP,
“INWG Protocol Note No. 44, September 1976.

{4] V. Cerf and R. Kahn, “A Protocol for Packet Networks
Intercommunication,” IEEE Transactions on Communi-
cation COM-20, No. § (1974).

[5] V. Cerf, A. McKenzie, et al.,, “Proposal for an Interna-
tional End to End Protocol,” Computer Communica-
tion Review 6, 63-89 (1976).

[6] V. Cerf “Specification of Internet Transmission Control
Program,” TCP Version 2, March 1977.

[7] D. Clark, **Comparison of TCP and DSP,” MIT Labora-
tory for Computer Science, Local Network Note No. 7,
April 1977.

[8] S. Crocker and J. Postel, private communication
Reliable Transfer of Control Information, August 1977.

[91Y. Dalal, “More on Selecting Sequence Numbers,”
INWG Protocol Note 4, October 1974. Also in Procced-
ings ACM SIGCOMM/SIGOPS Interprocess Communica-
tions Workshop, March 1975.

[10] J.E. Donnelley, “A Distributed Capability Computing
System,” Proceedings Third International Conference
on Computer Communication, August 1976.

[11] J. Fletcher, Lawrence Livermore Laboratory, private
communication (1977.))

[12] J. Fletcher, “The Octopus Computer Network,” Data-
mation, April 1973.

{13] L. Garlick, R. Rom, and J. Postel, “Reliable Host to
Host Protocols: Problems and Techniques,” Proceed-
ings 5th Data Communications Symposium, IEEE/ACM,
September 1977,

(14] A.A. McKenzie, “A Host/Host Protocol,” ARPA Net-
work Working Group RFC 714, NIC 35144, April 1976.

[15] R. Metcalfe, “Packet Communication,” MIT MAC TR-
114, NTIS AD-731430, Ph.D. Thesis, May 1973,

[16] Network Systems Corporation, “System Description
Series A Network Adapters,” Pub. No. A01-0000-01,
October 1976.

[17] P. Johnson et al., “MSG: The Interprocess Communica-
tion Facility for the National Software Works,” Com-
puter Associates CADD-7601-2611 (1976).

[18] L. Pouzin, “Flow Control in Data Networks - Methods
and Tools,” Proceedings Third International Conference

. on Computer Communication, Toronto, August 1976.

[19] D. Reed, "Protocols for the LCS Network,” MIT
Laboratory for Computer Science, Local Network Note
No. 3, November 1976.

[20] D. Reed, “'The Initial Connection Mechanism in DSP,”
MIT Laboratory for Computer Science, Local Network
Note 10, September 1977.

{21] C. Sunshine, “Interconnection of Computer Networks,”
Computer Networks 1, (1977) 175.

[22] C. Sunshine, “Factors in Interprocess Communication
Protocol Efficiency in Computer Networks,” AFIPS
Conference Proceedings 45, 571-576 (1976).

[23] R. Tomlinson, “Selecting Sequence Numbers,” INWG
Protocol Note No. 2, September 1974. Also in Proceed-

ings SIG COMM/SIGOPS Interprocess Communications -

Workshop, March 1975.

[24] D. Walden, “A System for Interprocess Communication
in a Resource Sharing Network,” Comm. Assoc.
Comput. Mach. 15 221-330 (1972).

[25]). White, “A High-Level Framework for Network-
Based Resource Sharing,” AFIPS Conference Proceed-
ings 45, 561-570 (1976).

?

AVirtl
the ”Cx

Ginter Schulz
GMD-IFV, Darmstc

and

Joachim Bérge
WRB-BERNET, Be:

The ideas prese
within the PIX wo;
“Virtual Terminal
the PIX virtual i
between several ne
area in the FRG, g
Technology. The
interprocess comm
used to fit the reqt
ing class of termina
whereas the protoc
defining the apprc
The complexity of
depends upon the
example, a protocol
mode terminal is giv

Keywords: Com
ted
term
tion

prqjectx for the c
switching networks.

© North-Holland Pu
Computer Networks

