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ABSTRACT: 1. INTRODUCTION 

Distributed algorithms for shortest-path problems are 
important in the context of routing in computer 
communication networks. We present a protocol that 
maintains the shortest-path routes in a dynamic topology, 
that is, in an environment where links and nodes can fail 
and mover at arbitrary times. The novelty of this protocol 
is that it avoids the bouncing effect and the looping problem 
that occur in the previous approaches of the distributed 
implementation of Bellman-Ford algorithm. The bouncing 
effect refers to the very long duration for convergence when 
failures happen or weights increase, and the nonterminating 
exchanges of messages, or counting-to-infinity behavior, in 
disconnected components of the network resulting from 
failures. The looping problems cause data packets to 
circulate and, thus, waste bandwidth.These undesirable 
effects are avoided without any increase in the overall 
message complexity of previous approaches required in the 
connected part of the network The time complexity is better 
than the distributed Bellman-Ford algorithm encountering 
failures. The key idea in the implementation is to maintain 
only loop-free paths, and search for the shortest path only 
from this set. 

One of the widely used techniques for routing in 

communication networks is via distributed algorithms for 
finding shortest paths in weighted graphs [9,10,13,14]. The 
well known distributed Bellman-Ford (BF) algorithm 
(implemented initially in ARPANET [ 141) is simple, and the 
distance and the routing-tables are easy to maintain [2]. 
However, this protocol has several major drawbacks. 
Firstly, the response of this protocol to link oi node failures 
can be very slow. This is due to the possibility that the 
distances maintained, and exchanged with neighbors, in the 
internal distance-table or routing-table of each node, may 
correspond to paths with loops (“bouncing effect” [20]). 
Thus, nodes may engage in a prolonged exchange of such 
distances before converging to the shortest paths. Moreover, 
if the network is diSCOnneCted, the protocol is not guaranteed 
to terminate. (This is the so called counting-to-infinity 
problem, where each node keeps indefinitely increasing its 
distances to the unreachable destinations.) Another 
shortcoming of this protocol is that it is not loop-free in the 
following sense [3,4,9,13,17]: at any moment, the paths 
implied by the routing-tables of all nodes taken together can 
have loops (i.e., if a path to a destination is traced going 
from the routing-table of one node to that of another node, a 

node may be visited more than once before the destination is 
reached. If such routing-table loops persist for a long time, 

looping of data to be routed may occur resulting in 
considerable overhead. Avoiding the bouncing effect does 
not necessarily imply that routing-table loops are eliminated. 
(The looping of data packets may not be completely avoided 
even if the routing-tables are loop-free at all time [2].) Here, 
we take a protocol to be loop-free, if it does not have 
routing-table loops mentioned above [9]. 

One way to overcome the termination (or counting-to- 
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infinity) problem is to use some additional information, such 
as the size or diameter of the network [20]. However, such 
information may vary from time to time, if the network 
topology is dynamic, and in such cases the convergence of 
the protocol via this approach will be too slow. The new 
ARPANET routing protocol [2,15] runs the Dijkstra’s 
algorithm periodically at each node based on the information 
of the whole network. Although the looping problem is 
alleviated to some extent, in a slowly varying network, the 
overhead, in terms of the messages and the local memory 
required, is too high as each node must gather the 

information about the whole topology. 
Merlin and Segall [16] proposed a synchronization 

approach to achieve loop freedom. In this approach, there is 
additional overhead due to the cost of the synchronization 
phase. In addition, the speed of the convergence can be 
slower than the BF algorithm, when no looping is 
encountered. 

In fact, achieving loop-freedom in the distributed BF 
algorithm is not difficult in networks with uniform weight on 
each link. Chu [5] proposed the downstream and upstream 
idea to avoid loops in minimum hop routing. A similar idea 
was adopted by Shin and Chen [19] for nonuniformly 
weighted networks to avoid two-node looping. This 
algorithm can also be extended to a kth order algorithm 
which avoids all loops with no more than k hops. 
However, in this case, the size of the control messages and 
the local memory required grow proportional to k. 

Jaffe and Moss [13] used the freezing technique to 
delay the response of a node at the moment the node loses its 
preferred neighbor to prevent the possibility of looping. 
Garcia-Luna-Aceves [9] extended the same idea to achieve a 
lower message complexity, and also presented a formal 
proof. For a further critique of the previous approaches, see 
Garcia-Luna-Aceves [9,10]. 

In this paper, we present a shortest path routing 
protocol, in which each node maintains information about 
some simple paths in its local memory. Note that knowing 
the entire path is subtantial for determining whether a path is 
simple or non-simple. However, it is possible to obtain the 
entire path to every destination by simply knowing the node 
next to each destination, thus eliminating the overhead 
caused by installing the list of all the nodes in the path to any 
destination (the approach adopted by Shin and Chen [191X A 
mechanism to achieve this was first suggested by Hagouel 
[I 11, who attempted to do the source routing using an 
algorithm almost identical to the Bellman-Ford algorithm. 
Garcia-Luna-Aceves adopted this mechanism to attempt to 

reduce the looping problem of the Bellman-Ford algorithm 
for mitt-hop routing in packet-radio networks [8]. A back- 
tracking technique was applied to maintain the routing table, 
which may cause exponential complexity of nodal 
computation time. Humblet proposed a breadth first search 
technique to conquer this drawback [12]. A more efficient 
algorithm, in terms of lower nodal computation time 
complexity, less computation storage, and smaller message 
size, is presented in this paper independently of the work in 
1121. The update of the distance vectors are sent only to 
selected neighbors, so as to maintain distances of only 
simple paths, and consequently avoiding the bouncing effect 
(and the counting-to-infinity problem) and converging to the 
correct distances quickly, Moreover, the protocol is simple 
and the size of the local memory required and the message 
size are increased by a factor of only 1ogN bits (assuming 
IogN bits for a node identification) the requirements of the 
original distributed BF algorithm. On top of this basic 
protocol, loop-freedom can be achieved through inter- 
neighbor coordination [lo]. A technique is also presented to 
prove the correctness of a protocol that can be embedded in 
another protocol that has been proven correct. 

The rest of this paper is organized as follows. Section 
2 presents the network model assumed in the basic protocol, 

which is described in Section 3. Section 4 presents the 
correctness proof of the protocol and Section 5 describes the 
additions needed to the basic protocol to achieve the loop- 
freedom property. Performance issues are discussed in 
Section 6, and Section 7 presents conclusions. 

2. NETWORK MODEL AND NOTATIONS. 

2.1 Network Model. 

The environment for the protocol is an asynchrounous 
point-to-po!nt network presented by an undirected weighted 
graph G(V,L), where V is the set of nodes numbered 
1,2,..,N, and E C_ VxV is the set of links. Each node is a 
computing unit involving a processor, a local memory, and 
also an input queue and an output queue with unlimited 
capacity. Each functional link (ij), assigned with a weight 
dij > 0, is a bidirectional communication line connecting 
nodes u and v. Each node knows only its local environment 
( the numbers of the neighbors and the weights of the 
adjacent links) and follows the same protocol consisting of 
sending and receiving messages over the adjacent links, and 
processing these messages. The received (sent) messages are 

225 



put in the input (output) queue on a first-come-fit-served 

basis, and are processed in that order. 

A communication link in a dynamic network has the 

following properties. Messages can only be sent and 

received over a link which is functioning. However, a 

message sent need not arrive at the receiver, as the link may 

fail during transmission. When the link is functioning, 

messages can be independently transmitted in both 

directions, and they arrive at the other end node after a finite 

pndetermined delay, without error and in sequence. 

Whenever a link fails or recovers, each end node is notified 

in a finite time, but not necessarily at the same time. When a 

link recovers, there are no messages in transit through it, nor 

are there messages waiting to be sent over it (i.e., all 

messages sent out for transmission on link are deleted after 

the link fails). A node failure/recovery is taken to be the 

failure/recovery of all adjacent links. A change in the weight 

of a functioning link is also assumed to be notified to both 

the end nodes in a finite time. These services are assumed to 

be provided by a lower level (link) protocol. The 

assumptions stated above are standards [ 1,181. 

2.2 Notations and Definitions. 

A path (route) from node i to node j, denoted Rij, is a 

sequence of nodes Rij=(i,ni,nz,..,n,,j) where (i,nl), (n,j), 

and (n,,n,+t) for ltixl r-l are links. A path from i to j via 

node k, a neighbor of i, is denoted Ri. The distance of a 

path is the sum of the weights of all the edges in that path. 

A simple path (also an elementary path IS]) from i to j 

is a sequence of nodes with no node being repeated more 

than once. The paths between any pair of nodes, and the 

distances, change over time in a dynamic network. 

At any point in time, a node i is said to be connected to 

node j iff there exists at least one path between these two 

nodes in the graph at that time. The network, at any time, is 

said to connected iff every pair of (functioning) nodes arc 

connected at that time. 

The head of a path Rq is defined to be the last node 

preceding node j in the sequence of nodes in Rij (i.e., if 

R;j=(i,ni,n2,..,n,j>, then head of Rii is nr if r > 0, and equal 

toiifr=O). 

3. A BASIC SHORTEST PATH PROTOCOL TO 
AVOID BOUNCING EFFECT 

In this section, we present a refinement to the 

distributed BF algorithm to avoid the bouncing effect and the 

counting-to-infinity problem. Additional modifications 

needed to achieve loop-freedom (no routing-table loops) will 

be discussed in Section 5. Before we outline the 

refinements, the original distributed BF algorithm is briefly 

reviewed. 

3.1 Distributed Bellman-Ford Algorithm 

In the asynchrounous distributed BF algorithm (which 

falls into the class of distance vector algorithms [9]), the 

nodes asynchrounously exchange their routing vectors 

representing shortest path distances, computed according to 

the BF iterationl. Each entry in a routing vector is a 

message which contains a destination node and a distance to 

that destination from the node sending the vector. When a 

node receives a routing vector from a neighboring node, it 

updates its distances to other nodes via this neighbor, and 

any changes in the routing table (current shortest paths) are 

then sent to all neighbors. Let Di = [D$ denote the distance 

matrix (with rows corresponding to destinations and 

columns to neighbors) stored in node i, with entry Db 

representing the distance from i to j via neighbor k of i. The 

routing table is an array (derived from DJ with one entry for 

each destination. Each entry is a triplet specifying the 

destination (say j), the preferred neighbor Pij (Pij is the 

neighbor along the shortest path Rij to the destination), and 

the current shortest distance (minimum of row j in Di), 

denoted by RDIST,(j). The BF algorithm converges to the 

shortest distances for all connected pairs of nodes. 

The basic steps of a version of the distributed BF 

algorithm is as shown as Algorithm 1 [2,14,20,21]. 

The notification link failure/recovery and the weight 

changes are presented to a node by its lower level (link) 

protocol. For link weight changes, say of link (i,k), the 

response is as if a (N-l)-entry vector is received on link 

(i,k), where each entry corresponds to (k,Di - d;) for all j 

(d; is the old link weight of link (i,k) ). 

The bouncing effect refers to the behavior in which a 

node u will keep on increasing the distance to a destination 

through some neighbors who, in fact, do not have the path 

corresponding to such distance toward the destination 

without going through u. This immediately results in a 

longer duration for the nodes to update their distance and 

routing tables to be correct, and, consequently, induces 

1 Bellman-Ford iteration equation for asynchrounous distributed model: 

Dij:= min ( dik + Dkj I for all neighbors k of i) , Dii:=O for aIl ni 

226 



Ford 

Response of node i: 
yppl! receiving vector Vk on link (i,k). 

(0) begin 
vie-0 

(1) for each entry CiDkj) in Vk do 
(* Vk is a set of 2-tuples *) 

be in 
K( 

Dij t Dkj + dik 

(2) 

(3) 

(* copy into column j *) 
end 
for each row j in Di do 
begin 

if min Di # RDISTi(i) then 
beg?k 

RDIST,Q t rnp Ds 
(* update routing;ble *) 
Pij t arg rn? Dij 

(* set preferred neighbor *) 
Vi t Vi u ( (i. RDISTi(j)) ) 

end 
end 
if Vi # 0 then 
begin 

send Vi to all neighbors. 
(* send changes *) 

end 
end 

w receiving notification Failure(i,k) 
(* link (i.k) is not functioning anymore *) 

(4) begin 
delete column k in Dl and execute steps 2 and 3. 

end 
m receiving nOtifiCatiOnR~OVCr(i,k,~k) 

(* link (i.k) is now functioning *) 
(5) begin 

insert column k in Di. 
respond as if a single entry in Vk = ( (k,dik)] 
is received on link (ip). 
copy whole routing table into Vi and send it to k. 

end 

higher time complexity. 
The following example, illustrated by Fig. I, 

summarizes the looping and bouncing effect scenarios. 

Consider destination node nl. Assume that, each node 
obtains the correct distance and routing tables by running the 
BF algorithm. It is easy to see that nodes n2 and ng will 
choose nodes nl and n2 as their preferred neighbors 
respectively. If link (nl,nz) fails, node n2 will choose node 
n3 as the preferred neighbor based on its distance table. 
Thus, a routing-table loop occurs between nodes n2 and n3. 
Furthermore, nodes n2 and n3 have the distances 3 and 2, 

FIG. 1 -- A network topology that will result 
bouncing effect and routing-table loop when link 

(n,,n2) fails, and counting-to-infinity when (n1,n3) 
also fails 

which are much less than 100 to destination nl. Due to the 
BF algorithm, node ng wilI update its distance to be 4, which 

again will cause node n2 increase its distance to be 5. 
Clearly, nodes n2 and ng will keep on increasing their 
distances until node n3 reaches a distance of 102 to nlr and 
chooses nl as its preferred neighbor. After this, the distance 
converges. Thus, we observe that, with the BF algorithm, 
nodes n2 and n3 engage in a prolonged process of message 
exchange until n3 reaches a distance to n1 through neighbor 
n2 greater than 100. Only after that moment, n3 switches to 
the correct preferred neighbor and has the correct distance. 
This scenario represents the bouncing effect. This problem is 
much worse if link (n1,n3) also fails later; which is 
equivalent to link (n,,n3) having an infinity weight. 
Apparently, nodes n2 and n3 will keep on increasing their 
distance to n1 without bounds. This is the so called 
counting-to-infinity problem arising from network partitions. 
Note that the counting-to-infinity problem can be viewed as a 
special case of the bouncing effect. 

3.2 A Basic Protocol (Extended Distributed BF) 

In this section, we present a refined shortest-path 
protocol that avoids the bouncing effect (the slow response 
to link failures or link weight increase) and the counting-to- 
infinity behavior. We start by providing the motivation and 
some intuition behind these refinements. 

It is possible to eliminate the counting-to-infinity 
behavior in a straightforward way if an upper bound on the 
distance between any pair of nodes (in the dynamic network) 
can be known in advance. A node encountering a distance 
greater than this bound to a destination can immediately mark 
that destination as disconnected 1201. The disadvantage of 
this approach is that it requires a prior and precise 
knowledge of such an upper bound. More importantly, this 
mechanism has no influence on the convergence behavior in 

227 



connected components of the network; thus, the bouncing 
effect which accounts for is not eliminated. 

As can be seen from the example in the previous 
section, the bouncing effect and the counting-to-infinity 
behavior anise due to the fact that a node may offer its 
neighbor a distance corresponding to a path that has that 
neighbor as an internal node of that path. Thus, once the 
distance is updated, the distance may correspond to a non- 
simple path. To explain this remark further, one can observe 
from Algorithm 1 that, at any moment, any finite distance 
maintained in the distance table or the rouitng table of a node 
(say i) for a destination (say j) is generated over the network 
by sequentially accumulating a set of link weights, which 
either existed at some previous moment or currently exist in 
the network. In addition, this set of links form a path or a 
route from node i to node j. For example, a distance entry D 
in the distance or routing table of node i, maintained at time 
t, can be expressed as D=C~=tdn,n,+l(tm)where nt=i, 

n,+l=j, and dnmnrn+l m (t ) is the weight of link (nm,nm+t) 
existing in the network at some time tmlt. Indeed, node i 
gets informed about this distance D via the sequence of 
nodes j, nr, . . . . n2, i. (In other words, node nm is informed 
of the distance D=GErnd nknk+l(tk) to destination j at time 
tm, when it transmits via the routing vector to node n,,-,-1). 

We shall refer to this path (nl=i, n2, . . . . nr, j) as the path 
implicit (orpath corresponding) to this distance D. Note that 
this path is derived from the history of the link weights in the 
dynamic network, and not from the network topology at any 
specific moment. The bouncing effect and the counting-to- 
infinity behavior in Algorithm 1 are due to the fact that the 
path implicit in a distance entry in a nodal routing table may 
be non-simple. For instance, in the example of the previous 
section, the distances maintained at node n2 to destination nl 
through neighbors nl and ng is 1 and 3, which imply the 
paths n2nt and n2n3n2nl, respectively. The bouncing effect 
arises due to the fact that node n3 offers its neighbor n2 
distance 2 corresponding to a path n3n2nl which, has n2 as 
an internal node of that path. Thus, once the distance table is 
updated due to the failure of link (nl,nz), the distance 3, 
maintained by node n2, implies the non-simple path 
n2n3n2nr, and will be used as the current shortest distance 
and passed to node n3. This, consequently, results the 
prolonged message exchange. 

The bouncing effect can be avoided if a protocol can be 
designed that searches for the shortest paths among only 
simple paths. Such a design can be accomplished in a 
relatively straightforward way by modifying Algorithm 1 so 
that each node, in addition to storing the distances, also 

stores the implicit paths for these distances in its distance 
table and routing table. These paths can be easily generated. 
A node i, receiving a distance Dkj and path Rkj from 
neighbor k, will record in its distance table the distance 
Di=Dkj+dik, and path Ri as the path Rkj augumented by 
node i. Thus, a node can determine whether or not the path 
implicit in a distance is simple, and ignore all non-simple 
paths. Non-simple paths can also be avoided by having each 
node send a distance entry in its routing table ( in step (3) of 
Algorithm 1) to a neighbor only if that neighbor is not in the 
path implicit in this distance. The proof of correctness of this 
modification can be established along the lines of the 
analysis of Algorithm 2 presented later; see also Shin and 
Chen [19], who adopt a similar approach. However, the 
overhead in this approach is large, because an entire path 
corresponding to each distance entry is recorded; 
consequently, the message size and the local storage for 
each node is O(N) times that required for Algorithm 1. 

A main feature of the protocol presented here 
(Algorithm 2) is the use of the notion of head of path , which 
permits each node to infer the path implicit in a distance entry 
without adding excessive overhead to update messages or 
local storage. Each entry in the distance and routing table of 
a node is associated with a head of the path conesponding to 
this distance entry. Suppose the design of the protocol is 
such that, at all times, the distance and routing table at each 
node satisfies the following property ( a form of local 
shortest path consistency): the path implicit in a distance 
entry Dhhl(k.ij) with associated head hhhl(k,ij)=h is the 
path implicit in Di argumented by node j (i.e., from node h 
to node j). If each column of the distance-table ( and also the 
routing-table) satisfies this property, then the path implicit in 
each distance entry can be inferred from the head of the path 
information above, which in turn can be used to maintain 
only simple paths. The advantage of this approach is that the 
additional overhead (over Algorithm 1) is only one node 
identity per table entry (which is much less than the overhead 
incurred in [19]). However, this mechanism is best suited 
for the context of an all-pairs shortest path protocol (i.e., 
when all nodes wish to find their shortest paths to all other 
nodes). 

Protocol Description 

We take the routing table of a node (say i) to be a 
vector with each entry a quadruple specifying the destination 
(say j), the preferred neighbor Pij, the current shortest 
distance (RDISTio’)), and the head HEADi of the path Rij. 
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The distance table (denoted by DTi) is a matrix with an entry 
being a pair (Di,h$ where Di represents the distance from i 
to j via k, and h: represents the head node of the 

corresponding path. Infinite distances are denoted by = and 
null head of paths by *. The rows in the distance table 
correspond to destinations, and columns to neighbors. (As 
before, the size of the distance-table and routing vector 
depends on the number of functioning nodes and links.) 

64 (b) 

\ R0IIthg \ Routing 

Cc) 60 

FIG 2 -- An example showing how node n1 can 
determine whether a neighbor (n7) is in its path to n2 
by tracing the head of paths in the routing table of nl. 
The destinations are in the leftmost column and the 
other three (x,y,z) correspond to the distance, 
preferred neighbor, and head of path, respectively, 

Fig.2 illustrates how a node determines if its neighbor 
is in the path from it to a destination. Suppose that n1 wants 
to determine (by tracing head of paths) if its neighbor n7 is in 
its shortest path to destination n,. Initially, n1 starts the trace 
from the destination (Fig. 2 (a)) and finds the head, n5 (Pig. 
2 (b)), of its shortest path to n2. Subsequently, n1 finds the 
head of its path, “6, to n5 (Fig. 2 (c)). Finally, n1 finds the 
head of its path to n6 to be n1 (Fig. 2 (d)). Thus, upon 
reaching itself in the trace (Fig. 2 (d)), n1 determines that n7 
is not in the set of head of the paths encountered during the 
trace. Equivalently, node n7 is not in the path from n1 to n> 
If n7 is in the path from n1 to n2, then at some step of 
tracing, n7 is encountered, and, the tracing can terminate at 
that step. The sequence of the nodes that appear in searching 

the path from nt to n2 by tracing from n2 back to nt, 
represents a path. The path derived using the head 
information from the node’s distance table or routing table, 
as the node’s distance (D) to a destination, is called the path 

extructed from D. For instance, the path extracted from 
distance 3 to node n2 is nlngngn2 in Fig. 2. 

Note that checking if a neighbor is in the path extracted 
from a shortest path distance by the sender is done by 
assuming that such a path extracted from touting table using 
the head information is the path implicit in this shortest path 
distance. However, if we simply apply step (2) in Algorithm 
1 to generated the routing table, then the resulting routing 
table may not have the desired property that the path 
extracted from a distance in the routing table is the path 
implicit in this distance. This can be seen from the following 
example. Suppose that the distance table of node i has the 
path abci implicit in distance 3 and path bci implicit in 
distance 2 through neighbor c. Moreover, b is neighbor of 
node i and dlh is 1. If distance 3 is the minimum among row 
a, and distance 1 is the minimum among row b. then, based 
on step (2) of BF algorithm, we can have the path abi, 
different to adci, implied by distance 3 to go to node a in i’s 
routing table. Clearly, node i will send this distance to 
neighbor c, which violates the required property. To conquer 
this, we modify the rule to generate the routing table, such 
that, the distance in the routing table to go to any node j 
determined by choosing from column k iff D; is the 
minimum among row j of distance-table and each node v in 
the path extracted from Dk which is assumed to be the same 

‘Jk 
as the path implicit in D-., must be that DFv 

1J 
is also the 

minimum among row v and is chosen to be put in the routing 
vector. 

The two main differences between the basic protocol 
and Algorithm 1 are the function used to check if a neighbor 
is in the extracted paths when sending updated shortest path 

distance, and the procedure used to update the routing table. 
These two are summarized in function IN-PATH and 

procedure RT-UPDATE subsequently in this section. For 
the neighbors that are in the path to a destination (say j), an 

entry (i,-. *) is sent as indicated in Step 3 of Algorithm 2. 
The other steps in this algorithm, updating the distance table 
(Step 1) and in response to receiving a routing vector from a 
message from a neighbor, are essentially the same as in 
Algorithm 1 (except for the obvious modifications necessary 
for updating the head argument in each entry). Similarly. the 
responding to failures and recoveries require only a simple 
modification. 
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Note that, for convenience, weight change on any link 

(ij) is treated as if (ij) fails and immediately recovers with 
the new weight. In addition, failure or recovery of a node is 
treated as if all the link adjacent to that node fail or recover. 
Therefore, the events that the protocol can encounter are link 
failures and link recoveries. 

The following function, called IN-PATH, returns 
“true” if Neighbor is in the path from Node to Dest. 
Otherwise, the function returns “false.” 

Function IN-PATH(Node,Neighbor,Dest); 
(* returns hue or false *) 

begin 
. BW 

Response of node i: 
m receiving vector Vk*’ on link (i,k). 
(* Vk is a set of triples *) 

(0) begin 

h t- =ADNode@est); 
(* find head from Node to Dest *) 
if h = Node then 

(1) 

(2) 

(3) 

Vi t 0; Vipb t 0 for all neighbors b 
for mh triple (i,DkjbkCi)) in Vk*‘, j#i do 
begp 

Dij f- Dkj + dik; hi t hk(j) 
(* copy into column 1 *) 

end 
if there are band j such that Di<Dij or k= Pij 
(* routing table has to be changed *) 
then update routing table 
(* call procedure RT-UPDATE *) 
else Vi c 0 
if Vi r 0 then 
begin 

(* Neighbor is not in Rl.+,deDest *) 
return(false) 

else if h = Neighbor then 
(* Neighbor is in R~odeD~t *) 

return(true) 
else 

end; 

~_PATH~~e~eigh~~~~~)); 
(* cannot determine yet, try again *) 

for each neighbor b do 
(* send changes *) 
begin 

The following procedure, called RT-UPDATE!, update 
the routing table. Any destination j will be assigned a 
distance copied from column k iff Di is the minimum among 
row j of distance-table and each node v extracted from Di 
must be that Df, is also the minimum among row v. 

for Wh triplet t=(i, RDISTi(j),HEADi(j)) in Vi Procedure RT-UPDATE, 
do begin 

(* send updates to select neighbors and infinity to 
others *) 
begin 

initialize all destinations to be unmarked 
for any unmarked destination j do 
begin 

ifbisinthepathfromitojintherouting 
fable 
(* call function IN-PATH as defined 
below *) 

if there is no determined distance in row j 
then mark j as undetemhed 
else begin 

then ViBb t V1*b u ( &CO,*) ] 
else Vi*b t Vivb u t  

end 
send Vipb to neighbor b. 

end 
end 

end 
m receiving notification Failure&k) 
(* link (i$) not functioning anymore *) 

(4) begin 
delete column k in Di 
execute steps 2 and 3. 

end 

pick up any minimum distance Dh 

c+t$ TvtTvu[c) 

repeat c+hL, TVtTVu(c) 

until DFC is not minimum of row c or 

t&i or hi is marked 

if h FC is marked as undetermined 

or Dp is not minimum of row c 
then mark $h node in TV as undetermined 

else begin 

end 

mark each node in TV as determined 
RDISTi(i)+D$HEADi(i)+hzi Pijtb 

end 
end 

m receiving notification Recover(i,k&) 
(* link (iJL) now functioning *) 

(-9 begin 

insert column k in Di 
respond as if a s$gle entry in V ‘j = Nv-f,j)) 
(* i, is HEAD *) 
is received on link (ik) 
copy whole routing table into Vik and send it to k 

end 

copy routing table to Vi 
end 

For the routing table updated by procedure 
RT-UPDATE, a path which can be extracted from any finite 
distance in routing table can also be extracted from some 
column in the distance table at the same node. 
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4. CORRECTNESS OF ALGORITHM 2 

4.1. Bouncing Effect and Counting-to-infinity 
Behavior 

Property 1. At any moment in computation, the path 
extracted from any distance maintained at each node, say i, 
to any destination, say j, is a simple path and is equivalent to 
the path implicit in such distance. 

Proof: Let to be the initial moment. Let (tl,...,tn) be 
the set of all the moments such that, at each moment, there is 
at least one node receiving a message, detecting a 
failure/recovery, or generating a message. 

Initially, at time to, we require each node, say i, 
maintain only the distances about each of its neighbors, say 
j, in its distance table such that dij=dij(Q) and 4j=i where 
dij(Q) is the initial weight assigned on link (ij). Therefore, 
for any distance tij the extracted path is ij which is a simple 
path and is equivalent to the implicit path of tij. In addition, 
in each row j, the= is only one finite distance dij if j is a 
neighbor of i. Otherwise, row j has only infinite distances. 
Therefore, in routing table, RDISTi(j)=D:=dij(Q) and 
HEAD+tij=i. Thus, Property 1 holds initially. 

Assume that, at any moment t, t&, x20, Property 1 
holds. 

It is clear that Property 1 still holds at the nodes doing 
nothing or generating a message at time tx+l. For any other 
node, say i, which will either detect a failure/recovery, or 
receive a message. 

Upon detecting a failure, due to step (4) of Algorithm 
2, the distance table is updated by deleting a column. This 
will not cause the distance table lose Property 1. Upon 
detecting a recovery, say (ij), due to step (5) of Algorithm 
2, a new column will be created with a single entry (j,tij,i) 
where D/j equal the weight of the recovered link (ij). This 
is the same as the initial condition. Thus, Property 1 still 
holds in the distance table of i in this case. Upon receiving a 
routing vector Vk from a neighbor, say k, the received 
routing vector must be generated at some moment t, tltx. As 
assumed, the routing table, from which Vk is generated, has 
Property 1. Because of function IN-PATH and triple setting 
up in step (3) of Algorithm 2, any finite distance Dkj to a 
destination in Vk must have extracted the path to be the same 
as the path extracted from the routing table of node k. In 
addition, Dkj=RDISTk(j). Note that, since Property 1 holds 
in the routing table of node k when Vk is generated, the path 
extracted from RDISTk(j) is the same as the implicit path of 
RDISTkcj). This implies that the path extracted from Dkj is 

the implicit path Of Dkj. When i processes Vk, due to step (1) 
of Algorithm 2, the path extracted from Df is the implicit 
path of Di, because this distance is really passed over link 
(ij), and the extracted path is the implicit path of &j 
argumented with i. Moreover, because of function 
IN-PATH, the implicit path of Dkj will not have node i in it. 
Thus, the path extracted from Di after step (1) of Algorithm 
2 is simple. Therefore, Property 1 holds in the distance table 
of any node at any time t, &x+1. 

Due to procedure RT-UPDATE, as mentioned, the 
path extracted from any finite distance copied from some 
column, say m, in the routing table updated is the same as 
the path extracted from such distance in column m. Because 
node i has a distance table with Property 1 at all the possible 
cases as discussed above, i.e., the extracted path equals to 
the implicit of any finite distance maintained in the distance 
table, thus, Property 1 also holds in i’s routing table. This 
completes the proof. 

Q.E.D. 

Theorem 1. Algorithm 2 is without bouncing effect. 
Proof: This can be proven directly from Property 1. 

Because the implicit path of any distance maintained is 
equivalent to the the path extracted from such a distance, and 
because the extracted path is guaranteed to be a simple path, 

the implicit path of each distance maintained is a simple path. 
Because it is impossible to maintain a distance corresponding 
to a non-simple path (which is the only case where the 
bouncing effect occurs), Algorithm 2 is without bouncing 
effect. 

Q.E.D. 

As explained earlier, counting-to-infinity behavior is a 
consequence of bouncing effect. Having no bouncing effect 
automatically implies having no counting-to-infinity 
behavior. However, a deeper discussion of how counting- 
to-infmity is avoided can be made by determining the upper 
bound of any distance maintained by running Algorithm 2, 
and how this upper bound is implied. The following proof 
addresses this issue. 

Theorem 2. Algorithm 2 has no counting-to-infinity 
behavior. 

Proof: From the definition made for the implicit path, 
we know that the corresponding distance must be the 
summation of the weights of all the links in the path. In 
addition, due to Property 1, the path extracted from any 
distance maintained must be a simple path and the same as 
the implicit path of such distance, any distance maintained 
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must be bounded by the summation of the top N-l highest 
weights experienced. Therefore, none of the distances 
maintained will have unbounded value. This implies that 
Algorithm 2 has no counting-to-infinity behavior. 

Q.E.D. 

4.2. Convergence 

In the following, we prove that Algorithm 2 terminates 
correctly, that is when algorithm terminates, the distance to 

any reachable node maintained in each routing table is the 
shortest distance of the final graph and the distance to any 
unreachable node is marked as infinity. 

Theorem 3. Algorithm 2 terminates in finite time after the 
occurence of last topological change. 

Proof: By contradiction. Assume that Algorithm 2 
does not terminate. There must be a infinite number of 
messages sent after the last topological happened. Among 
these infinite number of messages, there must be infinite 
messages with finite distances. The reason is that infinite 
messages with infinite distances only cannot occur because 
there is a finite number of total distance-table entries of all 
nodes in the final graph. Moreover, due to Property 1, the 
path extracted from any distance maintained must be a simple 
path and must be the same as the implicit path of such 
distance; hence, the domain of all the possible distances will 
be included in all the cases in which each case is the total 
weights of no more than N-l different links ever 
experienced. One can see that the number of all such cases is 
finite. Thus, there must be some distance Dij sent an infinite 
number of times, because the number of all possible 
distances is finite. Consequently, there must be a neighbor b 
that sends i an infinite number of messages that makes i send 
messages forever. 

Each time node i sends Dij, this is caused either when 
node i receives Dhj from b and Dij=Dhj+dih where drh is 
weight of link (i,b) at that time, or when Dij has been in 
node i’s distance table of node i at the time it receives a 
message from b. 

If the first case happens an infinite number of times, 
then node b sends Dhj infinite times and Dhj=Dij-dih<Dij 
because dih>O. 

Otherwise, the second case must happen an infinite 
number of times. In this situation, if Dij is not stable, this 
means that Dij is changed forever, which is similar to the 
first case, in which there must be a neighbor b’ such that b’ 
sends Dhj an infinite number of times and Dwj=Dij-dih&ij, 

because dih>O. Else, if Dij becomes stable, then a node i 
must receive an infinite number of times some distance 
which is shorter then Dlj. 

Consequently, there must be a neighbor b” sending 
Dvgj infinite times and b” Dvj=D ij -divKDij-div<Dij 
because dit+O. 

Therefore, in any of the possible cases, there must be a 
node that will infinitely generate messages with a distance at 
least w less than Dij an infinite number of times, where w is 
the minimum weight of the final graph. By recursively 
applying the above argument, this contradicts the fact that all 
the distances maintained are positive. 

Q.E.D. 

To prove the correctness of distance-table maintained. 
we need the following property. The weight of link (x,y), 
maintained at any node i, which can be derived from i’s 
distance table is Dk-DL where l$t=x. 

Property 2. When Algorithm 2 terminates, any link weight 
maintained in the distance table must be in the final graph. 

Proof: We can know from Property 1 that any link 
weight maintained must be in the history of computation; 
hence, we only have to consider, in this proof, those link 
weights having been existent and not in the final graph (i.e., 
the weight that is changed at some time during the 
computation). Let dnv be any such weight. We want to show 
by induction that any node which can reach node u by k 
hops will not maintain dih in its distance table. Number k is 
the index of the induction steps. 

It is clear that each node will maintain all the adjacent 
links correctly. This means that if link (u,v) is not in the final 
graph, then u must have detected the failure of (u,v) and 
deleted the column corresponding to neighbor v. In addition, 
if the final weight bib is different from dib, then u must have 
been notified about the weight change; therefore, it must 
have kept the weight of link (u,v> to be d’ih. 

Assume that all the nodes k hops away from u, k20, 
witi not maintain dih in their distance tables. 

Let’s check any of the nodes k+l hops away from u. 
Since all the nodes no greater than k hops away from u will 
not maintain dih in their distance table, none of these nodes 
will maintain dib in their routing tables (the link weights 
derived from the routing table is a subset of the ones derived 
from distance table). Therefore, if a node i k+l hops away 
from u maintains w(u,v) in its distance table, there must be a 
neighbor of i which is no less then k+l hops away from u 
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and maintains dib in its routing table. Without loss of 

generality, let il be the neighbor which offers i the minimum 

distance to go to v among the neighbors offering i with dib 

and i, be the preferred neighbor of i,.l where Xr2. If there is 

a node i,, lSycx, which is a preferred neighbor of x, then 

we will have Dyv<Dy+l,,...d)xv~yv which is impossible. 

Therefore, the preferred neighbors chain of node it must be 

a list of distinct nodes. However, we have only a finite 

number of nodes no less than k+l hops away from u and 

each ix must have a preferred neighbor to offer d& Because 

this is impossible, any node k+l hops away cannot maintain 

dib in its distance table, either. 
Q.E.D. 

Theorem 4. When Algorithm 2 terminates, the distance for 

any node i to any other reachable node j maintained in the 

routing table of i is the shortest distance between i and j in 

the final graph and the prefer& neighbor will be maintained 

~~mcdy; also, the distance from i to any unreachable node is 

marked as undetermined. 

Proof: Due to Property 1, for any finite distance 

maintained at any node i to any other node j, we can always 

extract a complete path from i to j. Therefore, if a finite 

distance to an unreachable node is maintainedand, there must 

be a link in this path whose weight is not in the final graph. 

This violates Property 2; therefore, there can not be any 

distance about j maintained in the routing table of node i. 

For an arbitrary node j reachable from an arbitrary 

node i, there will be shortest paths from i to j. Note that 

these paths can have different number of hops and let nj is 

the maximum among these. Also, for convenience, let d,, be 

the weight of the link from u to v in the final graph. 

Again, we will prove by induction indexed by nj. 

If nj is 1, then j is a neighbor of i and the shortest path 

is unique with distance. dij. Since j is a neighbor, i will 

maintain qj=w(i,j) and hij=i in column j. Moreover, if there 

is any other distance maintained in row j, then Properties 1 

and 2 ensure that such a distance must be for a existent path 

due to Property 1 and Property 2. Since we know that the 

shortest path is unique, dij must be the only minimum in row 

j. Therefore, it will be recorded in the routing table of i 

because of FunctionRT-UPDATE with Pij=j. 

Assume that when njlk, k21, i will maintain the 

correct distance and preferred neighbor in its routing table. 

If nj is k+l, there must be a neighbor i’ of i such that 

nj*=k and Bj=&j+dir where nj’ is defined in the same way 

for i’ than nj is for i , and &j and &j are the true shortest 

distances for i and i’ to go to j, respectively. Note that, 

because Bj=&j+dir, i’ can not have a shortest path to go to 
j through i. Moreover, RDISTc(j)=b*j, because nj*=k. 

Therefore, D~=RDIST~(j)+d~=& which is the minimum in 

row j. For any minimum D: in row j (b can be i’), the path it 

represents is always a shortest path, because each distance 

maintained in any distance represents an existent path. In 

addition, any node x in the shortest path P from i to j must 

also have the subpath from x to j on P as its shortest path. 

Therefore, the last operation for i to update RDISTi(j) using 

Function RT-UPDATE, and arbitrarily picking up a 

minimum will always have a successful trace for j and thus 

have RDISTili)=D~~=RDISTrci)+di~=~j and Pij=b. 
Q.E.D. 

5. LOOP FREEDOM 

Algorithm 2 as described in Section 3 cannot guarantee 

loop freedom (see Section 1) at every instant. This can be 

illustrated by the following example, illustrated in Fig.3. 

FIG 3 -- A network where links (n3,n5) and (nl,n5) failed 

about the same time. 

In Fig. 3, consider node n5 as the destination. Assume 

that nodes n1 and n3 detect the failures of (n3,ns) and (nl,n5) 

at about the same time. Based on Algorithm 2, nodes n1 and 

n3 will choose node n2 and n4 as the new preferred 

neighbors, respectively. Thus, a loop, (n1,n4,n3,n2,nl), is 

formed. However, we know that nodes n1 and n3 will send 

routing vectors to both neighbors n4 and n2. Assume that the 

message delay for counter-clockwise direction of the loop is 

very short whereas it is very long in the clockwise direction. 

Upon receiving the routing vector through counter-clockwise 
direction, nodes n4 and n2 will not change their preferred 

neighbors. If there is any data packet sent counter- 



clockwise, it can loop many times until the routing vector 
from clockwise direction arrives to nodes n4 and nF At this 
moment, nodes n4 and n2 can find out that node n5 is not 

reachable and then break the loop. 
In fact, a loop can not be triggered by only recoveries 

in either Algorithm 1 or 2 proved by Jaffe and Moss [13] for 
the case of Algorithm 1. Therefore, if a loop, say no, nl, 
. . ..nX. no, is formed at time any t, then there must be at least 
one node, say no, which has lost its current preferred 

neighbor upon receiving routing vector, triggered by a 
failure notification. (In our case, only multiple failures can 
cause loops.) Then, no switches to a new preferred 

neighbor to form the loop. Hence, a routing vector must be 
sent by no to all the neighbors. As can be seen from the 

above example, the loop will be broken before the routing 
vector, issued by no, traverses back to t+,. Since we know 

that the routing vector will not keep on going on a loop 
(because of Property l), it is enough for us to design a 
scheme to prevent routing-table loops. Thus, we only have 
to set up an independent rule to control the sending of data 
packets without changing the basic protocol (Algorithm 2). 
Routing-table loops can be prevented in the following way. 
When a node sends routing vectors to its neighbors , it waits 
for the response from all its neighbors, then forwards the 
data packet to the preferred neighbof. In other words, during 
the waiting time for the response, the data packet will be 
held. To implement this rule, we have to let each neighbor 
respond with an acknowledgement even if its routing table is 
not changed upon receiving the routing vector. However, 
this does not affect our basic protocol. This interneighbor 
coordination approach is also adopted by Garcia-Luna- 
Aceves [ 101 to prevent routing-table loops in the context of a 
minimum hop routing algorithm . The formal proof for the 
prevention of routing-table loops is in [lo]. 

6. PERFORMANCE ANALYSIS 

The number of messages generated by Algorithm 1 is 
bounded by an exponential function of N, a polynomial 
function of the degree of G(V,L), and a linear function of the 
number of topological changes [213. All protocols based on 
the BF algorithm, including this paper, can not get rid of this 
drawback. However, the advantage of these protocols lies in 
their low time complexity. The time complexity for single 
failure/recovery has been reduced from O(N) (assuming that 
no bouncing effect is encountered) of the original BF 
algorithm to O(h) for the case of single resource failure 

where h is the height of the shortest-path tree, by Jaffe, 
Moss and Garcia-Luna-Aceves [9,10,13]. The other 
approaches without using the BF algorithm always result 
with time complexity O(h2) [7,16]. 

The time complexity for Algorithm 2 is O(h) for 
single link failure/recovery, and is O(N) for multiple failures 
and recoveries the same as in [9,10,13]. However, this 
implemenlation is without the overhead of maintaining the bit 
vector [ 131 in each node for each neighbor for the updating 
processes, caused by the multiple changes, in which these 
nodes are involved. In the case when network becomes 
disconnected, our algorithm can detect disconnectivity much 
faster than the other approaches. ( For instance, the 
disconnectivity caused by single failure can be detected right 
away. ) Moreover, the storage required for each node is the 
same as BF algorithm except that one extra field, the head of 
the path, in each entry of the distance table and the routing 
table is needed. 

It is clear that, if no bouncing effect or counting-to- 
infinity problem is encountered, the number of steps needed 
is O(N) for Algorithm 1. Algorithm 2 also has O(N) time 
complexity without any further enhancement. This is 
illustrated through Fig. 4. 

-1 

-5 
- 10 

FIG 4 -- A network where link (nx,nd) failed 

In Fig. 4, assuming that nd iS the destination, nodes nl, n2, 
n3, and n4 will all have shortest paths going through n, to 
nd before link (nX,nd) fails. When link (nX&) fails, nodes 
nl, n2, and n3 adapt their shortest paths to go through nodes 
n2, n3, and n4, respectively. This is caused by the fact that 

each of them does not know that the new selected path is 
also broken by the same failure. Thus, node n1 will adapt to 
link (nl&) 0nIy after receiving a routing vector from n2 
(where n4 first sent a vector to n3, and then, n3 sent one to 
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nZ). Obviously, if we let network G(V,L) have the same 

topology as Fig. 4, G(V,L) has the N-2 nodes located 
between nX and n& then the number of steps needed for 

node n1 to choose the proper neighbor is O(N). 

However, the time complexity of the presented 

protocol can be improved to achieve O(h), where h is the 

maximum height of the trees experienced during the 

computation, by adding only one more rule. Observing that 

the critical condition to cause O(N) is that a node may switch 

to a path in which the failed link is also located, if we could 

stamp all the messages triggered by a topological change 

(n,m) with (n,m) as the event identity, then, at the moment a 

node loses its current preferred neighbor, it will switch to the 

neighbor that offers the shortest distance representing a path 

which does not contain the failed link. Recall that each node 

can determine the entire path corresponding to each entry in 

the distance table. This additional rule, which checks if the 

link identified as the triggering event is on the path, is easy 

to implement without requiring any extra local information. 

This is formally argued in Theorem 5. We will refer to the 

refined protocol, which is the basic protocol mentioned in 

Section 3, along with the interneighbor coordination 

mentioned Section 5, and the event identity mentioned above 

as the enhanced protocol. 

Theorem 5. The time complexity for a single link failure 

for the enhanced protocol is O(h) where h is the maximum 

height experienced during the computation. 
Proof: Fix the destination to be n& Let the failed link 

be (n,m) and node m is downstream (in sink tree, i.e., closer 

to the destination) to node n. 

The node with initial shortest path without going 

through the failed link will not change its routing table since 

the original shortest is not changed and the failure can only 

increase the distance for other alternative paths. Let’s call 

this kind of node to be a stable node. 
The node ni, with original shortest path going through 

the failed link (n,m) and i hops away from node n on the 

initial shortest path, will receive a routing vector with 

messages stamped with event identity (n,m) from the 

original preferred neighbor, It is because that node n will 

change the routing table by selecting the new preferred 

neighbor after it lost the original preferred neighbor m by 

detecting the failure of its adjacent link toward node m. 

Then, since the routing table of node n is changed, the 

routing vector generated by failure will be sent to all the 

neighbors. The neighbor which will change the routing table 

or, equivalently, has the initial shortest path involving (n.m) 

will also send subsequent routing vectors to all the 
neighbors. Based on the fact that if ni is going to change its 

routing table then so are all the nodes lie between n and nC 

Thus, actually, ni will receive a routing vector from its 

original preferred neighbor in i steps. Furthermore, there 

must be at least one node, in the final shortest path tree 
rooted by n& selecting a stable node as the new preferred 

neighbor, otherwise even a spanning tree will not be 

constructed. We will call this kind node to be boundary 

node. Based on the above description, each boundary node 
acting as ni will receive a routing vector with stamped 

messages in i steps. Then, it follows that each boundary 

node select that stable node immediately because it can 

determine the alternatives passing through (n,m) by checking 

its distance table. Similarly, the nodes, which should be 

upstream and j hops away from it in the final shortest path 

spanning tree, will receive the correct distance in j steps. 

Notice that both i and j mentioned above are bounded 

by the height of initial tree and the final tree. Thus, the steps 

for a node to converge to the correct distance is O(h). 
Q.E.D. 

Another factor determining the performance of a 

distributed muting algorithm is the nodal computation time 

which becomes important in very high-speed network and 

very large network. Here, we mainly discuss the time 

needed to update the routing table by comparing the 

procedure RT-UPDATE and the breadth first search 

approach suggested by Humblet [12]. As can be seen, by 

doing breadth first search, each entry of distance-table has to 

be considered when the shortest path to a destination is the 

longest among the paths to all the leaves in the tree. The 

minimum time needed to process each entry is logN, because 

one has to determine if such destination has been reached. 

and if not, insert the distance into the ordered list maintained 

for breadth first search. However, by running procedure 

RT-UPDATE, even without sophisticated data structure, 

each entry will be processed eaxctly once using one unit 

computation time (compared to 1ogN units). 

In addition, due to the function IN-PATH, the 

destinations located behind the neighbor in the sender’s 

shortest path tree will not be sent to that neighbor. 

Therefore, the size of the routing vector and the nodal 

computation storage can be smaller. 

7. CONCLUSION 

In this paper, we present a protocol that avoids the 
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undesirable effects of bouncing, counting-to-infinity 
behavior, and routing-table looping of the distributed 
Bellman-Ford shortest path algorithm. The number of 
messages needed is no more than that of the distributed BF 
algorithm (possible to be exponential [21]). The time 
complexity is O(h) for single link failure or recovery, the 
same as in [9.10,13], and O(N) for multiple failures and 
recoveries. 

An open question is that if a O(h) time complexity 
algorithm is existent. In addition, whether O(N) time 
complexity and polynomial message complexity can both be 
achieved. 
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