
A LOOP-FREE EXTENDED BELLMAN-FORD ROUTING PROTOCOL WITHOUT
BOUNCING EFFECT

Chunhsiang Cheng, Ralph Riley, and Srikanta P.R. &mar*

Department of Electrical Engineering
and Computer Science

Northwestern University
Evanston, IL 60208
Tel: (312) 491-7382

JJ. Gar&+Luna-Aceves” *

Network Infomuxion Systems Center
SRI International

333 Ravenswood Avenue
Menlo Park, CA 94025

ABSTRACT: 1. INTRODUCTION

Distributed algorithms for shortest-path problems are
important in the context of routing in computer
communication networks. We present a protocol that
maintains the shortest-path routes in a dynamic topology,
that is, in an environment where links and nodes can fail
and mover at arbitrary times. The novelty of this protocol
is that it avoids the bouncing effect and the looping problem
that occur in the previous approaches of the distributed
implementation of Bellman-Ford algorithm. The bouncing
effect refers to the very long duration for convergence when
failures happen or weights increase, and the nonterminating
exchanges of messages, or counting-to-infinity behavior, in
disconnected components of the network resulting from
failures. The looping problems cause data packets to
circulate and, thus, waste bandwidth.These undesirable
effects are avoided without any increase in the overall
message complexity of previous approaches required in the
connected part of the network The time complexity is better
than the distributed Bellman-Ford algorithm encountering
failures. The key idea in the implementation is to maintain
only loop-free paths, and search for the shortest path only
from this set.

One of the widely used techniques for routing in

communication networks is via distributed algorithms for
finding shortest paths in weighted graphs [9,10,13,14]. The
well known distributed Bellman-Ford (BF) algorithm
(implemented initially in ARPANET [141) is simple, and the
distance and the routing-tables are easy to maintain [2].
However, this protocol has several major drawbacks.
Firstly, the response of this protocol to link oi node failures
can be very slow. This is due to the possibility that the
distances maintained, and exchanged with neighbors, in the
internal distance-table or routing-table of each node, may
correspond to paths with loops (“bouncing effect” [20]).
Thus, nodes may engage in a prolonged exchange of such
distances before converging to the shortest paths. Moreover,
if the network is diSCOnneCted, the protocol is not guaranteed
to terminate. (This is the so called counting-to-infinity
problem, where each node keeps indefinitely increasing its
distances to the unreachable destinations.) Another
shortcoming of this protocol is that it is not loop-free in the
following sense [3,4,9,13,17]: at any moment, the paths
implied by the routing-tables of all nodes taken together can
have loops (i.e., if a path to a destination is traced going
from the routing-table of one node to that of another node, a

node may be visited more than once before the destination is
reached. If such routing-table loops persist for a long time,

looping of data to be routed may occur resulting in
considerable overhead. Avoiding the bouncing effect does
not necessarily imply that routing-table loops are eliminated.
(The looping of data packets may not be completely avoided
even if the routing-tables are loop-free at all time [2].) Here,
we take a protocol to be loop-free, if it does not have
routing-table loops mentioned above [9].

One way to overcome the termination (or counting-to-

* This research was sponsored by grants from Bell Northern Research,
U.S. West Advanced Technologies, and Ameritech.

** This work was sponsored by SRI International IR&D funds.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permksion.
0 1989 ACM 08979 l-332-9/89/0009/0224 $ I so

224

infinity) problem is to use some additional information, such
as the size or diameter of the network [20]. However, such
information may vary from time to time, if the network
topology is dynamic, and in such cases the convergence of
the protocol via this approach will be too slow. The new
ARPANET routing protocol [2,15] runs the Dijkstra’s
algorithm periodically at each node based on the information
of the whole network. Although the looping problem is
alleviated to some extent, in a slowly varying network, the
overhead, in terms of the messages and the local memory
required, is too high as each node must gather the

information about the whole topology.
Merlin and Segall [16] proposed a synchronization

approach to achieve loop freedom. In this approach, there is
additional overhead due to the cost of the synchronization
phase. In addition, the speed of the convergence can be
slower than the BF algorithm, when no looping is
encountered.

In fact, achieving loop-freedom in the distributed BF
algorithm is not difficult in networks with uniform weight on
each link. Chu [5] proposed the downstream and upstream
idea to avoid loops in minimum hop routing. A similar idea
was adopted by Shin and Chen [19] for nonuniformly
weighted networks to avoid two-node looping. This
algorithm can also be extended to a kth order algorithm
which avoids all loops with no more than k hops.
However, in this case, the size of the control messages and
the local memory required grow proportional to k.

Jaffe and Moss [13] used the freezing technique to
delay the response of a node at the moment the node loses its
preferred neighbor to prevent the possibility of looping.
Garcia-Luna-Aceves [9] extended the same idea to achieve a
lower message complexity, and also presented a formal
proof. For a further critique of the previous approaches, see
Garcia-Luna-Aceves [9,10].

In this paper, we present a shortest path routing
protocol, in which each node maintains information about
some simple paths in its local memory. Note that knowing
the entire path is subtantial for determining whether a path is
simple or non-simple. However, it is possible to obtain the
entire path to every destination by simply knowing the node
next to each destination, thus eliminating the overhead
caused by installing the list of all the nodes in the path to any
destination (the approach adopted by Shin and Chen [191X A
mechanism to achieve this was first suggested by Hagouel
[I 11, who attempted to do the source routing using an
algorithm almost identical to the Bellman-Ford algorithm.
Garcia-Luna-Aceves adopted this mechanism to attempt to

reduce the looping problem of the Bellman-Ford algorithm
for mitt-hop routing in packet-radio networks [8]. A back-
tracking technique was applied to maintain the routing table,
which may cause exponential complexity of nodal
computation time. Humblet proposed a breadth first search
technique to conquer this drawback [12]. A more efficient
algorithm, in terms of lower nodal computation time
complexity, less computation storage, and smaller message
size, is presented in this paper independently of the work in
1121. The update of the distance vectors are sent only to
selected neighbors, so as to maintain distances of only
simple paths, and consequently avoiding the bouncing effect
(and the counting-to-infinity problem) and converging to the
correct distances quickly, Moreover, the protocol is simple
and the size of the local memory required and the message
size are increased by a factor of only 1ogN bits (assuming
IogN bits for a node identification) the requirements of the
original distributed BF algorithm. On top of this basic
protocol, loop-freedom can be achieved through inter-
neighbor coordination [lo]. A technique is also presented to
prove the correctness of a protocol that can be embedded in
another protocol that has been proven correct.

The rest of this paper is organized as follows. Section
2 presents the network model assumed in the basic protocol,

which is described in Section 3. Section 4 presents the
correctness proof of the protocol and Section 5 describes the
additions needed to the basic protocol to achieve the loop-
freedom property. Performance issues are discussed in
Section 6, and Section 7 presents conclusions.

2. NETWORK MODEL AND NOTATIONS.

2.1 Network Model.

The environment for the protocol is an asynchrounous
point-to-po!nt network presented by an undirected weighted
graph G(V,L), where V is the set of nodes numbered
1,2,..,N, and E C_ VxV is the set of links. Each node is a
computing unit involving a processor, a local memory, and
also an input queue and an output queue with unlimited
capacity. Each functional link (ij), assigned with a weight
dij > 0, is a bidirectional communication line connecting
nodes u and v. Each node knows only its local environment
(the numbers of the neighbors and the weights of the
adjacent links) and follows the same protocol consisting of
sending and receiving messages over the adjacent links, and
processing these messages. The received (sent) messages are

225

put in the input (output) queue on a first-come-fit-served

basis, and are processed in that order.

A communication link in a dynamic network has the

following properties. Messages can only be sent and

received over a link which is functioning. However, a

message sent need not arrive at the receiver, as the link may

fail during transmission. When the link is functioning,

messages can be independently transmitted in both

directions, and they arrive at the other end node after a finite

pndetermined delay, without error and in sequence.

Whenever a link fails or recovers, each end node is notified

in a finite time, but not necessarily at the same time. When a

link recovers, there are no messages in transit through it, nor

are there messages waiting to be sent over it (i.e., all

messages sent out for transmission on link are deleted after

the link fails). A node failure/recovery is taken to be the

failure/recovery of all adjacent links. A change in the weight

of a functioning link is also assumed to be notified to both

the end nodes in a finite time. These services are assumed to

be provided by a lower level (link) protocol. The

assumptions stated above are standards [1,181.

2.2 Notations and Definitions.

A path (route) from node i to node j, denoted Rij, is a

sequence of nodes Rij=(i,ni,nz,..,n,,j) where (i,nl), (n,j),

and (n,,n,+t) for ltixl r-l are links. A path from i to j via

node k, a neighbor of i, is denoted Ri. The distance of a

path is the sum of the weights of all the edges in that path.

A simple path (also an elementary path IS]) from i to j

is a sequence of nodes with no node being repeated more

than once. The paths between any pair of nodes, and the

distances, change over time in a dynamic network.

At any point in time, a node i is said to be connected to

node j iff there exists at least one path between these two

nodes in the graph at that time. The network, at any time, is

said to connected iff every pair of (functioning) nodes arc

connected at that time.

The head of a path Rq is defined to be the last node

preceding node j in the sequence of nodes in Rij (i.e., if

R;j=(i,ni,n2,..,n,j>, then head of Rii is nr if r > 0, and equal

toiifr=O).

3. A BASIC SHORTEST PATH PROTOCOL TO
AVOID BOUNCING EFFECT

In this section, we present a refinement to the

distributed BF algorithm to avoid the bouncing effect and the

counting-to-infinity problem. Additional modifications

needed to achieve loop-freedom (no routing-table loops) will

be discussed in Section 5. Before we outline the

refinements, the original distributed BF algorithm is briefly

reviewed.

3.1 Distributed Bellman-Ford Algorithm

In the asynchrounous distributed BF algorithm (which

falls into the class of distance vector algorithms [9]), the

nodes asynchrounously exchange their routing vectors

representing shortest path distances, computed according to

the BF iterationl. Each entry in a routing vector is a

message which contains a destination node and a distance to

that destination from the node sending the vector. When a

node receives a routing vector from a neighboring node, it

updates its distances to other nodes via this neighbor, and

any changes in the routing table (current shortest paths) are

then sent to all neighbors. Let Di = [D$ denote the distance

matrix (with rows corresponding to destinations and

columns to neighbors) stored in node i, with entry Db

representing the distance from i to j via neighbor k of i. The

routing table is an array (derived from DJ with one entry for

each destination. Each entry is a triplet specifying the

destination (say j), the preferred neighbor Pij (Pij is the

neighbor along the shortest path Rij to the destination), and

the current shortest distance (minimum of row j in Di),

denoted by RDIST,(j). The BF algorithm converges to the

shortest distances for all connected pairs of nodes.

The basic steps of a version of the distributed BF

algorithm is as shown as Algorithm 1 [2,14,20,21].

The notification link failure/recovery and the weight

changes are presented to a node by its lower level (link)

protocol. For link weight changes, say of link (i,k), the

response is as if a (N-l)-entry vector is received on link

(i,k), where each entry corresponds to (k,Di - d;) for all j

(d; is the old link weight of link (i,k)).

The bouncing effect refers to the behavior in which a

node u will keep on increasing the distance to a destination

through some neighbors who, in fact, do not have the path

corresponding to such distance toward the destination

without going through u. This immediately results in a

longer duration for the nodes to update their distance and

routing tables to be correct, and, consequently, induces

1 Bellman-Ford iteration equation for asynchrounous distributed model:

Dij:= min (dik + Dkj I for all neighbors k of i) , Dii:=O for aIl ni

226

Ford

Response of node i:
yppl! receiving vector Vk on link (i,k).

(0) begin
vie-0

(1) for each entry CiDkj) in Vk do
(* Vk is a set of 2-tuples *)

be in
K(

Dij t Dkj + dik

(2)

(3)

(* copy into column j *)
end
for each row j in Di do
begin

if min Di # RDISTi(i) then
beg?k

RDIST,Q t rnp Ds
(* update routing;ble *)
Pij t arg rn? Dij

(* set preferred neighbor *)
Vi t Vi u ((i. RDISTi(j)))

end
end
if Vi # 0 then
begin

send Vi to all neighbors.
(* send changes *)

end
end

w receiving notification Failure(i,k)
(* link (i.k) is not functioning anymore *)

(4) begin
delete column k in Dl and execute steps 2 and 3.

end
m receiving nOtifiCatiOnR~OVCr(i,k,~k)

(* link (i.k) is now functioning *)
(5) begin

insert column k in Di.
respond as if a single entry in Vk = ((k,dik)]
is received on link (ip).
copy whole routing table into Vi and send it to k.

end

higher time complexity.
The following example, illustrated by Fig. I,

summarizes the looping and bouncing effect scenarios.

Consider destination node nl. Assume that, each node
obtains the correct distance and routing tables by running the
BF algorithm. It is easy to see that nodes n2 and ng will
choose nodes nl and n2 as their preferred neighbors
respectively. If link (nl,nz) fails, node n2 will choose node
n3 as the preferred neighbor based on its distance table.
Thus, a routing-table loop occurs between nodes n2 and n3.
Furthermore, nodes n2 and n3 have the distances 3 and 2,

FIG. 1 -- A network topology that will result
bouncing effect and routing-table loop when link

(n,,n2) fails, and counting-to-infinity when (n1,n3)
also fails

which are much less than 100 to destination nl. Due to the
BF algorithm, node ng wilI update its distance to be 4, which

again will cause node n2 increase its distance to be 5.
Clearly, nodes n2 and ng will keep on increasing their
distances until node n3 reaches a distance of 102 to nlr and
chooses nl as its preferred neighbor. After this, the distance
converges. Thus, we observe that, with the BF algorithm,
nodes n2 and n3 engage in a prolonged process of message
exchange until n3 reaches a distance to n1 through neighbor
n2 greater than 100. Only after that moment, n3 switches to
the correct preferred neighbor and has the correct distance.
This scenario represents the bouncing effect. This problem is
much worse if link (n1,n3) also fails later; which is
equivalent to link (n,,n3) having an infinity weight.
Apparently, nodes n2 and n3 will keep on increasing their
distance to n1 without bounds. This is the so called
counting-to-infinity problem arising from network partitions.
Note that the counting-to-infinity problem can be viewed as a
special case of the bouncing effect.

3.2 A Basic Protocol (Extended Distributed BF)

In this section, we present a refined shortest-path
protocol that avoids the bouncing effect (the slow response
to link failures or link weight increase) and the counting-to-
infinity behavior. We start by providing the motivation and
some intuition behind these refinements.

It is possible to eliminate the counting-to-infinity
behavior in a straightforward way if an upper bound on the
distance between any pair of nodes (in the dynamic network)
can be known in advance. A node encountering a distance
greater than this bound to a destination can immediately mark
that destination as disconnected 1201. The disadvantage of
this approach is that it requires a prior and precise
knowledge of such an upper bound. More importantly, this
mechanism has no influence on the convergence behavior in

227

connected components of the network; thus, the bouncing
effect which accounts for is not eliminated.

As can be seen from the example in the previous
section, the bouncing effect and the counting-to-infinity
behavior anise due to the fact that a node may offer its
neighbor a distance corresponding to a path that has that
neighbor as an internal node of that path. Thus, once the
distance is updated, the distance may correspond to a non-
simple path. To explain this remark further, one can observe
from Algorithm 1 that, at any moment, any finite distance
maintained in the distance table or the rouitng table of a node
(say i) for a destination (say j) is generated over the network
by sequentially accumulating a set of link weights, which
either existed at some previous moment or currently exist in
the network. In addition, this set of links form a path or a
route from node i to node j. For example, a distance entry D
in the distance or routing table of node i, maintained at time
t, can be expressed as D=C~=tdn,n,+l(tm)where nt=i,

n,+l=j, and dnmnrn+l m (t) is the weight of link (nm,nm+t)
existing in the network at some time tmlt. Indeed, node i
gets informed about this distance D via the sequence of
nodes j, nr, n2, i. (In other words, node nm is informed
of the distance D=GErnd nknk+l(tk) to destination j at time
tm, when it transmits via the routing vector to node n,,-,-1).

We shall refer to this path (nl=i, n2, nr, j) as the path
implicit (orpath corresponding) to this distance D. Note that
this path is derived from the history of the link weights in the
dynamic network, and not from the network topology at any
specific moment. The bouncing effect and the counting-to-
infinity behavior in Algorithm 1 are due to the fact that the
path implicit in a distance entry in a nodal routing table may
be non-simple. For instance, in the example of the previous
section, the distances maintained at node n2 to destination nl
through neighbors nl and ng is 1 and 3, which imply the
paths n2nt and n2n3n2nl, respectively. The bouncing effect
arises due to the fact that node n3 offers its neighbor n2
distance 2 corresponding to a path n3n2nl which, has n2 as
an internal node of that path. Thus, once the distance table is
updated due to the failure of link (nl,nz), the distance 3,
maintained by node n2, implies the non-simple path
n2n3n2nr, and will be used as the current shortest distance
and passed to node n3. This, consequently, results the
prolonged message exchange.

The bouncing effect can be avoided if a protocol can be
designed that searches for the shortest paths among only
simple paths. Such a design can be accomplished in a
relatively straightforward way by modifying Algorithm 1 so
that each node, in addition to storing the distances, also

stores the implicit paths for these distances in its distance
table and routing table. These paths can be easily generated.
A node i, receiving a distance Dkj and path Rkj from
neighbor k, will record in its distance table the distance
Di=Dkj+dik, and path Ri as the path Rkj augumented by
node i. Thus, a node can determine whether or not the path
implicit in a distance is simple, and ignore all non-simple
paths. Non-simple paths can also be avoided by having each
node send a distance entry in its routing table (in step (3) of
Algorithm 1) to a neighbor only if that neighbor is not in the
path implicit in this distance. The proof of correctness of this
modification can be established along the lines of the
analysis of Algorithm 2 presented later; see also Shin and
Chen [19], who adopt a similar approach. However, the
overhead in this approach is large, because an entire path
corresponding to each distance entry is recorded;
consequently, the message size and the local storage for
each node is O(N) times that required for Algorithm 1.

A main feature of the protocol presented here
(Algorithm 2) is the use of the notion of head of path , which
permits each node to infer the path implicit in a distance entry
without adding excessive overhead to update messages or
local storage. Each entry in the distance and routing table of
a node is associated with a head of the path conesponding to
this distance entry. Suppose the design of the protocol is
such that, at all times, the distance and routing table at each
node satisfies the following property (a form of local
shortest path consistency): the path implicit in a distance
entry Dhhl(k.ij) with associated head hhhl(k,ij)=h is the
path implicit in Di argumented by node j (i.e., from node h
to node j). If each column of the distance-table (and also the
routing-table) satisfies this property, then the path implicit in
each distance entry can be inferred from the head of the path
information above, which in turn can be used to maintain
only simple paths. The advantage of this approach is that the
additional overhead (over Algorithm 1) is only one node
identity per table entry (which is much less than the overhead
incurred in [19]). However, this mechanism is best suited
for the context of an all-pairs shortest path protocol (i.e.,
when all nodes wish to find their shortest paths to all other
nodes).

Protocol Description

We take the routing table of a node (say i) to be a
vector with each entry a quadruple specifying the destination
(say j), the preferred neighbor Pij, the current shortest
distance (RDISTio’)), and the head HEADi of the path Rij.

228

The distance table (denoted by DTi) is a matrix with an entry
being a pair (Di,h$ where Di represents the distance from i
to j via k, and h: represents the head node of the

corresponding path. Infinite distances are denoted by = and
null head of paths by *. The rows in the distance table
correspond to destinations, and columns to neighbors. (As
before, the size of the distance-table and routing vector
depends on the number of functioning nodes and links.)

64 (b)

\ R0IIthg \ Routing

Cc) 60

FIG 2 -- An example showing how node n1 can
determine whether a neighbor (n7) is in its path to n2
by tracing the head of paths in the routing table of nl.
The destinations are in the leftmost column and the
other three (x,y,z) correspond to the distance,
preferred neighbor, and head of path, respectively,

Fig.2 illustrates how a node determines if its neighbor
is in the path from it to a destination. Suppose that n1 wants
to determine (by tracing head of paths) if its neighbor n7 is in
its shortest path to destination n,. Initially, n1 starts the trace
from the destination (Fig. 2 (a)) and finds the head, n5 (Pig.
2 (b)), of its shortest path to n2. Subsequently, n1 finds the
head of its path, “6, to n5 (Fig. 2 (c)). Finally, n1 finds the
head of its path to n6 to be n1 (Fig. 2 (d)). Thus, upon
reaching itself in the trace (Fig. 2 (d)), n1 determines that n7
is not in the set of head of the paths encountered during the
trace. Equivalently, node n7 is not in the path from n1 to n>
If n7 is in the path from n1 to n2, then at some step of
tracing, n7 is encountered, and, the tracing can terminate at
that step. The sequence of the nodes that appear in searching

the path from nt to n2 by tracing from n2 back to nt,
represents a path. The path derived using the head
information from the node’s distance table or routing table,
as the node’s distance (D) to a destination, is called the path

extructed from D. For instance, the path extracted from
distance 3 to node n2 is nlngngn2 in Fig. 2.

Note that checking if a neighbor is in the path extracted
from a shortest path distance by the sender is done by
assuming that such a path extracted from touting table using
the head information is the path implicit in this shortest path
distance. However, if we simply apply step (2) in Algorithm
1 to generated the routing table, then the resulting routing
table may not have the desired property that the path
extracted from a distance in the routing table is the path
implicit in this distance. This can be seen from the following
example. Suppose that the distance table of node i has the
path abci implicit in distance 3 and path bci implicit in
distance 2 through neighbor c. Moreover, b is neighbor of
node i and dlh is 1. If distance 3 is the minimum among row
a, and distance 1 is the minimum among row b. then, based
on step (2) of BF algorithm, we can have the path abi,
different to adci, implied by distance 3 to go to node a in i’s
routing table. Clearly, node i will send this distance to
neighbor c, which violates the required property. To conquer
this, we modify the rule to generate the routing table, such
that, the distance in the routing table to go to any node j
determined by choosing from column k iff D; is the
minimum among row j of distance-table and each node v in
the path extracted from Dk which is assumed to be the same

‘Jk
as the path implicit in D-., must be that DFv

1J
is also the

minimum among row v and is chosen to be put in the routing
vector.

The two main differences between the basic protocol
and Algorithm 1 are the function used to check if a neighbor
is in the extracted paths when sending updated shortest path

distance, and the procedure used to update the routing table.
These two are summarized in function IN-PATH and

procedure RT-UPDATE subsequently in this section. For
the neighbors that are in the path to a destination (say j), an

entry (i,-. *) is sent as indicated in Step 3 of Algorithm 2.
The other steps in this algorithm, updating the distance table
(Step 1) and in response to receiving a routing vector from a
message from a neighbor, are essentially the same as in
Algorithm 1 (except for the obvious modifications necessary
for updating the head argument in each entry). Similarly. the
responding to failures and recoveries require only a simple
modification.

229

Note that, for convenience, weight change on any link

(ij) is treated as if (ij) fails and immediately recovers with
the new weight. In addition, failure or recovery of a node is
treated as if all the link adjacent to that node fail or recover.
Therefore, the events that the protocol can encounter are link
failures and link recoveries.

The following function, called IN-PATH, returns
“true” if Neighbor is in the path from Node to Dest.
Otherwise, the function returns “false.”

Function IN-PATH(Node,Neighbor,Dest);
(* returns hue or false *)

begin
. BW

Response of node i:
m receiving vector Vk*’ on link (i,k).
(* Vk is a set of triples *)

(0) begin

h t- =ADNode@est);
(* find head from Node to Dest *)
if h = Node then

(1)

(2)

(3)

Vi t 0; Vipb t 0 for all neighbors b
for mh triple (i,DkjbkCi)) in Vk*‘, j#i do
begp

Dij f- Dkj + dik; hi t hk(j)
(* copy into column 1 *)

end
if there are band j such that Di<Dij or k= Pij
(* routing table has to be changed *)
then update routing table
(* call procedure RT-UPDATE *)
else Vi c 0
if Vi r 0 then
begin

(* Neighbor is not in Rl.+,deDest *)
return(false)

else if h = Neighbor then
(* Neighbor is in R~odeD~t *)

return(true)
else

end;

~_PATH~~e~eigh~~~~~));
(* cannot determine yet, try again *)

for each neighbor b do
(* send changes *)
begin

The following procedure, called RT-UPDATE!, update
the routing table. Any destination j will be assigned a
distance copied from column k iff Di is the minimum among
row j of distance-table and each node v extracted from Di
must be that Df, is also the minimum among row v.

for Wh triplet t=(i, RDISTi(j),HEADi(j)) in Vi Procedure RT-UPDATE,
do begin

(* send updates to select neighbors and infinity to
others *)
begin

initialize all destinations to be unmarked
for any unmarked destination j do
begin

ifbisinthepathfromitojintherouting
fable
(* call function IN-PATH as defined
below *)

if there is no determined distance in row j
then mark j as undetemhed
else begin

then ViBb t V1*b u (&CO,*)]
else Vi*b t Vivb u t

end
send Vipb to neighbor b.

end
end

end
m receiving notification Failure&k)
(* link (i$) not functioning anymore *)

(4) begin
delete column k in Di
execute steps 2 and 3.

end

pick up any minimum distance Dh

c+t$ TvtTvu[c)

repeat c+hL, TVtTVu(c)

until DFC is not minimum of row c or

t&i or hi is marked

if h FC is marked as undetermined

or Dp is not minimum of row c
then mark $h node in TV as undetermined

else begin

end

mark each node in TV as determined
RDISTi(i)+D$HEADi(i)+hzi Pijtb

end
end

m receiving notification Recover(i,k&)
(* link (iJL) now functioning *)

(-9 begin

insert column k in Di
respond as if a s$gle entry in V ‘j = Nv-f,j))
(* i, is HEAD *)
is received on link (ik)
copy whole routing table into Vik and send it to k

end

copy routing table to Vi
end

For the routing table updated by procedure
RT-UPDATE, a path which can be extracted from any finite
distance in routing table can also be extracted from some
column in the distance table at the same node.

230

4. CORRECTNESS OF ALGORITHM 2

4.1. Bouncing Effect and Counting-to-infinity
Behavior

Property 1. At any moment in computation, the path
extracted from any distance maintained at each node, say i,
to any destination, say j, is a simple path and is equivalent to
the path implicit in such distance.

Proof: Let to be the initial moment. Let (tl,...,tn) be
the set of all the moments such that, at each moment, there is
at least one node receiving a message, detecting a
failure/recovery, or generating a message.

Initially, at time to, we require each node, say i,
maintain only the distances about each of its neighbors, say
j, in its distance table such that dij=dij(Q) and 4j=i where
dij(Q) is the initial weight assigned on link (ij). Therefore,
for any distance tij the extracted path is ij which is a simple
path and is equivalent to the implicit path of tij. In addition,
in each row j, the= is only one finite distance dij if j is a
neighbor of i. Otherwise, row j has only infinite distances.
Therefore, in routing table, RDISTi(j)=D:=dij(Q) and
HEAD+tij=i. Thus, Property 1 holds initially.

Assume that, at any moment t, t&, x20, Property 1
holds.

It is clear that Property 1 still holds at the nodes doing
nothing or generating a message at time tx+l. For any other
node, say i, which will either detect a failure/recovery, or
receive a message.

Upon detecting a failure, due to step (4) of Algorithm
2, the distance table is updated by deleting a column. This
will not cause the distance table lose Property 1. Upon
detecting a recovery, say (ij), due to step (5) of Algorithm
2, a new column will be created with a single entry (j,tij,i)
where D/j equal the weight of the recovered link (ij). This
is the same as the initial condition. Thus, Property 1 still
holds in the distance table of i in this case. Upon receiving a
routing vector Vk from a neighbor, say k, the received
routing vector must be generated at some moment t, tltx. As
assumed, the routing table, from which Vk is generated, has
Property 1. Because of function IN-PATH and triple setting
up in step (3) of Algorithm 2, any finite distance Dkj to a
destination in Vk must have extracted the path to be the same
as the path extracted from the routing table of node k. In
addition, Dkj=RDISTk(j). Note that, since Property 1 holds
in the routing table of node k when Vk is generated, the path
extracted from RDISTk(j) is the same as the implicit path of
RDISTkcj). This implies that the path extracted from Dkj is

the implicit path Of Dkj. When i processes Vk, due to step (1)
of Algorithm 2, the path extracted from Df is the implicit
path of Di, because this distance is really passed over link
(ij), and the extracted path is the implicit path of &j
argumented with i. Moreover, because of function
IN-PATH, the implicit path of Dkj will not have node i in it.
Thus, the path extracted from Di after step (1) of Algorithm
2 is simple. Therefore, Property 1 holds in the distance table
of any node at any time t, &x+1.

Due to procedure RT-UPDATE, as mentioned, the
path extracted from any finite distance copied from some
column, say m, in the routing table updated is the same as
the path extracted from such distance in column m. Because
node i has a distance table with Property 1 at all the possible
cases as discussed above, i.e., the extracted path equals to
the implicit of any finite distance maintained in the distance
table, thus, Property 1 also holds in i’s routing table. This
completes the proof.

Q.E.D.

Theorem 1. Algorithm 2 is without bouncing effect.
Proof: This can be proven directly from Property 1.

Because the implicit path of any distance maintained is
equivalent to the the path extracted from such a distance, and
because the extracted path is guaranteed to be a simple path,

the implicit path of each distance maintained is a simple path.
Because it is impossible to maintain a distance corresponding
to a non-simple path (which is the only case where the
bouncing effect occurs), Algorithm 2 is without bouncing
effect.

Q.E.D.

As explained earlier, counting-to-infinity behavior is a
consequence of bouncing effect. Having no bouncing effect
automatically implies having no counting-to-infinity
behavior. However, a deeper discussion of how counting-
to-infmity is avoided can be made by determining the upper
bound of any distance maintained by running Algorithm 2,
and how this upper bound is implied. The following proof
addresses this issue.

Theorem 2. Algorithm 2 has no counting-to-infinity
behavior.

Proof: From the definition made for the implicit path,
we know that the corresponding distance must be the
summation of the weights of all the links in the path. In
addition, due to Property 1, the path extracted from any
distance maintained must be a simple path and the same as
the implicit path of such distance, any distance maintained

231

must be bounded by the summation of the top N-l highest
weights experienced. Therefore, none of the distances
maintained will have unbounded value. This implies that
Algorithm 2 has no counting-to-infinity behavior.

Q.E.D.

4.2. Convergence

In the following, we prove that Algorithm 2 terminates
correctly, that is when algorithm terminates, the distance to

any reachable node maintained in each routing table is the
shortest distance of the final graph and the distance to any
unreachable node is marked as infinity.

Theorem 3. Algorithm 2 terminates in finite time after the
occurence of last topological change.

Proof: By contradiction. Assume that Algorithm 2
does not terminate. There must be a infinite number of
messages sent after the last topological happened. Among
these infinite number of messages, there must be infinite
messages with finite distances. The reason is that infinite
messages with infinite distances only cannot occur because
there is a finite number of total distance-table entries of all
nodes in the final graph. Moreover, due to Property 1, the
path extracted from any distance maintained must be a simple
path and must be the same as the implicit path of such
distance; hence, the domain of all the possible distances will
be included in all the cases in which each case is the total
weights of no more than N-l different links ever
experienced. One can see that the number of all such cases is
finite. Thus, there must be some distance Dij sent an infinite
number of times, because the number of all possible
distances is finite. Consequently, there must be a neighbor b
that sends i an infinite number of messages that makes i send
messages forever.

Each time node i sends Dij, this is caused either when
node i receives Dhj from b and Dij=Dhj+dih where drh is
weight of link (i,b) at that time, or when Dij has been in
node i’s distance table of node i at the time it receives a
message from b.

If the first case happens an infinite number of times,
then node b sends Dhj infinite times and Dhj=Dij-dih<Dij
because dih>O.

Otherwise, the second case must happen an infinite
number of times. In this situation, if Dij is not stable, this
means that Dij is changed forever, which is similar to the
first case, in which there must be a neighbor b’ such that b’
sends Dhj an infinite number of times and Dwj=Dij-dih&ij,

because dih>O. Else, if Dij becomes stable, then a node i
must receive an infinite number of times some distance
which is shorter then Dlj.

Consequently, there must be a neighbor b” sending
Dvgj infinite times and b” Dvj=D ij -divKDij-div<Dij
because dit+O.

Therefore, in any of the possible cases, there must be a
node that will infinitely generate messages with a distance at
least w less than Dij an infinite number of times, where w is
the minimum weight of the final graph. By recursively
applying the above argument, this contradicts the fact that all
the distances maintained are positive.

Q.E.D.

To prove the correctness of distance-table maintained.
we need the following property. The weight of link (x,y),
maintained at any node i, which can be derived from i’s
distance table is Dk-DL where l$t=x.

Property 2. When Algorithm 2 terminates, any link weight
maintained in the distance table must be in the final graph.

Proof: We can know from Property 1 that any link
weight maintained must be in the history of computation;
hence, we only have to consider, in this proof, those link
weights having been existent and not in the final graph (i.e.,
the weight that is changed at some time during the
computation). Let dnv be any such weight. We want to show
by induction that any node which can reach node u by k
hops will not maintain dih in its distance table. Number k is
the index of the induction steps.

It is clear that each node will maintain all the adjacent
links correctly. This means that if link (u,v) is not in the final
graph, then u must have detected the failure of (u,v) and
deleted the column corresponding to neighbor v. In addition,
if the final weight bib is different from dib, then u must have
been notified about the weight change; therefore, it must
have kept the weight of link (u,v> to be d’ih.

Assume that all the nodes k hops away from u, k20,
witi not maintain dih in their distance tables.

Let’s check any of the nodes k+l hops away from u.
Since all the nodes no greater than k hops away from u will
not maintain dih in their distance table, none of these nodes
will maintain dib in their routing tables (the link weights
derived from the routing table is a subset of the ones derived
from distance table). Therefore, if a node i k+l hops away
from u maintains w(u,v) in its distance table, there must be a
neighbor of i which is no less then k+l hops away from u

232

and maintains dib in its routing table. Without loss of

generality, let il be the neighbor which offers i the minimum

distance to go to v among the neighbors offering i with dib

and i, be the preferred neighbor of i,.l where Xr2. If there is

a node i,, lSycx, which is a preferred neighbor of x, then

we will have Dyv<Dy+l,,...d)xv~yv which is impossible.

Therefore, the preferred neighbors chain of node it must be

a list of distinct nodes. However, we have only a finite

number of nodes no less than k+l hops away from u and

each ix must have a preferred neighbor to offer d& Because

this is impossible, any node k+l hops away cannot maintain

dib in its distance table, either.
Q.E.D.

Theorem 4. When Algorithm 2 terminates, the distance for

any node i to any other reachable node j maintained in the

routing table of i is the shortest distance between i and j in

the final graph and the prefer& neighbor will be maintained

~~mcdy; also, the distance from i to any unreachable node is

marked as undetermined.

Proof: Due to Property 1, for any finite distance

maintained at any node i to any other node j, we can always

extract a complete path from i to j. Therefore, if a finite

distance to an unreachable node is maintainedand, there must

be a link in this path whose weight is not in the final graph.

This violates Property 2; therefore, there can not be any

distance about j maintained in the routing table of node i.

For an arbitrary node j reachable from an arbitrary

node i, there will be shortest paths from i to j. Note that

these paths can have different number of hops and let nj is

the maximum among these. Also, for convenience, let d,, be

the weight of the link from u to v in the final graph.

Again, we will prove by induction indexed by nj.

If nj is 1, then j is a neighbor of i and the shortest path

is unique with distance. dij. Since j is a neighbor, i will

maintain qj=w(i,j) and hij=i in column j. Moreover, if there

is any other distance maintained in row j, then Properties 1

and 2 ensure that such a distance must be for a existent path

due to Property 1 and Property 2. Since we know that the

shortest path is unique, dij must be the only minimum in row

j. Therefore, it will be recorded in the routing table of i

because of FunctionRT-UPDATE with Pij=j.

Assume that when njlk, k21, i will maintain the

correct distance and preferred neighbor in its routing table.

If nj is k+l, there must be a neighbor i’ of i such that

nj*=k and Bj=&j+dir where nj’ is defined in the same way

for i’ than nj is for i , and &j and &j are the true shortest

distances for i and i’ to go to j, respectively. Note that,

because Bj=&j+dir, i’ can not have a shortest path to go to
j through i. Moreover, RDISTc(j)=b*j, because nj*=k.

Therefore, D~=RDIST~(j)+d~=& which is the minimum in

row j. For any minimum D: in row j (b can be i’), the path it

represents is always a shortest path, because each distance

maintained in any distance represents an existent path. In

addition, any node x in the shortest path P from i to j must

also have the subpath from x to j on P as its shortest path.

Therefore, the last operation for i to update RDISTi(j) using

Function RT-UPDATE, and arbitrarily picking up a

minimum will always have a successful trace for j and thus

have RDISTili)=D~~=RDISTrci)+di~=~j and Pij=b.
Q.E.D.

5. LOOP FREEDOM

Algorithm 2 as described in Section 3 cannot guarantee

loop freedom (see Section 1) at every instant. This can be

illustrated by the following example, illustrated in Fig.3.

FIG 3 -- A network where links (n3,n5) and (nl,n5) failed

about the same time.

In Fig. 3, consider node n5 as the destination. Assume

that nodes n1 and n3 detect the failures of (n3,ns) and (nl,n5)

at about the same time. Based on Algorithm 2, nodes n1 and

n3 will choose node n2 and n4 as the new preferred

neighbors, respectively. Thus, a loop, (n1,n4,n3,n2,nl), is

formed. However, we know that nodes n1 and n3 will send

routing vectors to both neighbors n4 and n2. Assume that the

message delay for counter-clockwise direction of the loop is

very short whereas it is very long in the clockwise direction.

Upon receiving the routing vector through counter-clockwise
direction, nodes n4 and n2 will not change their preferred

neighbors. If there is any data packet sent counter-

clockwise, it can loop many times until the routing vector
from clockwise direction arrives to nodes n4 and nF At this
moment, nodes n4 and n2 can find out that node n5 is not

reachable and then break the loop.
In fact, a loop can not be triggered by only recoveries

in either Algorithm 1 or 2 proved by Jaffe and Moss [13] for
the case of Algorithm 1. Therefore, if a loop, say no, nl,
. . ..nX. no, is formed at time any t, then there must be at least
one node, say no, which has lost its current preferred

neighbor upon receiving routing vector, triggered by a
failure notification. (In our case, only multiple failures can
cause loops.) Then, no switches to a new preferred

neighbor to form the loop. Hence, a routing vector must be
sent by no to all the neighbors. As can be seen from the

above example, the loop will be broken before the routing
vector, issued by no, traverses back to t+,. Since we know

that the routing vector will not keep on going on a loop
(because of Property l), it is enough for us to design a
scheme to prevent routing-table loops. Thus, we only have
to set up an independent rule to control the sending of data
packets without changing the basic protocol (Algorithm 2).
Routing-table loops can be prevented in the following way.
When a node sends routing vectors to its neighbors , it waits
for the response from all its neighbors, then forwards the
data packet to the preferred neighbof. In other words, during
the waiting time for the response, the data packet will be
held. To implement this rule, we have to let each neighbor
respond with an acknowledgement even if its routing table is
not changed upon receiving the routing vector. However,
this does not affect our basic protocol. This interneighbor
coordination approach is also adopted by Garcia-Luna-
Aceves [101 to prevent routing-table loops in the context of a
minimum hop routing algorithm . The formal proof for the
prevention of routing-table loops is in [lo].

6. PERFORMANCE ANALYSIS

The number of messages generated by Algorithm 1 is
bounded by an exponential function of N, a polynomial
function of the degree of G(V,L), and a linear function of the
number of topological changes [213. All protocols based on
the BF algorithm, including this paper, can not get rid of this
drawback. However, the advantage of these protocols lies in
their low time complexity. The time complexity for single
failure/recovery has been reduced from O(N) (assuming that
no bouncing effect is encountered) of the original BF
algorithm to O(h) for the case of single resource failure

where h is the height of the shortest-path tree, by Jaffe,
Moss and Garcia-Luna-Aceves [9,10,13]. The other
approaches without using the BF algorithm always result
with time complexity O(h2) [7,16].

The time complexity for Algorithm 2 is O(h) for
single link failure/recovery, and is O(N) for multiple failures
and recoveries the same as in [9,10,13]. However, this
implemenlation is without the overhead of maintaining the bit
vector [131 in each node for each neighbor for the updating
processes, caused by the multiple changes, in which these
nodes are involved. In the case when network becomes
disconnected, our algorithm can detect disconnectivity much
faster than the other approaches. (For instance, the
disconnectivity caused by single failure can be detected right
away.) Moreover, the storage required for each node is the
same as BF algorithm except that one extra field, the head of
the path, in each entry of the distance table and the routing
table is needed.

It is clear that, if no bouncing effect or counting-to-
infinity problem is encountered, the number of steps needed
is O(N) for Algorithm 1. Algorithm 2 also has O(N) time
complexity without any further enhancement. This is
illustrated through Fig. 4.

-1

-5
- 10

FIG 4 -- A network where link (nx,nd) failed

In Fig. 4, assuming that nd iS the destination, nodes nl, n2,
n3, and n4 will all have shortest paths going through n, to
nd before link (nX,nd) fails. When link (nX&) fails, nodes
nl, n2, and n3 adapt their shortest paths to go through nodes
n2, n3, and n4, respectively. This is caused by the fact that

each of them does not know that the new selected path is
also broken by the same failure. Thus, node n1 will adapt to
link (nl&) 0nIy after receiving a routing vector from n2
(where n4 first sent a vector to n3, and then, n3 sent one to

234

nZ). Obviously, if we let network G(V,L) have the same

topology as Fig. 4, G(V,L) has the N-2 nodes located
between nX and n& then the number of steps needed for

node n1 to choose the proper neighbor is O(N).

However, the time complexity of the presented

protocol can be improved to achieve O(h), where h is the

maximum height of the trees experienced during the

computation, by adding only one more rule. Observing that

the critical condition to cause O(N) is that a node may switch

to a path in which the failed link is also located, if we could

stamp all the messages triggered by a topological change

(n,m) with (n,m) as the event identity, then, at the moment a

node loses its current preferred neighbor, it will switch to the

neighbor that offers the shortest distance representing a path

which does not contain the failed link. Recall that each node

can determine the entire path corresponding to each entry in

the distance table. This additional rule, which checks if the

link identified as the triggering event is on the path, is easy

to implement without requiring any extra local information.

This is formally argued in Theorem 5. We will refer to the

refined protocol, which is the basic protocol mentioned in

Section 3, along with the interneighbor coordination

mentioned Section 5, and the event identity mentioned above

as the enhanced protocol.

Theorem 5. The time complexity for a single link failure

for the enhanced protocol is O(h) where h is the maximum

height experienced during the computation.
Proof: Fix the destination to be n& Let the failed link

be (n,m) and node m is downstream (in sink tree, i.e., closer

to the destination) to node n.

The node with initial shortest path without going

through the failed link will not change its routing table since

the original shortest is not changed and the failure can only

increase the distance for other alternative paths. Let’s call

this kind of node to be a stable node.
The node ni, with original shortest path going through

the failed link (n,m) and i hops away from node n on the

initial shortest path, will receive a routing vector with

messages stamped with event identity (n,m) from the

original preferred neighbor, It is because that node n will

change the routing table by selecting the new preferred

neighbor after it lost the original preferred neighbor m by

detecting the failure of its adjacent link toward node m.

Then, since the routing table of node n is changed, the

routing vector generated by failure will be sent to all the

neighbors. The neighbor which will change the routing table

or, equivalently, has the initial shortest path involving (n.m)

will also send subsequent routing vectors to all the
neighbors. Based on the fact that if ni is going to change its

routing table then so are all the nodes lie between n and nC

Thus, actually, ni will receive a routing vector from its

original preferred neighbor in i steps. Furthermore, there

must be at least one node, in the final shortest path tree
rooted by n& selecting a stable node as the new preferred

neighbor, otherwise even a spanning tree will not be

constructed. We will call this kind node to be boundary

node. Based on the above description, each boundary node
acting as ni will receive a routing vector with stamped

messages in i steps. Then, it follows that each boundary

node select that stable node immediately because it can

determine the alternatives passing through (n,m) by checking

its distance table. Similarly, the nodes, which should be

upstream and j hops away from it in the final shortest path

spanning tree, will receive the correct distance in j steps.

Notice that both i and j mentioned above are bounded

by the height of initial tree and the final tree. Thus, the steps

for a node to converge to the correct distance is O(h).
Q.E.D.

Another factor determining the performance of a

distributed muting algorithm is the nodal computation time

which becomes important in very high-speed network and

very large network. Here, we mainly discuss the time

needed to update the routing table by comparing the

procedure RT-UPDATE and the breadth first search

approach suggested by Humblet [12]. As can be seen, by

doing breadth first search, each entry of distance-table has to

be considered when the shortest path to a destination is the

longest among the paths to all the leaves in the tree. The

minimum time needed to process each entry is logN, because

one has to determine if such destination has been reached.

and if not, insert the distance into the ordered list maintained

for breadth first search. However, by running procedure

RT-UPDATE, even without sophisticated data structure,

each entry will be processed eaxctly once using one unit

computation time (compared to 1ogN units).

In addition, due to the function IN-PATH, the

destinations located behind the neighbor in the sender’s

shortest path tree will not be sent to that neighbor.

Therefore, the size of the routing vector and the nodal

computation storage can be smaller.

7. CONCLUSION

In this paper, we present a protocol that avoids the

235

undesirable effects of bouncing, counting-to-infinity
behavior, and routing-table looping of the distributed
Bellman-Ford shortest path algorithm. The number of
messages needed is no more than that of the distributed BF
algorithm (possible to be exponential [21]). The time
complexity is O(h) for single link failure or recovery, the
same as in [9.10,13], and O(N) for multiple failures and
recoveries.

An open question is that if a O(h) time complexity
algorithm is existent. In addition, whether O(N) time
complexity and polynomial message complexity can both be
achieved.

REFERENCES

l-11

121

131

141

PI

II61

[71

PI

[91

B. Awerbuch and S. Even, ” Reliable Broadcast
Protocols in Unreliable Networks,” Networks, vol.
16, no. 4, pp. 381-396, Dec. 1986.

[15] J. McQuillan, I. Richer, and E.C. Rosen, “The New
Routing Algorithm for the ARPANET,” IEEE Trans.
Comm., vol. COM-28, May 1980.

D. Bertsekas and R. Gallager, DATA NETWORKS,
pp. 297-333, Prentice Hall, Inc., 1987.

[16] P.M. Merlin and A. Segall, “A Failsafe Distributed
Routing Protocol,” IEEE Trans. Comm., vol. COM-
27, pp. 1280-1288, no. 9, Sep. 1979.

C. Cheng, I.A. Cimet, and Srikanta P.R. Kumar, “A
Protocol to Maintain a Minimum Spanning Tree in a
Dynamic Topology,” ACM SIGCOMM Symp.
Commun. Arch. and Protocols, pp. 330-338,
Stanford, CA, Aug. 1988. Also in Computer
Communications Review, Vol 18, no. 4.

[17] R. Perlman, “An Algorithm for Distributed
Computation of a Spanning Tree in an Extended
LAN,” 9th Data Comm. Symp., Aug. 1985.

[18] R.D. Schlichting and F.B. Schneider, “Fail-Stop
Process: An Approach to Designing Fault-tolerant
Computing Systems,” ACM Trans. Comput., pp. 222-
238, Aug. 1983.

I.A. Cimet, C. Cheng, and Srikanta P.R. Kumar, “On
the Design of Resilient Protocols for Spanning Tree

[19] K.G. Shin and M. Chen, “Performance Analysis of

Problems,” to appear in IEEE Int’l Conf. on
Distributed Routing Strategies Free of Ping-Pong-Type

Distributed Computing, June 1989.
Looping,” IEEE Trans. Computers, vol. COMP-36,
no. 2, pp. 129-137, Feb. 1987.

KC. Chu, “A Distributed Protocol for Updating
Network Topology Information,” Research Report,
RC 7235, IBM Thomas J. Watson Center, July 7,
1978.

[20] M.S. Sloman and X. Andriopoulos, “A Routing
Algorithm for Interconnected Local Area Networks”,
F;gputer Networks and ISDN Systems, pp. 109-130,

Narsingh Deo, Graph Theory with Application to

Engineering and Computer Science, pp.20, Prentice
Hall, Inc..

[21] W.D. Tajibnapis, “A Correctness Proof of a Topology
Information Maintenance Protocol for a Distributed
Computer Network,” Comm. of ACM, vol. 20, pp.
477-485, 1977.

E.W. Dijkstra, “A Note on Two Problems in
Connection with Graphs,” Numer. Math., vol. 1, pp.
269-27 1, 1959.

J.J. Garcia-Luna-Aceves, “A Fail-Safe Routing
Algorithm for Multihop Packet-Radio Networks”,
IIEEE NFORCOM ‘86 Proceedings , Miami FL., Apr.
1986.

J.J. Garcia-Luna-Aceves, “A Unified Approach to
Loop-Free Routing Algorithm Using Distance Vectors
or Link States,” ACM SIGCOMM Symp. Commun.
Arch. and Protocols, Austin, Texas, Sep. 1989.

[ll] Jacob Hagouel, “Issues in Routing for Large and
Dynamic Networks”, IBM Research Report RC 9942
(No. 44055) Communications, IBM Thomas J.
Watson Research Center, Yorktown Heights, New
York, Apr. 1983.

[121 Pierre A. Humblet, “An Adaptive Distributed Dijkstra
Shortest Path Algorithm”, an unpublished paper, Feb.
1989.

[13] J.M. Jaffe and F.M. Moss, “A Responsive Routing
Algorithm for Computer Networks”. IEEE Trans.
y187rn., vol. COM-30, no.7, pp. 1758-1762, July

[14] J. McQuillan and D.C Walden, “The ARPANET
Design Decisions,” Computer Networks, vol. 1, Aug.
1977.

[lo] J.J. Garcia-Luna-Aceves, “A Minimum-Hop Routing
Algorithm Based on Distributed Information,”
Computer Networks and ISDN Systems, vol 16, pp.
367-382, May 1989.

236

