
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS 1

A Control-Based Middleware Framework for
Quality of Service Adaptations

Baochun Li, Klara Nahrstedt

Abstract| In heterogeneous environments with perfor-

mance variations present, multiple applications compete and

share a limited amount of system resources, and su�er from

variations in resource availability. These complex applica-

tions are desired to adapt themselves and to adjust their

resource demands dynamically. On one hand, current adap-

tation mechanisms built within an application cannot pre-

serve global properties such as fairness; on the other hand,

adaptive resource management mechanisms built within the

operating system are not aware of data semantics in the ap-

plication.

In this paper, we present a novel Middleware Control Frame-
work to enhance the e�ectiveness of QoS adaptation deci-

sions by dynamic control and recon�guration of internal

parameters and functionalities of a distributed multimedia

application. Our objective is to satisfy both system-wide

properties (such as fairness among concurrent applications)

and application-speci�c requirements (such as preserving

the critical performance criteria). The framework is mod-

eled by the Task Control Model and the Fuzzy Control Model,
based on rigorous results from the control theory, and ver-

i�ed by the controllability and adaptivity of a distributed

visual tracking application. The results show validation of

the framework, i.e., critical application quality parameter

can be preserved via controlled adaptation.

Keywords| Application-aware QoS adaptation, Middle-

ware

I. Introduction

In heterogeneous end-to-end computing environments, it

is commonly observed that QoS-aware system components

may coexist with QoS-unaware components in the end sys-

tems and networks along the end-to-end path. From the

application's point of view, if services with statistical or

no guarantees exist in the underlying environment, the

QoS level that the application demands may not be sat-

is�ed continuously. Violations of application QoS require-

ments may be caused by physical resource limitations such

as inherent bandwidth variations and error characteristics

in wireless links, or by statistical multiplexing and con-

currency introduced by a dynamic number of application

tasks sharing the same resource pool in end systems and

networks.

Complex distributed applications, residing on top of the

above described heterogeneous environment, must be
exi-
ble and adapt to the QoS variations in their end-to-end ex-

ecution. They must demonstrate several important prop-

erties. First, they need to accept and tolerate resource

scarcity to a certain minimum bound, and can improve its

This work was supported by the Air Force Grant under contract
number F30602-97-2-0121, the NASA Grant under contract number
NASA NAG 2-1250, and National Science Foundation Career Grant
under contract number NSF CCR 96-23867.

The authors are with Department of Computer Science, Uni-
versity of Illinois at Urbana-Champaign, Urbana, IL. E-mail:
fb-li,klarag@cs.uiuc.edu.

performance if given a larger share of resources. Second,

when QoS variations occur, they are willing to sacri�ce

and trade o� the quality of less critical parameters for the

quality of critical parameters.

An example of
exible applications is the client-server

based distributed visual tracking application. In this appli-

cation, the server captures live video images o� the camera,

and sends them over the network to the client. The client

accepts user input (visual speci�cation of desired tracked

objects), receives the video, executes multiple computa-

tionally intensive tracking algorithms (referred to as track-
ers) on corresponding moving objects in the video, and dis-

plays the video with illustrations of tracking results. The

complexity of the application is caused by the mapping be-

tween the quality of critical parameters, such as the track-
ing precision1, and resource availability in the system. As

long as the tracking precision can be preserved, the ap-

plication is very
exible with respect to other quality pa-

rameters, and can be dynamically tuned or recon�gured in

order to adapt to variations in both CPU and bandwidth

availability. The structure of the application is shown in

Figure 1.

Precision

Video Capture Tracker 1 Tracker 2
Live Video

Tracking display

Server

Operating System

Middleware Middleware

Operating System

Client

Critical
Quality:
Tracking

Fig. 1. Client-Server Based Distributed Visual Tracking

If we examine the adaptation e�orts throughout various

levels in a distributed system, we note that there are two

distinctive levels where adaptation may take place: the sys-

tem level (e.g. operating systems and network protocols)

and the application level. Adaptation practices in these two

categories have di�erent objectives. In the system level, the

objectives of adaptation are set at a much lower level, for

example packets or cells in network protocols [1], and time

slices in adaptive soft real-time scheduling algorithms for

the CPU resource [2]. In addition, the emphasis is focused

on global properties such as fairness or overall resource uti-

lization. On the other hand, adaptations in the application

level are more focused on higher level application-speci�c

semantics, such as frame rate in video streaming [3] or pre-

cision in visual tracking, and optimized for the favor of its

1The tracking precision is de�ned as the distance between the center
of tracked region and center of the object. We wish to keep this
distance stable and as small as possible.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS 2

own performance, such as minimum degradation of percep-

tual quality, or stable tracking precision.

In this work, in order to balance the adaptation objec-

tives of both system and application levels, we focus on the

study of application-aware QoS adaptations [4][5]. We pro-

pose to introduce a middleware control framework to sup-

port application-aware adaptations, which is aware of both

system-wide requirements such as stability and fairness,

and application-speci�c choices for adaptive mechanisms.

In the following sections, we �rst present a general

overview of the middleware control framework in Section

II and then divide the discussion into two parts. The �rst

part presents the theoretical models, i.e., the Task Con-

trol and Fuzzy Control Model, of the framework in Section

III and IV. The second part discusses the design and im-

plementation issues of the framework in Section V, using

the distributed visual tracking application as an example.

Section VI shows experimental results with the distributed

visual tracking application. Section VII discusses related

work, and Section VIII concludes the paper.

II. Overview of Middleware Control Framework

The services provided by the middleware control frame-
work have three major objectives. First, they serve as a

global coordinator to control the adaptation behavior of

all concurrent application tasks in the end system, so that

if viewed globally, these applications do not adapt in a con-

icting or unfair way. Second, they strengthen the adap-

tation awareness and e�ectiveness within
exible applica-

tions, by making decisions to control their adaptive behav-

ior. The adaptation awareness includes when, how and to

what extent adaptation is carried out in the applications.

Third, they serve as an observer to monitor on-the-
y dy-

namics in the heterogeneous environment, so that informed

decisions can be made to control the applications. Without

the introduction of middleware control framework, appli-

cations are required to make decisions by themselves, thus

required to implement observation methods for respective

system resources and proper adaptation policies within the

application. This increases the burden of application devel-

opment, and proprietary implementations that are tightly

bound to a speci�c application cannot be shared with other

applications, even with similar semantics and behavior.

The design of our middleware control framework uses

a hybrid approach based on two major models: the Task
Control Model and the Fuzzy Control Model. The design

objective of the Task Control Model is to make appropri-

ate adaptation decisions to ensure system-wide properties

are satis�ed, such as fairness among concurrent applica-

tions or adaptation stability. The objective of the Fuzzy

Control Model, on the other hand, is to map these system-

level adaptation decisions to application-speci�c tuning or

recon�guring adaptation choices, so that the quality of crit-

ical application parameters (e.g. tracking precision) can be

preserved.

Within the middleware control framework, the Task

Control Model and Fuzzy Control Model are represented

in two respective components: the Adaptor and the Con-

�gurator. The Adaptor consists of the Adaptation Task
and Observation Task, which include the characteristics

and algorithm of the Task Control Model. Each Adaptor

corresponds to a speci�c type of resource, most notably

CPU and network bandwidth. All concurrent applications

are controlled by one Adaptor for each type of system re-

source, in order to maintain fairness and stability. On the

other hand, the Con�gurator includes the Fuzzy Control

Model, and maps adaptation decisions made by the Adap-

tor to application-speci�c parameter-tuning and recon�g-

uring adaptation choices within the application. Thus,

each application needs to have a corresponding Con�gura-

tor. The relationships among these components are shown

in Figure 2.

Resource Management and Operating System

Adaptation Task Observation Task
states CPU Adaptor

Bandwidth
Adaptor

Configurator

Application

Fig. 2. Components in the Middleware Control Framework

In our case study, a distributed visual tracking applica-

tion is deployed under the control of the middleware frame-

work. We will use running examples derived from this

application to present the theoretical results in the Task

Control and Fuzzy Control Models, discussed in Sections

III and IV, respectively.

III. Task Control Model

A. Motivation

One of the major features of the Task Control Model that
di�ers from previous adaptation schemes is that it focuses

on actively controlling the adaptation behavior of applica-

tions, rather than simply providing hints to applications

about current system states via upcalls, so that applica-

tions can adapt by itself. The justi�cations of adopting an

active control approach are derived by the following obser-

vation of a typical control system in control theory [6].

If we examine the essential characteristics of the adapta-

tion process, it corresponds naturally to a typical control

system. In a control system, there is a target system to

be controlled. The internal states within the target are de-

termined by a controller according to a control algorithm.
The output of the control algorithm is determined based

on the states observed in the target system, by comparing

them to the desired values referred to as the reference or

setpoint. The observer is responsible to observe the states

in the target. The objective of the control system is to

steer the target system so that it is not a�ected by distur-

bances. In comparison, the adaptation process in an end

system follows an identical model.

Hence, we derive the following insights from this anal-

ogy to the control system. The previous schemes, where

applications adapt based on upcalls or noti�cations from

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS 3

the system, actually integrate the controller into the appli-

cation, while leaving the system to serve as observers. We

propose to detach the controller from the application, so

that all concurrent applications can bene�t from a uni�ed
controller design. The role of this controller is implemented

by the Adaptor in the middleware control framework. This

design strategy forms the basis of the Task Control Model.

The above design strategy adopted by the Task Control

Model leads to two major advantages. First, because of

the uni�ed controller design, it is straightforward to utilize

the control theory in order to formally derive and prove

convergence, fairness at equilibrium and stability proper-

ties. Second, it cleanly separates highly application-speci�c

adaptation mechanisms, such as parameter tuning, from

the control algorithms used to determine adaptation tim-

ings and scale. It makes it possible to
exibly associate

control signals produced by the control algorithms with

various application-speci�c adaptive mechanisms, such as

bu�er smoothing, media scaling and �ltering, and with

functional recon�gurations as well.

B. Task Flow Model

In order to design control algorithms using the control

theory, we need a strict mapping between models used in

control systems and our design of active adaptation con-

trol. For this purpose, we consider each application as an

ensemble of functional components, which we refer to as

tasks. Tasks are execution units that consume system re-

sources and perform certain actions to deliver a result to

other tasks or the end user.

With the above de�nition of tasks, we utilize the Task

Flow Model [7] to address the modeling of active adapta-

tion control. In the Task Flow Model, a Task Flow Graph,

which is a directed acyclic graph consisting of multiple

tasks, is formed for each application. A directed edge from

task Ti to task Tj indicates that task Tj uses the output

produced by task Ti. Figure 3 illustrates the Task Flow

Graph for the distributed visual tracking application.

Identification and Display

Visual Tracking
Feature Detection

Visual Tracking
Feature Detection

Network Transmission of Live Video

Video Camera Frame Digitizing

State Update State Update

Fig. 3. Task Flow Graph for Distributed Visual Tracking

C. Task Control Model

Based on the Task Flow Model, the Task Control Model
concentrates on a single task in the Task Flow Graph, re-

ferred to as the Target Task, which is the task to be con-

trolled. Based on derived analogy to control systems, we

introduce the following tasks that are deployed in the Task

Control Model: (1) Adaptation Task. It serves as the con-
troller and implements the control algorithm. The output

of the Adaptation Task is a series of control signals that

are used to control the application, via application-speci�c

adaptation choices. (2) Observation Task. It observes the
task states in the Target Task, and feeds them back to

the Adaptation Task. Task states are de�ned as the inter-

nal parameters within the Target Task that represent its

dynamics of resource consumption. For example, in the

distributed visual tracking application, frame rate can be

one of the task states related to network bandwidth, and

tracking frequency2 can be one of the task states related to

CPU. Figure 4 illustrates the Task Control Model.

Task States

Reference Adaptation Task Observation Task

Target Task
Actions
Control

Fig. 4. The Task Control Model

The ideal objective of the Task Control Model is to

achieve the following properties: (1) The Target Task is

controlled to maintain stable quality of its critical QoS pa-

rameters, regardless of variations in resource availability.

For example, tracking precision should be preserved at a

stable level in distributed visual tracking. (2) The adapta-

tion process is carried out in a timely fashion, when detect-

ing and responding to changes in resource availability. This

property is referred to as agility of adaptation in [5]. We

discuss adaptation agility in Section III-D.3. (3) In order

to accommodate concurrency of resource accesses among

multiple applications, fairness of adaptation needs to be

balanced among all competing tasks. This property can

be held if the Adaptation and Observation Task have com-
plete control and complete knowledge about all concurrent
applications sharing the resource, which applies to any end

system resources, such as CPU, memory, storage space and

network host interface.

C.1 Generic Model of Target Task

In order to utilize the control theory to model the adap-

tation process in the Task Control Model, we need to derive

a suitable model for the Target Task. In the most generic

fashion, if we use the vector x for the vector of task states,

the vector u for the vector of controllable input parameters,

the vector z for the vector of observed output parameters

of the task, the vector w for the uncontrollable variations

in the task, and the vector v for the observation errors, we

can model the Target Task with the following equations:

dx(t)

dt
� _x(t) = f [x(t);u(t);w(t); t] (1)

2Tracking frequency is de�ned as the number of iterations that one
or more trackers can execute each second. Trackers are executed in
a round-robin fashion in each iteration. Since trackers are computa-
tionally intensive, the tracking frequency is highly dependent on CPU
resource availability.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS 4

z(t) = h[x(t);v(t); t] (2)

With the above de�nition, the task is said to be at equi-
librium when:

_x(t) = 0 = f [x(t);u(t);w(t); t] (3)

An equilibrium is stable if small disturbances do not

cause the state to diverge and oscillate. Otherwise, it is

an unstable equilibrium. From a practical point of view,

this formal de�nition of adaptation stability is identical to

the de�nitions in previous work [8] [9], where stability is de-
�ned as the ability of the system to steer the target system

back to equilibrium state after disturbances have occurred.

The above stated de�nitions are generic and may be con-

tinuous in time, non-linear and time-varying. In this paper

we study a subset, namely, the tasks that can be approx-

imated piecewise without loss of accuracy by discrete and

linear equations of the following form:

x(k) = �x(k � 1) + �u(k � 1) +w(k � 1) (4)

y(k) = Hx(k) (5)

z(k) = y(k) + v(k) (6)

where k = 1 to kmax, and �, �, and H are known tran-

sition matrices without an error. The above generic linear

model is frequently used in the state-space approach in

control systems.

C.2 Concrete Model of Target Task

In order to derive properties in the control algorithm, we

need to develop a concrete model for the Target Task, based

on the generic linear model presented. We thus consider the

following scenario.

Let us assume multiple tasks competing for a shared re-

source pool with the capacity Cmax. Each task makes re-
quests for resources in order to perform their actions on in-

puts and produce outputs. These requests may be granted
or outstanding. If a request is granted, resources are allo-

cated immediately. Otherwise, the request waits in the out-

standing status until it is granted. The system is granting

c requests within a given time interval for multiple running

tasks.

The mapping between the abstract notation resource re-
quests and the actual services that process the resource

requests varies among di�erent types of system resources.

For temporal resources, such as central processor capabil-

ity and transmission throughput, where the resources are

shared in a temporal fashion, outstanding resource requests

may be mapped to the waiting queue, and granted re-

quests may be mapped to allocated temporal resources,

such as bandwidth. For spatial resources, such as volatile

or non-volatile storage capacity, outstanding requests may

be mapped to the actively used and occupied capacity, such

as temporal bu�ers in caches and real memory (swapped

in pages), and granted requests may be mapped to the re-

claimed capacity by the system due to inactivity, such as

swapped out pages. The model presented in this section

applies to both cases.

To be more exact, we take CPU and network bandwidth

as two examples of all resource types. For network band-

width resource, for example in the client-server based dis-

tributed visual tracking application, outstanding resource

requests can be interpreted as those data units3 that are in

transit between the server and the client. Granted resource

requests, in this example, can be interpreted as the data

units that have been received at the server.

For CPU resource, since allocation of CPU is on a time-

sharing basis4, the interpretation of the above abstract no-

tions is more complex. In order to do this, we can �rst

construct an ideal case where full CPU capacity are avail-

able to the application, i.e., the application is running at

the top possible speed. We can then refer to the resource

requests within the application in the ideal case as desired

reference value. In actual cases, we interpret granted re-
source requests as the actual requests in the application,

and outstanding resource requests as the di�erence between
the desired number of requests and actual granted number

of requests. For example, in the distributed visual track-

ing application, we assume that the tracking frequency is

30 iterations per second when the system is running at full

CPU capacity. In the actual cases, if the observed track-

ing frequency is 10 iterations per second, the outstanding

resource request rate is 20.

We further categorize the resource types into completely
controllable resources and partially controllable resources.

All concurrent tasks competing for completely controllable
resources, such as CPU, are observable and their behav-

ior controllable. For these tasks, fairness of resource usage

can be enforced by appropriate adaptation control. On the

other hand, for partially controllable resources, such as net-

work bandwidth, not all concurrent tasks sharing the same

resource can be observed and controlled in one end sys-

tem. Only transient properties of adaptation behavior can

be enforced, such as stability and agility. We discuss com-

pletely controllable resources in this subsection (III-C.2)

below, and postpone separate discussions on bandwidth-

related adaptation to Section III-E.

Figure 5 shows the Target Task that accesses the shared

resource pool. Resource management and scheduling mech-

anisms grant resources to concurrent tasks, and requests

that are not granted are treated as outstanding. The Adap-

tation Task controls the adaptation process of the Target

Task by controlling its new request rate of resources, so that
it does not exceed its fair share. The control is enforced

within the application by parameter-tuning or recon�gur-

ing options.

In the Task Control Model, we de�ne the following vari-

ables corresponding to a Target Task Ti:

3At the system level, data units may be cells or packets. However, at
the application level, the actual interpretation of data units depend on
the application-speci�c semantics. For example, in video streaming
applications a data unit may be interpreted as a frame.
4An instruction at the assembly level of the application is either

issued to the CPU or blocked for its time slice by the operating system
scheduler.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS 5

Requesting Resources

Control Algorithm

Adaptation Task

Estimation Observation

Observation Task

Granted

Requests y(k) Requests x(k)
Resource

Outstanding

Middleware

Configurator

x(k)

To Next TaskFrom Previous Task New Resource Requests u(k)

Core Functionalities

Adaptation Points

Resource Management

Shared

Granting Requests c

Adaptor

and Scheduler

Target Task

Resource Resource Pool

Fig. 5. A Concrete Model for the Target Task

1. c is the total number of granted requests in [k; k + 1]

for all Target Tasks in case of completely controllable re-

sources.

2. tc is a constant sampling time interval, which is the time

elapsed in interval [k; k + 1], k being time instants.

3. ui(k) is the number of resource requests during [k; k+1]

allowed by the Adaptation Task of Ti, which is referred to

as the adapted request rate.
4. ri(k) is the original desired number of resource requests
made by Ti during [k; k+1]. If ri(k) < ui(k), i.e., the Tar-

get Task requests less resources than the limit for Adap-

tation Task allows, then ui(k) = ri(k). If ri(k) > ui(k),

then the application adapts. Note that this condition al-

lows some applications to be greedy. ri(k) is the inherent

decision of the application, while ui(k) is determined by

the Adaptation Task.

5. x(k) is the total number of outstanding resource requests
made by all tasks at time k;

6. M(k) is the total number of active Target Tasks com-

peting for resources in the system;

7. A(k) is the set of adapted Target Tasks at time k who

satisfy ri(k) > ui(k), N(k) is the set of Target Tasks that

do not adapt and satisfy ri(k) = ui(k).

8. l(k) is the number of tasks in A(k) (l(k) = jA(k)j),

M(k) � l(k) is the number of tasks in N(k) (jN(k)j =

M(k) � l(k)). We assume that both M(k) and l(k) stay

constant within one time interval [k; k + 1].

9. wi is the static weight of Ti showing its importance com-

pared to other Target Tasks.

Using the above notations, an approximation of the

derivative of outstanding resource requests can be de-

scribed as follows:

x(k)� x(k � 1)

k � (k � 1)
= x(k)� x(k � 1) =

M(k�1)X
i=0

ui(k � 1)� c

(7)

The Di�erence Equation (7) depicts the internal dynam-

ics of the adaptive system.

The objective of the control is to maintain the number

of total outstanding requests x to stay around a speci�c

reference value xc(k) (conceptually similar to a speci�ed

burst length in leaky bucket). Under the assumption that

the adaptive system behaves according to Equation (7),

we can derive a control algorithm in the Adaptation Task
for Target Task Ti to calculate ui(k) values, which will

lead to the desired values for x. For example, if a stan-

dard proportional-integral-derivative (PID) control [6]5 is

engaged, then ui(k) obeys the equation

ui(k) = ui(k � 1) + �[xc(k)� x(k)] +

�f[xc(k)� x(k)]� [xc(k � 1)� x(k � 1)]g (8)

where � and � are con�gurable scaling factors. The rea-

son for adopting PID as our control algorithm is as fol-

lows. (1) Shown in control theory, this algorithm belongs

to simple linear algorithms and shows good performance

with respect to eliminating steady-state errors, rejecting

disturbances, damping transient response and stabilizing

adaptation behavior. It is the most e�ective and widely

used control algorithm. (2) Shown in later sections, we are

able to prove stability conditions and fairness properties at

equilibrium. (3) It is simple to be implemented with little

overhead related to computational complexity.

D. Control Theoretical Analysis of the Adaptation Task

This section continues the discussion of the Task Control

Model with a rigorous analysis of various properties of the

adaptation process. The Task Control Model is character-

ized by the model of Target Task expressed in Equation

(7), as well as the control algorithm in Adaptation Task

expressed in Equation (8).

The PID control algorithm presented in Equation (8) can

be rewritten as follows:

ui(k) = 	ri(k) f ui(k � 1) + �(xc(k)� x(k))

+�[(xc(k)� x(k))� (xc(k � 1)� x(k � 1))] g (9)

Where 	b(a) is de�ned as:

	b(a) =

8<
:

0 if a < 0,

b if a > b,

a otherwise.

(10)

In addition, since at time k we assume that, among all

Target Tasks, l(k) tasks are adapted by their respective

adaptation tasks (where ui(k) < ri(k)), and M(k) � l(k)

tasks are not a�ected (where ui(k) = ri(k)), we conclude

that the total number of outstanding resource requests in

the system shows the following dynamic property (an ex-

tension to Equation (7)):

x(k) = 	Cmax
fx(k � 1) +

X
Ti2A(k�1)

ui(k � 1) +

X
Ti2N(k�1)

ri(k � 1)� cg (11)

5PID control is a classic control algorithm where the control signal
is a linear combination of the error, the time integral of the error, and
the rate of change of the error.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS 6

= 	Cmax
fx(k � 1) + l(k � 1)�u(k � 1)

+R(k � 1)� cg, where (12)

R(k) =
X

Ti2N(k)

ri(k), and (13)

ui(k) =
i(k) l(k) �u(k) (14)

where �u(k) is the average rate for all ui(k) that satisfy

ui(k) < ri(k). In this equation,
i(k) is the dynamic weight
of task Ti which indicates priority for resource requests,

and satis�es
P

Ti2A(k)

i(k) = 1. The dynamic weight of

Ti can be derived from the static weight wi of Ti, with the

following calculation:

i(k) =
wiP

Tj2A(k)
wj

(15)

Intuitively, if at time k all Target Tasks adapt, then

i(k) = wi. Otherwise,
i(k) is the importance compared

to other adaptive Target Tasks.

Combining Equation (9) and Equation (12), we obtain

the complete characterization of the adaptation system.

D.1 Equilibrium Analysis

Now that we have established the control algorithm in

the Adaptation Task, we continue to analyze the equilib-

rium properties of the system. The ideal case is that x(k)

converges towards reference xc(k), while ui(k) converges to

the fair share of each competing task. Let us assume that

for a speci�c period of time [k1; k2], x
c(k), l(k), M(k) and

R(k) are all stable and stay at constants xcs, ls, Ms and

Rs, respectively. Then we show the following properties:

Theorem 1: Within [k1; k2], the number of outstanding

resource requests x in the system, established by Equation

(9) and (12), will converge to an equilibrium value which

equals to the reference value xcs. In addition, the system

also fairly shares resources among competing tasks based

on their static weights, according to the weighted max-min
fairness property.

Proof: The proof is presented in Appendix A.

We note that the fairness property can only be preserved

when task states for all applications competing for shared

resources can be observed, i.e., for completely controllable

resources, such as CPU. It normally does not hold in the

case of partially controllable resources, such as network

bandwidth resources, where resources are shared with con-

nections from foreign end systems.

D.2 Stability Analysis

Similar to the de�nitions in previous work [8][9], the con-

cept of adaptation stability is related to two categories of

the system dynamics. (1) Statistical multiplexing. In an

environment of multiple Target Tasks simultaneously shar-

ing the limited availability of resources, when the num-

ber of active Target Tasks is �xed, system resources allo-

cated to each Target Task should settle down to an equi-

librium value in a de�nite period of time. This also implies

that, if a new task becomes active, existing active tasks

will adjust their resource usage so that after a brief tran-

sient period, the system settles down to a new equilibrium.

(2) Disturbances. Stability also implies that with respect

to variations in resource availability due to unpredictable

and physical causes, such as a volatile wireless connection,

adaptation activities do not su�er from oscillations. Os-

cillations are undesirable because they cause both
uctua-

tions in user-perceptible qualities, and an excessive amount

of adaptation attempts that may occupy so much resources

that the system is overloaded.

In order to converge to the equilibrium of the system

regardless of statistical multiplexing and disturbances, we

need to prove that the system is stable. Due to the global

nonlinear nature of the system given by upper and lower

bounds in Equation (9) and (12), we are unable to derive

a global and absolute stability condition. However, formal

conditions for asymptotic stability can be addressed ana-

lytically around a local neighborhood, in which the system

is linear. We present the following theorem related to local

asymptotic stability conditions.

Theorem 2: The adaptation system established by

Equation (9) and (12) is asymptotically stable for task

Ti around a local neighborhood, under the condition that

� > 0; � > 0, and �+ 2� < 4
i.

Proof: The proof is presented in Appendix B.

We can derive from Theorem 2 that the asymptotic sta-

bility for task Ti is determined by an appropriate choice of

� and �. It then follows that in order to guarantee that the

entire system is stable, we need to choose � and � so that

for any task Ti with any static weight values wi, stability

is ensured.

Corollary: There exist appropriate values of parame-

ters � and � so that all tasks in the system are stable, for

any pre-determined static weight wi for task Ti.

Proof: Assume wmin is the minimum value among all

pre-determined wi. � and � can be chosen to satisfy

� > 0; � > 0; and

�+ 2� < 4
wminP
8i wi

< 4
wiP

Tj2A(k)
wj

; 8i; k (16)

It follows from Theorem 2 that if these conditions hold,

the system will be stable for any task Ti with a static weight

wi.

D.3 Adaptation Agility

In addition to stability requirements, it is also desired

that the system responds quickly to variations in resource

availability. Adaptation agility [5] is de�ned as the speed

and accuracy of an adaptive system with respect to detect-

ing and responding to changes in resource availability and

application QoS requirements. In short, it is the respon-
siveness or sensitivity of an adaptive system to dynamic

variations. This notion is also similar to the notion of sen-
sitivity introduced in [9].

In the Task Control Model, adaptation agility is deter-

mined by con�gurable parameters in the control algorithm.

In the case of a PID control algorithm in Equation (9), �

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS 7

and � are con�gurable as long as the stability conditions in

Theorem 2 hold. The actual con�guration is tailored to the

agility needs of the system. Some applications, for example

the distributed visual tracking, prefer to adapt with a high

agility level to variations in resource availability, since the

critical parameter, tracking precision, is sensitive to even

minor perturbations.

The selection strategy of con�gurable parameters � and

� in the PID control algorithm is as follows. First, the

combination of � and � settings should satisfy all stability

requirements established in Theorem 2 and its corollary.

Second, � and � correspond to the integral and derivative
settings of the PID control algorithm, respectively. It is

known from the control theory that the integral control

increases the speed of transient response. In other words,

if � is tuned to be lower, transient response is faster. On

the other hand, derivative control improves stability and

increases damping. In other words, if � is tuned to be lower,

the damping factor is higher, and the system converges

slower but is more stable.

Two illustrations are given in Figure 6(a) and 6(b) to

show the e�ects of di�erent con�gurations on the system.

The changes of l(k), R(k) and xc(k) are given in Table I:

k 0 100 200 300 400 500 700 850

l 2 2 4 5 3 3 3 3

R 3 3 3 3 3 7 4 4

xc 9 11 11 11 11 11 11 14

TABLE I

The values of l(k), R(k) and xc(k) used in Figure 6

It is shown that di�erent � and � settings have diversely

di�erent transient responses. In Figure 6(a), � is low and

� is high, which re
ect the requirements that the agility

should be low and the system should remain stable. Fig-

ure 6(b), on the contrary, shows the results when agility

is set to be extremely high, with � tuned to be high and

� tuned to be low. For example, in the interval [300; 400]

(Figure 6(b)), oscillation occurs with the relative weight

i = 0:3 for Ti, which satis�es � + 2� = 4
i, and violates

the stability conditions derived from Theorem 2. Overall,

Figure 6 shows that, by tuning integral and derivative set-

tings � and � in the PID control algorithm, adaptation

agility is highly con�gurable according to the agility needs

of the system.

E. Extensions of Task Control Model to Partially Control-
lable Resources

For completely controllable resources such as CPU, a

PID control algorithm was given in the previous subsection,

and a weighted max-min fairness property was proved. A

prerequisite for the fairness property to hold is that the re-

source is completely controllable, i.e., that the Observation

Task has the ability to observe complete states for all com-

peting tasks, and that the Adaptation Task can completely

control competing tasks as well.

0

5

10

15

20

0 100 200 300 400 500 600 700 800 900 1000

N
um

be
r

of
 R

es
ou

rc
e

R
eq

ue
st

s

k

average
total outstanding requests

Task i

(a) � = 0:015; � = 0:5

0

5

10

15

20

0 100 200 300 400 500 600 700 800 900 1000

N
um

be
r

of
 R

es
ou

rc
e

R
eq

ue
st

s

k

average
total outstanding requests

Task i

(b) � = 0:7; � = 0:25

Fig. 6. Con�gurable Agility and Dynamic Responses

However, this is normally not the case for partially con-

trollable resources. An example of such resource is the

network bandwidth in a distributed environment, when ob-

serving task states within the Transmission Task. Note

that the Transmission Task is a distributed task consid-

ering of sending and receiving subtasks, which reside at

the sender and receiver end points, respectively. Since the

Observation Tasks reside as middleware components in the

end system, it has no ability to obtain states corresponding

to all other connections sharing the network. In such cases,

the only observable states are the parameters used or al-

located by the Transmission Task itself. Therefore, while

the control algorithm still adapts to variations in resource

availability and shows stability and convergence properties,

it lacks crucial observations to guarantee any global fair-

ness properties.

In distributed applications, we focus on the Transmis-
sion Task as the Target Task Ti that consumes bandwidth.

Rather than using the total number of outstanding requests

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS 8

x(k) to model the Target Task, we use xi(k), which is the

number of outstanding requests made by Ti alone. xi(k)

can be interpreted as the number of data units in
ight in
Ti before reaching destination. We assume ui(k) is the new

resource requests by Ti, which is equivalent to the actual

number of data units sent by Ti. We also assume that ci(k)

is the number of granted requests in [k; k+1] to Ti, which is

the number of data units received by the destination. The

model for the transmission task is:

xi(k) = xi(k � 1) + ui(k � 1)� ci(k � 1) (17)

Similarly, the PID control algorithm adopted in the

Adaptation Task may be modi�ed as follows:

ui(k) = ui(k � 1) + �[xci (k)� xi(k)] +

�f[xci (k)� xi(k)]� [xci (k � 1)� xi(k � 1)]g (18)

where xci is the reference value expected at equilibrium.

The stability and convergence proofs still hold as in the

previous section, under the assumption that the sender re-

ceives the feedback about xi(k) from the receiver. This

means that the end-to-end delay between sender and re-

ceiver must be very short, which can be true in LAN envi-

ronments.

IV. Fuzzy Control Model

A. Overview

In the Task Control Model, dynamic properties of the

adaptation process are addressed at the end system, such

as stability guarantees, adaptation agility and equilibrium

fairness. However, the overall application behavior is non-

linear and it may be possible that some desired QoS pa-

rameters cannot be maintained by simple parameter-tuning

options. This section introduces the Fuzzy Control Model,
which focuses on application-speci�c adaptation choices,

with enhanced parameter-tuning possibilities or recon�gu-

rations. The model utilizes results from fuzzy logic and the

fuzzy control theory [10].

In the design of the middleware control framework, the

Fuzzy Control Model is implemented in the application-

speci�c Con�gurators. The relationships between the Task

Control and Fuzzy Control Models are as follows. (1)

The Fuzzy Control Model implements a mapping pro-
cess. It maps the output of the Adaptation Task ui(k) to

application-speci�c parameter-tuning adaptation choices.

(2) The Fuzzy Control Model extends the adaptation pro-
cess that is implemented by the Adaptation Task. When

parameter-tuning adaptations are not e�ective to meet the

resource availability levels, recon�guration choices are ac-

tivated. The timing of these activations is determined by

a set of rules, which represent a nonlinear control surface.

(3) Combining the Task Control and the Fuzzy Control

Model, a hybrid adaptation scheme is formed, o�ering an

adaptation strategy that approximates nonlinear behavior

by using piecewise linear control at normal times and using

fuzzy control at transition points. that are both piecewise

linear and nonlinear in extreme cases. The Task Control

Model provides a basic linear model for the adaptation pro-

cess, while the Fuzzy Control Model extends the adapta-

tion process to support nonlinear adaptation choices, as

well as to provide an application-speci�c mapping process
that maps to parameter-tuning adaptation choices. Figure

7 shows this role of the Con�gurator.

Configurator

Adaptation Task

Target Task

Observation Task

Fig. 7. The Role of Con�gurator in the Task Control Model

The major advantages of this model are the following.

(1) A fuzzy logic approach is used in the design of the map-

ping and adaptation process, so that application-speci�c

adaptation choices can be expressed explicitly with a rule
base and member functions for each linguistic value. The

rule base provides linguistic rules that the mapping process

is based on. (2) With respect to the nonlinear adaptation

process based on recon�guration choices, assuming that

multiple discrete recon�guring options exist in a complex

application, the controllable regions are in most cases dis-

crete and non-linear in nature. The Fuzzy Control Model

is most appropriate when dealing with nonlinearities of dis-

crete adaptation choices, since the mapping process from

inputs and outputs is expressed by using a number of lin-
guistic rules stored in the rule base. (3) The rules that

guide the mapping and nonlinear adaptation process are

highly con�gurable, and can be intuitively speci�ed to sat-

isfy the needs of the application. The model o�ers a
exible

design suitable for new applications, without loss of gener-

ality and con�gurability.

B. Con�gurator Design: The Fuzzy Control Model

The architecture of the Fuzzy Control Model, shown in

Figure 8, includes �ve components built within the Con�g-

urator. The fuzzy inference engine implements the fuzzy

logic based mapping and nonlinear adaptation process.

The adaptation process is based on a set of linguistic rules
de�ned in the application-speci�c rule base, as well as on
a set of membership functions for linguistic values. The

fuzzy inference engine takes fuzzy sets as input, and pro-

duces output in the form of fuzzy sets. Hence, the archi-

tecture also includes the input normalizer and fuzzi�er to
prepare input fuzzy sets for the fuzzy inference engine, as

well as the defuzzi�er to convert output fuzzy sets to actual
adaptation choices in the application.

The rule base consists of a set of linguistic rules, which

are expressed using linguistic values and linguistic vari-
ables. Each linguistic variable can be assigned multiple

possible linguistic values. All linguistic values used in the

rule base should use words of a natural or synthetic lan-

guage, for example moderate or below average for the

linguistic variable cpu demand. These linguistic values are

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS 9

ActionsCPU

u(k)

u(k)

Adaptation
Task for
Bandwidth

Adaptation
Task for

Input
Normalizer

Configurator

in

Fuzzifier

Membership
Fuctions

Rule Base

x
Inference
Fuzzy

Engine
Defuzzifier

Control

Fig. 8. The Architecture of the Fuzzy Control Model

modeled by fuzzy sets, which are unambiguously expressed

by a membership function. The linguistic rules and mem-

bership functions for all linguistic values in these rules are

highly con�gurable according to application-speci�c adap-

tation choices and requirements.

The design of the rule base is a two-phase process. First,

the linguistic rules are determined. Second, membership

functions of the linguistic values are set. The �rst phase

of design generates a set of conditional statements in the

form of if-then rules. The generic form is:

R(1) : if X1 is A
(1)

1 and : : : and Xn is A
(1)
n

then Y is B(1)

� � � � � �

R(m) : if X1 is A
(m)

1 and : : : and Xn is A
(m)
n

then Y is B(m)(19)

where X1; : : : ; Xn and Y are linguistic variables,

A
(k)
1 ; : : : ; A

(k)
n and B(k) (k = 1; : : : ;m) are linguistic values,

de�ned by fuzzy sets ~A
(k)
1 : : : ~A

(k)
n and ~B(k) (k = 1; : : : ;m),

respectively. These linguistic values are also characterized

by the membership functions of their respective fuzzy sets,

expressed by �
A

(k)

l

(x) and �B(k)(y) (l = 1; : : : ; n), respec-

tively, with x and y being the elements of universal sets U

and V . Each rule de�nes a fuzzy implication that performs

the mapping process from the fuzzy set input to fuzzy set

output. After the defuzzi�cation process, the fuzzy set out-

put directly corresponds to a particular adaptation choice

within the application. For completeness of this paper, the

internal mechanisms implemented in the fuzzy inference

engine is summarized in Appendix C, the fuzzi�cation pro-

cess is discussed in Appendix D, and the defuzzi�cation

process is presented in Appendix E.

An example of using the Fuzzy Control Model, using

the distributed visual tracking application is presented in

Section V.

V. Design of Middleware Control Framework

In this section, we present our architectural design of

the Middleware Control Framework, with the distributed

visual tracking application as a running example.

A. The Architecture

The Adaptors and Con�gurators in the middleware con-

trol framework are implemented as middleware compo-

nents. There are three unique characteristics and advan-

tages in our design, di�ering from previous middleware so-

lutions, as follows.

(1) The Middleware Control Framework enhances exist-
ing service enabling platforms in the middleware level. It

is designed to utilize services provided by such platforms,

not as replacements. This design principle features a high

level of
exibility when applying the framework to new en-

vironments and applications, since it can be deployed on

top of other service enabling platforms of choice. For exam-

ple, Real-time CORBA [11] can be enhanced by the Mid-

dleware Control Framework to provide better adaptation

control mechanisms, while still retaining its own features

related to real-time guarantees.

(2) The Middleware Control Framework is active.
Rather than passively providing application-transparent

adaptive services, the framework actively controls the

adaptation behavior of the application. Since our com-

ponents, including Adaptors and Con�gurators, may be

implemented in a diversely di�erent environment or pro-

gramming language, the interactions among components

of the active adaptation are made possible by service en-

abling platforms, such as CORBA.

(3) Since our proposed design interacts with applications

only through services provided by existing service enabling

platforms, there are no limitations on the behavior of the

application. For instance, in the example of CORBA, the

applications do not have to communicate with remote com-

ponents via CORBA services, they have the freedom to

choose between sockets, RPC calls or other communica-

tion means. The only requirement for these applications

is that they export application-speci�c adaptation choices

to the middleware components, speci�ed by CORBA inter-

face speci�cation. Figure 9 shows the architecture of the

framework.

Task 1

Configurator

Observation Task

Application

Adaptation Task

System State

A O

Adaptor for CPU Adaptor for Bandwidth

State
Middleware

Control Actions

Operating Systems and Transmission Network

Interactions
via CORBA

Task 2

Task 4Task 3

Fig. 9. The Architecture of the Middleware Control Framework

Components in the Middleware Control Framework are

implemented locally or in a distributed environment, in or-

der to perform adaptation control of an application, such

as distributed visual tracking. The scenario that the Mid-

dleware Control Framework is deployed in a client-server

based environment is illustrated in Figure 10.

B. Distributed Visual Tracking: An Example

In order to illustrate detailed design on how the Middle-

ware Control Framework controls an application, we use

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS 10

Client

Control Framework
[Adaptors and
Configurators]

Middleware
Control Framework
[Adaptors and
Configurators]

Middleware

Application:
Server implementation

Service Enabling
Platform (CORBA, etc.)

Service Enabling
Platform (CORBA, etc.)

OS and Resource
Management

Transport Protocols Transport Protocols

OS and Resource
Management

transfer
data

Server

Application:
Client implementation

Fig. 10. Middleware Control Framework in a Distributed Environ-
ment

the distributed visual tracking application as an example.

B.1 Adaptation Choices

As previously noted, the critical quality parameter spe-

ci�c to visual tracking is tracking precision. If the precision
is compromised, the objects lose track and the tracking pro-

cess fails.

If we examine the internal behavior of the application,

both CPU and network bandwidth resources a�ect tracking

precision. First, since trackers are computationally inten-

sive, the tracking frequency de�ned in Section III depends

on CPU availability. Second, even if CPU is available to

satisfy a required tracking frequency, frame rate in the video
streaming implementation is still a�ected by network band-

width availability. Divided by resource type, we identify

available adaptation choices, including parameter-tuning

and recon�guring options, as the following.

� Adaptation choices related to bandwidth. First, there ex-
ist options for parameter-tuning adaptations (data adap-

tation) in the case of uncompressed image transfer, such

as: (1) The image size can be enlarged or reduced to ad-

just bandwidth requirements, by chopping the edges. The
tradeo� is that the smaller the image is, the higher the

probability that the objects move out of the range. (2)

The color depth can be altered. Existing choices for cod-

ing one pixel are 24 bits RGB, 16 bits packed RGB, 8 bits

grayscale or 1 bit black-and-white. (3) The frame rate can
also be altered, however in our application we attempt to

minimize the usage of this option because the trackers are

very sensitive to large variations of the frame rate. Second,

if we consider recon�guration choices (functional adapta-

tion), compression and corresponding decompression can

be activated, using available choices such as Motion-JPEG

and streaming MPEG-2. Bandwidth requirements are re-

duced dramatically at the expense of increased CPU load.

� Adaptation choices related to CPU. In the current imple-

mentation, there are three frequently used tracking algo-

rithms: Line tracking and corner tracking are edge based

algorithms; and SSD tracking is a region based algorithm.

Measurements show that these algorithms present diverse

computational complexity. Adding to the
exibility, the

application can run multiple trackers on multiple objects

simultaneously. These observations motivate the follow-

ing recon�guration choices: (1) Addition of trackers to

utilize idle CPU; (2) Removal of running trackers to de-

crease CPU demand; (3) Replacement existing trackers by

less or more computationally intensive trackers. Finally,

parameter-tuning adaptation may also be applied by mod-

ifying the size of the tracked region of a speci�c tracker,

e�ectively tuning the computational load of the tracker.

The tracked region is de�ned as the searching range of each

tracker in the feature detection stage of computation.

B.2 Design of Adaptor

The Adaptors in the distributed visual tracking applica-

tion uses the PID control algorithm presented in the Task

Control Model. There are two types of Adaptors: CPU and

bandwidth Adaptor. The CPU Adaptor is executed based

on observed tracking frequency values from the application

showing CPU load. The bandwidth Adaptor is executed

based on observed frame rate values, showing transmission

throughput. The output of the Adaptors are used by the

Con�gurator to determine the adaptation choices.

B.3 Design of Con�gurator

In the Con�gurator, the adaptation choices are expressed

in the form of a rule base for the visual tracking applica-

tion, following the generic form given in Equation (19).

The Con�gurator accepts control values u(k) from Adap-

tation Tasks in both the CPU and bandwidth Adaptors.

Two linguistic variables, frequency and rate are used,

corresponding to the CPU and bandwidth resource, respec-

tively. Conceptually, fuzzy sets with respect to frequency

are derived by the fuzzi�er from the control values u(k)

produced by the CPU Adaptor, and can be interpreted as

the acceptable tracking frequency. Similarly, rate, inter-

preted as data units transmitted per second, is related to

the output of bandwidth Adaptor. We assume the range of

measuring linguistic variable frequency is [0; 50] with an

unit of iterations per second, and the range of measuring

rate is [0; 2000] with an unit of kilobytes per second.

Two linguistic variables, cpu choice and

tt rate choice are used in the rule base, corresponding to

the bandwidth adaptation and CPU adaptation choices, re-

spectively. Examples of linguistic values for these linguistic

variables are compress, chopped image and add tracker.

The linguistic values used for both frequency and rate are

very low, below average, moderate, above average and

very high. Examples of various rules are shown below.

/* linguistic rules corresponding to bandwidth */

if rate is very_high

then rate_choice is chopped_image

if frequency is very_high and rate is very_low

then rate_choice is compress

if frequency is below_average and rate is above_average

then rate_choice is RGB24_color

if frequency is below_average and rate is moderate

then rate_choice is RGB16_color

if frequency is below_average and rate is below_average

then rate_choice is grayscale

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS 11

if frequency is very_low and rate is very_low

then rate_choice is back_and_white

/* linguistic rules corresponding to cpu */

if frequency is very_high

then cpu_choice is add_tracker

if frequency is below_average

then cpu_choice is drop_tracker

if frequency is moderate

then cpu_choice is replace_tracker

if frequency is above_average

then cpu_choice is adjust_region

B.4 The Design of Membership Functions

In design practices of fuzzy control systems, Gaussian,

triangular or trapezoidal shaped membership functions are

used to de�ne the linguistic values of a linguistic vari-

able. Since triangular and trapezoidal shaped functions

o�er more computational simplicity, we choose them to de-

�ne all membership functions for linguistic values used in

the rule base.

The particular design of these membership functions is

largely application-speci�c. In our visual tracking applica-

tion, we have de�ned the membership functions as shown

in Figure 11, in four universal sets for variables frequency,

rate, cpu choice and rate choice, respectively.

iterations/sec

0

1

2000

KB/sec

RGB24_color

chopped_imageGrayscale RGB16_colorb&w

compress rate_choice

0

1
replace_tracker add_tracker

drop_tracker adjust_region 50 cpu_choice

iterations/sec

0

1

below_average above_average

very_highvery_low moderate

0

1

2000

KB/sec

below_average above_average

very_highvery_low moderate

rate

50 frequency

Fig. 11. Membership Functions in Visual Tracking

For example, if the input for rate is 50 KB/sec, and

for frequency is 48 iterations/sec, the membership func-

tions in Figure 11 show that the input linguistic value is

very low and very high respectively. The output value

from the Con�gurator will activate the adaptation choice

compress determined by the corresponding membership

function for rate choice, according to the corresponding

linguistic rule (if frequency is very high and rate

is very low then rate choice is compress).

Fig. 12. A Running Client-Server Based Visual Tracking Application

B.5 The Flow of Adaptation Process

The distributed visual tracking application is controlled

by the Middleware Control Framework based on current

dynamics in CPU and bandwidth resources. Speci�cally,

the adaptation process is carried out as follows.

� CPU Adaptation: The Observation Task in CPU Adap-

tor observes the current CPU resource usage in the ap-

plication. Our observed parameter is tracking frequency
(frequency of executing trackers). The Adaptation Task

executes the PID control algorithm and produces new out-

put values u(k). If the tracking frequency (u(k)) drops

below desired minimum, then the Con�gurator maps the

results to actual adaptation choices, such as drop tracker.
Finally, the adaptation choice is executed in the applica-

tion, e�ectively changing CPU resource requirements.

� Bandwidth Adaptation: Since bandwidth is a partially

controllable resource, the bandwidth Adaptor utilizes the

extension to the Task Control Model in Section III-E. To

observe the states in the Transmission Task, the Observa-

tion Task in bandwidth Adaptor at the server side mon-

itors the current bandwidth usage in the application, by

observing the throughput transmitted to the client. The

client acknowledges all received data, so that the server-side

Observation Task is able to calculate the amount of data

in transit, treated as outstanding resource requests. The

server-side Adaptation Task then completes the adapta-

tion process, and the Con�gurator completes the mapping

or nonlinear adaptation process to adaptation choices, such

as change image size or compress. These choices are exe-

cuted in the server application, e�ectively changing band-

width resource requirements.

VI. Experimental Results

A. Deployment on Windows NT

For veri�cation purposes, we have prototyped the client-

server based distributed visual tracking application in Win-

dows NT 4.0, porting and expanding the XVision pro-

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS 12

gram [12] on the Unix platform. To control the appli-

cation, we have implemented the Adaptor and Con�gu-

rator components within the Middleware Control Frame-

work using C++. The Con�gurator is implemented with

the assistance of the C-FLIE fuzzy inference engine [13].

The Observation Task is implemented in Java with visual

feedback of current states to the user. Finally, we choose

the CORBA 2.0 standard as the service enabling platform

to facilitate interactions between the Middleware Control

Framework and the visual tracking application. In our

testbed we use ORBacus 3.1.1 for C++ and Java [14] as

the CORBA 2.0 implementation. The application exports

all possible adaptation choices to the middleware compo-

nents as public IDL interfaces via CORBA, so that they

can be activated when invoked by the middleware control

components. This requirement demands that the applica-

tion acts as a CORBA server to implement all public IDL

interfaces and respond to incoming requests.

Our testbed of both distributed visual tracking applica-

tion and middleware control framework is implemented on

two dual Pentium Pro 200Mhz PCs running Windows NT

4.0. We use Visual C++ 6.0 as the primary development

platform, and Sun Java 2 for Windows NT as the Java

platform. We deployed both client and server on the same

Ethernet segment.

B. Experimental Results

With respect to CPU load measurements, we perform

both application-speci�c source-level instrumentation to

obtain application-speci�c measurements such as tracking
frequency, as well as system-level probes to measure the

overall CPU load. The system-level CPU load data is mea-

sured by using the Performance Data Helper Library in the

Platform SDK of Windows NT. In order to simulate the

network bandwidth
uctuations, we plug in a throughput

simulator to simulate a network through routers with FIFO

packet scheduling and cross traÆc. This setup simulates

network
uctuations similar to what occur in the Internet.

In addition, in order to measure the tracking precision and

repeat experiments, we carry out all experiments based on

animated moving objects served from the tracking server,

instead of live video from the camera. Finally, we obtain

the tracking precision by measuring the distance between

the position of the tracker and the actual objects.

We experiment with three types of trackers that can run

concurrently: the SSD, corner and line tracker. The SSD
tracker is best used to track a moving outlined object, the

corner tracker is best suited for tracking a corner of the

object, and the line tracker is best suited for tracking lines

and edges of objects. Figure 12 shows the GUI while the

visual tracking application is being executed.

The �rst set of experiments focuses on parameter-tuning

adaptation choices, which demonstrate the e�ectiveness of

the Task Control Model. We show experimental results

in Figures 13-20. These experiments use the bandwidth

Adaptor, and focus on adaptation choices related to band-

width requirements in the application. To focus on the

purpose of the experiments, we use only one SSD tracker so

0

200000

400000

600000

800000

1e+06

1.2e+06

0 20 40 60 80 100 120 140 160 180 200

th
ro

ug
hp

ut
 (

B
yt

es
/s

)

time (s)

Observed Throughput (Bytes/s)

Fig. 13. Bandwidth Adaptor - Without Adaptation: Throughput

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

0 50 100 150 200 250 300 350 400

th
ro

ug
hp

ut
 (

B
yt

es
/s

)

time (s)

Observed Throughput (Bytes/s)

Fig. 14. Bandwidth Adaptor - With Adaptation: Throughput

that network throughput at the network device is the bot-

tleneck a�ecting tracking precision. In this �gure, the three

graphs on the left show the case without activating the

bandwidth Adaptor. The three graphs on the right show

the case after adaptation. We can observe that by chang-

ing the image size of the visual tracking application, the

tracking precision will be preserved without any tracking

error during the connection lifetime. In contrast, without

any adaptation, when the network throughput degrades to

a certain degree, the tracking algorithm is not able to keep

track of the object, the error accumulates rapidly verify-

ing that the tracking algorithm loses the object. These

experiments prove that the approach we have taken in the

Task Control Model is e�ective in preserving tracking pre-

cision in a distributed environment with
uctuating band-

width and signi�cant end-to-end delay between the client

and server.

The second set of experiments focuses on adaptation by

recon�guring choices, which emphasizes the e�ectiveness

of the Fuzzy Control Model using both CPU and band-

width Adaptors. We show results in Figures 21(a) and

21(b), Table II shows the output of the Con�gurator. In

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS 13

0

50000

100000

150000

200000

250000

300000

350000

0 20 40 60 80 100 120 140 160 180 200

fr
am

e
si

ze
 (

by
te

s)

time (s)

Frame Size (bytes)

Fig. 15. Bandwidth Adaptor - Without Adaptation: Image Size

0

50000

100000

150000

200000

250000

300000

350000

0 50 100 150 200 250 300 350 400

fr
am

e
si

ze
 (

by
te

s)

time (s)

Frame Size (Bytes)

Fig. 16. Bandwidth Adaptor - With Adaptation: Image Size

this experiment, we focus on the CPU resource by using

three concurrent trackers, SSD, line and corner tracker,

concurrently. Figure 21(a) shows the CPU load measure-

ments, while Table II shows the control actions generated

by the Con�gurator at various starting times. Figure 21(b)

shows the measured tracking precision. We assume that

the �rst tracker tracks a more important object, so if a

drop tracker event is signaled, later trackers should be

dropped. The results show that the tracking precision stays

stable within a small range. This shows the e�ectiveness

of CPU adaptations by a hybrid adaptation process in the

CPU Adaptor and Con�gurator. In contrast, if recon�gur-

ing actions are not activated, all trackers lose track when

the CPU load increases in the end system.

C. Overall Evaluation

The results shown in the previous section experimen-

tally prove the e�ectiveness of the Task Control and Fuzzy

Control Model. On one hand, related to the network band-

width, parameter-tuning adaptation choices are activated

under the control of the bandwidth Adaptor, using theo-

retical results in the Task Control Model. On the other

0

0.5

1

1.5

2

2.5

3

3.5

4

0 20 40 60 80 100 120 140 160 180 200

fr
am

e
ra

te
 (

fr
am

es
/s

)

time (s)

Frame Rate (frames/s)

Fig. 17. Bandwidth Adaptor - Without Adaptation: Frame Rate

0

1

2

3

4

5

6

0 50 100 150 200 250 300 350 400

fr
am

e
ra

te
 (

fr
am

es
/s

)

time (s)

Frame Rate (Frames/s)

Fig. 18. Bandwidth Adaptor - With Adaptation: Frame Rate

hand, recon�guring choices such as compress are studied

in a set of experiments studying the CPU Adaptor and the

Con�gurator, using the Fuzzy Control Model. We conclude

that in both cases, the proposed hybrid control approach

is applied successfully to keep the critical quality param-

eter tracking precision stable, using a combination of lin-

ear and nonlinear adaptation process and an application-

speci�c mapping process.

VII. Related Work

It has been widely recognized that many QoS-

constrained distributed applications need to be adaptive

in heterogeneous environments. Many research problems

relevant to our work in the area of QoS adaptations have

been studied. We brie
y review each of them as follows.

A. Communication Protocols

System level adaptive mechanisms in communication and

networking protocols have been extensively studied in the

past decade. Particularly, the problem of
ow control at

the packet or cell level has been examined with great in-

terests. Flow control refers to the set of techniques that

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS 14

0

10

20

30

40

50

60

70

80

0 50 100 150 200

Tr
ac

ki
ng

 P
re

ci
si

on

Time (s)

Tracking Precision

Fig. 19. Bandwidth Adaptor - Without Adaptation: Tracking Pre-
cision

0

10

20

30

40

50

60

70

80

0 50 100 150 200 250 300 350 400

Tr
ac

ki
ng

 P
re

ci
si

on

Time (s)

Tracking Precision

Fig. 20. Bandwidth Adaptor - With Adaptation: Tracking Precision

enable a data source to match its transmission rate to the

currently available service rate at a receiver and in the

network. In this sense, the objective of the application-

aware QoS adaptation with respect to network bandwidth

resources is largely identical to the goal of the
ow control,

except that QoS adaptation is performed at the application

level, and most mechanisms developed in the past decade

related to the
ow control are implemented at the datalink,

network or transport layers of a protocol stack. We review

some of the previous work related to our approach.

Many previous packet or cell level
ow control ap-

proaches were proposed with the assistance of control the-

ory. Earlier work [8] [15] [16] showed that a control-

theoretic way of analyzing
ow control problems is both

valid and feasible. Notably, Keshav in [8] proposes a

packet-pair
ow control algorithm and uses control theory

to analyze its stability and performance, under the assump-

tion that a round-robin like scheduling discipline referred

to as the Rate Allocation Server is deployed in the bottle-

neck node. In this work it is shown that the
ow control

algorithm is stable, which implies that if a new source be-

comes active, existing active sources adjust their transmis-

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400

C
P

U
 L

oa
d

time (seconds)

CPU Load

(a) CPU Load

0

10

20

30

40

50

60

70

80

0 50 100 150 200 250 300 350 400

tr
ac

ki
ng

 p
re

ci
si

on

time (s)

#1
#2
#3

(b) Tracking Precision

Fig. 21. Experimental Results with CPU-related Recon�gurations

sion rates so that after a brief transient period, the sys-

tem settles down to a new equilibrium. More recent work

[9][17][18] [19] mainly focuses on the
ow and congestion

control issues for ATM switches, particularly under ABR

(Available Bit Rate) service. Notably, in [17], the control

laws for congestion control, in the case of a single congested

node, were derived and stability properties proved. In [9],

the stability and sensitivity properties are analyzed in the

case of the rate-based
ow control for ABR service.

Previous work has also studied the application of fuzzy

logic and fuzzy control systems. In [8] fuzzy logic was ap-

plied to solve state estimation problems. Pitsillides et al.

[13] present a fuzzy control approach used for the purpose

of
ow control in ATM networks, with linguistic variables

being the queue length and the change rate of queue length

in each ATM switch. In contrast, our approach focuses on

the active control of distributed multimedia applications,

with e�orts to adapt best to the environment. Further-

more, in the AutoPilot [20] project, a fuzzy logic approach

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS 15

Start Time (sec) Control Action from Con�gurator

28.22 uncompress

51.24 add tracker

67.37 compress

167.7 drop tracker

320.4 drop tracker

TABLE II

Control Actions generated by the Configurator

is adopted to design actuators that process sensory data

observed from high-performance parallel programs, so that

optimal performance can be achieved by adjusting system

parameters, such as those in a parallel I/O �le system.

The actuators and sensors are functionally similar to the

Adaptation Tasks and Observation Tasks in our Adaptors.

However, the objectives and domain of operations are no-

tably di�erent.

Our work focuses on the study of adaptations in the ap-

plication domain, and adaptations with respect to more

than one type of resource. While the mechanisms are cer-

tainly di�erent in the application domain, the general ap-

proach of utilizing the control theory and the de�nitions for

stability and other transient properties are similar to the

previous work. Furthermore, we focus on global fairness

properties of the adaptation behavior in an end system,

which was not studied in most of the previous work on

packet or cell-level
ow control based on control theory.

B. Resource management

Recent research work on resource management mecha-

nisms at the systems level also expressed much interests

in studying various kinds of adaptive capabilities. Partic-

ularly, in wireless networking and mobile computing re-

search, because of resource scarcity and bursty channel

errors in wireless links, QoS adaptations are necessary in

many occasions. For instance, in the work presented in

[1], a set of adaptive resource management mechanisms

was proposed that apply to the unique characteristics of

a mobile environment. These adaptive mechanisms in-

clude the division of services into several service classes,

predictive advanced resource reservation, and the notion

of cost-e�ective adaptation by associating each adaptation

action with a minimal lost of network revenue. Further-

more, Bianchi et al. [21] present a utility-fair allocation

scheme implemented by a centralized adaptation controller,

which is similar to our approach with respect to de�nition

of fairness and the centralized approach to design adapta-

tion strategies.

Another example is the work of Noble et al. in [5], who

investigate an application-aware adaptation scheme, focus-

ing on two characteristics: �delity of data and agility of

adaptation. Similar to our work, this work also builds

on the separation principle between adaptation algorithms

controlled by the system and application-speci�c mecha-

nisms addressed by the application. This work is di�erent

from our approach since applications handle noti�cations

and upcalls from the system, and adapt by themselves.

Another related category of work studies the problem of

dynamic resource allocations, often at the operating sys-

tems level [22] [23][24]. The work in [23] focuses on max-

imizing the overall system utility functions, while keeping

QoS received by each application within a feasible range

(e.g., above a minimum bound). In [22], a global resource

management system is proposed, which relies on middle-

ware services as agents to assist resource management and

negotiations. In [24], the work focuses on a multi-machine

environment running a single complex application, and the

objective is to promptly adjust resource allocation to adapt

to changes in application's resource needs, whenever there

is a risk of failing to satisfy the application's timing con-

straints.

In contrast to the above related work, our work dis-

tinguishes in its domain, focus and solutions. First, our

work on the Task Control Model focuses on the analysis of

the adaptation process, which is more natural for model-

ing with a control-theoretic approach, rather than overall

system utility factors. Second, rather than focusing on a

multi-machine environment running a single complex ap-

plication, our work focuses on an environment with multi-

ple applications competing for a limited amount of shared

resources. Third, our work focuses on proposing various

algorithms and models for the middleware components to

actively control the application, rather than providing re-

source allocation and management services in the execu-

tion environment to meet the application's needs. In other

words, we focus on assisting to adapt applications, rather

than on resource allocations in the system.

C. Middleware Services

In addition to studies in the networking and resource

management levels, many active research e�orts are also

dedicated to various adaptive functionalities provided by

middleware services. For example, [11] proposes real-time

extensions to CORBA which enables end-to-end QoS spec-

i�cation and enforcement. [25] proposes various extensions

to standard CORBA components and services, in order to

support adaptation, delegation and renegotiation services

to shield QoS variations. The work applies particularly in

the case of remote method invocations to objects over a

wide-area network.

Our work is orthogonal and complementary to the above

approaches, since the middleware control framework is

based on underlying service enabling platforms, which is

CORBA in our experimental testbed. In addition, we

attempt to provide adaptation support to the applica-

tions proactively, rather than integrating adaptation mech-

anisms in CORBA services so that they are provided trans-

parently to the applications. Furthermore, we develop

mechanisms that are as generic as possible, applicable to

applications with various demands and behavior. Finally,

we provide support in the middleware control framework

with respect to multiple resources, notably CPU and net-

work bandwidth.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS 16

D. Application-speci�c Mechanisms

Recent research e�orts are also particularly interested in

adaptation problems in the application level. For example,

the work presented in [26] and [3] uses software feedback

mechanisms that enhance system adaptiveness by adjust-

ing video sending rate according to on-the-
y network vari-

ations. In [27], Ha�d et al. propose application adaptation

at the con�guration level, which carries out transparent

transition from primary components to alternative compo-

nents, as well as at the component level, which redistributes

resources in di�erent components so that a QoS tradeo�

can be made. In [28], a software framework is proposed for

network-aware applications to adequately adapt to network

variations. [29] and [30] propose adaptive �ltering mech-

anisms to reshape video streams, performed in either end

systems or intermediate nodes in a multipeer distributed

environment. In the work of Goktas et al. [31], the time

variations along the transmission path of a telerobotics sys-

tem are modeled as disturbances in the proposed perturbed

plant model, in which the mobile robot is the target to be

controlled. This is similar to our work that attempts to

apply control theory to analyze the adaptation dynamics

in a broader range of applications, and in a more rigorous

fashion. In [32], a control model is proposed for adaptive

QoS speci�cation in an end-to-end scenario. In the work

of Bolot et al. [33], rate and error control schemes are

proposed at the application level for a video conferencing

application in best-e�ort networks, also utilizing a scheme

similar to rate-based feedback control.

Similar to the above, our approach models applications

as a series of tasks, assisted by the feedback loop. However,

we di�er in our approach of using middleware components

to control the adaptation behavior of applications, so that

properties such as fairness can be derived in the end sys-

tems. Furthermore, the algorithms proposed to determine

timing of adaptation in most previous work are heuristic

in nature, and the analysis of various adaptive transient

properties such as stability and agility are not addressed

formally.

VIII. Conclusions

In this work, we presented a middleware control frame-

work as a viable approach to reason about and model the

dynamic control of QoS adaptations in
exible distributed

applications. This framework includes two major compo-

nents. The Adaptor follows control algorithms based on the

Task Control Model. The Con�gurator takes output pro-
duced by the Adaptor and makes decisions on adaptation

choices based on the Fuzzy Control Model. Both are im-

plemented as middleware components and take advantage

of standard service enabling platforms such as CORBA to

control the applications. Analytical and experimental re-

sults show that this framework improves the adaptation

awareness and e�ectiveness of
exible applications with re-

spect to the preservation of critical quality parameters,

while the adaptation choices are highly
exible and con-

�gurable according to the needs of individual applications.

We are able to reason about and validate such properties as

stability, agility, and equilibrium fairness in the adaptation

process, which was not possible in previous work. Further-

more, our experimental results using the distributed visual

tracking application convincingly validate our analytical re-

sults and show the feasibility and practicality of deploying

exible applications under the control of the middleware

control framework.

Acknowledgments

We would like to thank Won J. Jeon, Jun-hyuk Seo, Ki-

hun Kim and Mukul Chawla for their contributions to the

work, as well as the reviewers for their most helpful and

constructive comments to improve the presentation of this

paper.

Appendix A: Proof of Equilibrium Fairness

Proof: Let xs and �us be the equilibrium values cor-

responding to the system established by Equation (9) and

(12).

xs = 	Cmax
fxs + ls�us +Rs � cg (20)

i ls �us = 	ri f
i ls �us + �(xcs � xs)g (21)

Ignoring the threshold cases, the solution to Equation

(20) and (21) is

�us =
c�Rs

ls
(22)

xs = xcs (23)

Equation (23) directly proves the �rst part of the theo-

rem. Assume the stable set of adapted tasks is As, Equa-

tion (22) can be rewritten for task Ti at equilibrium as

follows:

(ui)s =
i ls �us =
wi lsP
Tj2As

wj

c�Rs

ls

=
wi lsP
Tj2As

wj

(
c

Ms

+
(Ms � ls)

c
Ms

�Rs

ls

)
(24)

where (ui)s is the stable equilibrium that ui(k) converges

to.

Equation (24) presents the following weighted max-min
fairness property. Each task Ti can be granted at least

a wi share of the resources. In addition, if Ms � ls tasks

request less than their fair share, namely, only ls tasks

are adapted, then the free portion
(Ms�ls)c

Ms
� Rs can be

distributed among those Target Tasks which are degraded

and thus need these resources. The distribution can be

done according to their static weights wi, which identify

their relative priority and importance. This concludes the

proof.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS 17

Appendix B: Proof of Asymptotic Stability

Proof:
We de�ne

e(k) = xc(k)� x(k) (25)

ûi(k) =
i l(k) [�u(k)�
c�R(k)

l(k)
] (26)

In order to examine the asymptotic stability properties,

we simplify the dynamic equations (9) and (12) in the

neighborhood of equilibrium by: (1) removing the nonlin-

earities introduced by 	b(a) at both thresholds; (2) treat-

ing l(k) and R(k) as constants in the neighborhood of the

equilibrium. Thus, Equations (9) and (12) become:

ûi(k) = ûi(k � 1) + � e(k) + � [e(k)� e(k � 1)] (27)

x(k) = x(k � 1) +
1

i
û(k � 1) (28)

In order to derive the stability conditions, we perform z-
transform on Di�erence Equations (27) and (28) to obtain

Di(z) and Gi(z), respectively. The transfer function Fi(z)

of the entire system is [6]:

Fi(z) =
Di(z)Gi(z)

1 +Di(z)Gi(z)
=

1

i
[(�+ �)z � �]

z2 + (�

i
+ �

i
� 2)z � (�

i
� 1)

(29)

We then consider the discrete characteristic equation of

the above:

z2 + (
�

i
+

�

i
� 2)z � (

�

i
� 1) = 0 (30)

According to theorems in the digital control theory [6],

in order for the system to be stable, all roots of Equation

(30) need to be within the stability boundary, which is

the unit circle. In other words, for any root z, we need

jzj < 1. It can be proved that this property holds if the

following condition is valid (the proof is omitted for space

limitations):

� > 0; � > 0; and �+ 2� < 4
i (31)

Equation (31) concludes the proof.

Appendix C: The Fuzzy Inference Engine

The fuzzy inference engine operates by using the dual

concepts of generalized modus ponens and compositional

rule of inference [13] [10].

The concept of generalized modus ponens is derived from

the operation of modus ponens in binary logic. Modus

ponens is the operation to draw a conclusion from two

premises. Assume that we have the proposition p : "x is

A" and the implication if-then rule p! q : "if x is A then

y is B" as true, we can conclude that the proposition q :

"y is B" has to be true. In fuzzy logic theory, Generalized

modus ponens extends the above operation in the following

manner. If we have propositions p : "X is A" and q : "Y

is B" where X and Y are linguistic variables and A and

B are linguistic values, when both the if-then implication

rule p ! q : "if X is A then Y is B" and proposition p� :

"X is A�" is valid, where A� is not necessarily the same

as A, we can perform the generalized modus ponens and

conclude q� : "Y is B�". The membership function � of

B� is calculated by using the sup�� compositional rule of

inference and Larsen's product operation rule:

�B�(y) = sup
x

[�A�(x) ? �A(x)�B(y)] (32)

where ? is a t-norm operator. An usual selection is the

intersection de�nition of t-norm: u ? w = min(u;w).

When multiple input linguistic variables exist in the

rule, inference can be extended by interpreting the fuzzy

set of A(k), which is ~A(k), as the product of fuzzy sets

A
(k)
1 ; : : : ; A

(k)
n . Its membership function is de�ned as:

�
A

(k)
1 �:::�A

(k)
n
(x1; � � � ; xn) = �

A
(k)
1

(x1)?� � �?�A(k)
n
(xn) (33)

where ? is the previously de�ned t-norm operator and

k = 1; : : : ;m.

If a rule base contains multiple rules, overall decision

of the inference engine is obtained by taking the union of
~B(k)�(k = 1; : : : ;m), which is the fuzzy sets of linguistic

values B(k)� calculated by Equation (32) and (33). The

calculation is as follows:

�B(1)�
[���[B(m)�(y) = �B(1)�(y)
 � � �
 �B(m)�(y) (34)

where
 represents the s-norm operator for de�ning dis-

junctions in approximate reasoning. A usual selection is

u
 w = max(u;w).

Appendix D: The Fuzzification Process

The mapping process in the fuzzy inference engine cal-

culates fuzzy sets as results, taking fuzzy sets as inputs.

The calculated union of fuzzy sets ~B(k)�(k = 1; : : : ;m) is

the output of the inference engine, while the fuzzy set ~A�

is the input. However, we do not normally have the fuzzy

set ~A� in advance, since we normally deal with numerical

crisp values. The fuzzi�cation process takes the numerical

crisp value xin as input, and generates a fuzzy set ~A�.

With known input xin, if there is no uncertainty in the

numerical values, a simple fuzzi�cation process can be:

�A�(x) =

�
1; if x = xin
0; if x 6= xin

(35)

Otherwise, if there is some uncertainty in the numerical

value xin, the membership values of the elements of ~A� can

be selected such that, �A�(x) is taken as 1 if x = xin, and

�A�(x) decreases linearly from 1 as x moves farther away

from xin.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS 18

In the former case where no uncertainty is involved, since
~A� will contain only a single element with membership

value equal to 1, calculation in Equation (32) will become

�B�(y) = �A(xin)�B(y) (36)

In the case of multiple input variables, we substitute

Equation (33) in (36) and obtain

�B�(y) = min[�A1
(xin); � � � ; �An

(xin)]�B(y) (37)

to compute the output of one inference rule. Finally, we

compute an overall decision by applying Equation (34) to

aggregate the calculated ~B(k)�; k = 1; : : : ;m. This shows

that the simple fuzzi�cation process shown in Equation

(35) simpli�es the inference process in the inference engine.

Appendix E: The Defuzzification Process

Since the decision of the inference engine is expressed in

fuzzy sets, in order to be able to use it as a control signal for

applications, it has to be mapped to recon�guration options

or crisp numerical values of parameter-tuning actions. The

defuzzi�cation process produces a non-fuzzy output, yout,

whose objective is to represent the possibility distribution

of the inference.

There is no single method for performing the defuzzi�-

cation. An example, the Center of Gravity method divides

the integral of the area under the membership function of

the output fuzzy set (Equation 37) into half, and the de-

fuzzi�ed value yout marks the dividing point. Formally in

the continuous case, this results in

yout =

R
y�B�(y)dyR
�B�(y)dy

(38)

Once yout is obtained, the mappings to the actual control

actions are straightforward. If ~B is a fuzzy set correspond-

ing to a recon�guration option (e.g. drop tracker, etc.)

and �B(yout) 6= 0, the corresponding recon�guration is ac-

tivated. Otherwise, if ~B is a fuzzy set corresponding to a

parameter-tuning action associated with the parameter p

(e.g. chopped image associated with image size) and the

tuning range [pmin; pmax], then the modi�ed value of p is

set at

p = (pmax � pmin) � �B(yout) + pmin (39)

when �B(yout) 6= 0.

References

[1] V. Bharghavan, K.-W. Lee, S. Lu, S. Ha, J. Li, and D. Dwyer,
\The TIMELY Adaptive Resource Management Architecture,"
IEEE Personal Communications Magazine, vol. 5, no. 4, August
1998.

[2] H. Chu and K. Nahrstedt, \CPU Service Classes for Multimedia
Applications," in Proceedings of IEEE International Conference
on Multimedia Computing and Systems 1999, June 1999, vol. 1,
pp. 296{301.

[3] Z. Chen, S. M. Tan, R. H. Campbell, and Y. Li, \Real
Time Video and Audio in the World Wide Web," World
Wide Web Journal, vol. 1, January 1996, available from
http://choices.cs.uiuc.edu/Papers/Vosaic/vosaic.pdf.

[4] M. Satyanarayanan, \Fundamental Challenges in Mobile Com-
puting," in Proceedings of the Fifteenth ACM Symposium on
Principles of Distributed Computing, May 1996, available from
http://www.cs.cmu.edu/afs/cs/project/coda/Web/docdir/
podc95.pdf.

[5] B. Noble, M. Satyanarayanan, D. Narayanan, J. Tilton, J. Flinn,
and K. Walker, \Agile Application-Aware Adaptation for
Mobility," in Proceedings of the 16th ACM Symposium on
Operating Systems and Principles, Saint-Malo, France, Octo-
ber 1997, available from http://www.eecs.umich.edu/ bno-
ble/papers/s16.ps.

[6] G. Franklin and J. Powell, Digital Control of Dynamic Systems,
Addison-Wesley, 1981.

[7] D. Hull, A. Shankar, K. Nahrstedt, and J. Liu, \An End-to-End
QoS Model and Management Architecture," in Proceedings of
IEEE Workshop on Middleware for Distributed Real-time Sys-
tems and Services, December 1997, pp. 82{89.

[8] S. Keshav, \A Control-Theoretic Approach to Flow Control," in
Proceedings of ACM SIGCOMM '91, September 1991, pp. 3{15.

[9] W. Tsai, Y. Kim, and C-K Toh, \A Stability and Sen-
sitivity Theory for Rate-based Max-Min ABR Flow Con-
trol," in Proceedings of 6th IEEE Singapore Interna-
tional Conference on Networks, June 1998, available from
http://www.eng.uci.edu/ netrol/publication/SICON98-100.ps.

[10] D. Driankov, H. Hellendoorn, and M. Reinfrank, An Introduc-
tion to Fuzzy Control, Springer-Verlag, 1996.

[11] D. Schmidt, D. Levine, and S. Mungee, \The Design and Perfor-
mance of Real-Time Object Request Brokers," Computer Com-
munications Journal, vol. 21, no. 4, April 1998.

[12] G. Hager and K. Toyama, \The XVision System: A General-
Purpose Substrate for Portable Real-Time Vision Applications,"
Journal of Computer Vision and Image Understanding, vol. 69,
no. 1, pp. 23{37, 1997.

[13] A. Pitsillides, Y. A. Sekercioglu, and G. Ramamurthy, \E�ective
Control of TraÆc Flow in ATM Networks Using Fuzzy Explicit
Rate Marking (FERM)," IEEE Journal of Selected Areas in
Communications, vol. 15, no. 2, pp. 209{225, February 1997.

[14] Object Oriented Concepts Inc., \ORBacus for C++ and Java,"
ftp://ftp.ooc.com/pub/OB/3.1/OB-3.1.1.pdf, January 1999.

[15] R. Jain, Control-theoretic Formulation of Operating Systems
Resource Management Policies, Garland Publishing Company,
1979.

[16] D.-M. Chiu and R. Jain, \Analysis of Increase and Decrease
Algorithms for Congestion Avoidance in Computer Networks,"
Computer Networks and ISDN Systems, vol. 17, pp. 1{14, 1989.

[17] L. Benmohamed and S. Meerkov, \Feedback Control of Conges-
tion in Packet Switching Networks: The Case of a Single Con-
gested Node," IEEE/ACM Transactions on Networking, vol. 1,
pp. 693{708, December 1993.

[18] S. Mascolo, D. Cavendish, and M. Gerla, \ATM Rate
Based Congestion Control Using a Smith Predictor: an
EPRCA Implementation," in Proceedings of IEEE IN-
FOCOM '96, San Francisco, 1996, available from
http://www.cs.ucla.edu/ dirceu/infosmith.ps.

[19] L. Benmohamed and Y.T. Wang, \A Control-Theoretic ABR
Explicit Rate Algorithm for ATM Switches with Per-VC Queue-
ing," in Proceedings of IEEE INFOCOM '98, Session 2B, 1998.

[20] R. Ribler, H. Simitci, and D. Reed, \The AutoPilot
Performance-Directed Adaptive Control System," http://www-
pablo.cs.uiuc.edu/Publications/publications.htm, November
1997.

[21] G. Bianchi, A. Campbell, and R. Liao, \On Utility-Fair Adap-
tive Services in Wireless Networks," in Proceedings of Sixth
International Workshop on Quality of Service, May 1998, pp.
256{267.

[22] J. Huang, Y. Wang, and F. Cao, \On developing distributed
middleware services for QoS- and criticality-based resource
negotiation and adaptation," Journal of Real-Time Systems,
Special Issue on Operating System and Services, 1998, available
from http://www.htc.honeywell.com/projects/arm/papers/
QoS Distributed.ps.

[23] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek,
\A Resource Allocation Model for QoS Management," in
Proceedings of 18th IEEE Real-Time Systems Symposium,
December 1997, available from http://www.cs.cmu.edu/
afs/cs/project/rtmach/public/papers/qos.ps.

[24] D. Rosu, K. Schwan, S. Yalamanchili, and R. Jha, \On
Adaptive Resource Allocation for Complex Real-Time Ap-

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS 19

plications," in Proceedings of 18th IEEE Real-Time
Systems Symposium, December 1997, available from
http://www.cs.gatech.edu/systems/papers/daniela/rtss97.ps.

[25] R. Vanegas, J. Zinky, J. Loyall, D. Karr, R. Schantz, and
D. Bakken, \QuO's Runtime Support for Quality of Service
in Distributed Objects," in Proceedings of the IFIP Interna-
tional Conference on Distributed Systems Platforms and Open
Distributed Processing (Middleware '98), The Lake District,
England, September 1998, available from http://www.dist-
systems.bbn.com/papers/1998/Middleware.

[26] S. Cen, C. Pu, R. Staehli, C. Cowan, and J. Walpole, \A Dis-
tributed Real-Time MPEG Video Audio Player," Lecture Notes
in Computer Science, vol. 1018, pp. 151{162, 1995.

[27] A. Ha�d and G. Bochmann, \Quality of Service Adap-
tation in Distributed Multimedia Applications," ACM
Springer-Verlag Multimedia Systems Journal, vol. 6, no. 5,
September 1998, available from http://www.csd.uwo.ca/ fac-
ulty/hakim/papers/MMSystems.ps.

[28] J. Bolliger and T. Gross, \A Framework-Based Approach to the
Development of Network-Aware Applications," IEEE Transac-
tions on Software Engineering, Special Issue on Mobility and
Network-Aware Computing, vol. 24, no. 5, pp. 376{390, May
1998.

[29] A. Campbell and G. Coulson, \QoS Adaptive Transports: De-
livering Scalable Media to the Desk Top," IEEE Network Mag-
azine, vol. 11, no. 2, pp. 18{27, March 1997.

[30] N. Yeadon, F. Garcia, D. Hutchison, and D. Shepherd, \Fil-
ters: QoS Support Mechanisms for Multipeer Communications,"
IEEE Journal on Selected Areas in Communications, Special Is-
sue on Distributed Multimedia Systems and Technology, vol. 14,
no. 7, pp. 1245{1262, September 1996.

[31] F. Goktas, J. Smith, and R. Bajcsy, \Telerobotics over Com-
munication Networks," in Proceedings of 36th IEEE Conference
on Decision and Control, San Diego, California, December 1997,
pp. 2393{2399.

[32] J. DeMeer, \On the Speci�cation of End-to-End QoS Control,"
in Proceedings of the Fifth International Workshop on Quality
of Service, May 1997, pp. 195{198.

[33] J-C. Bolot and T. Turletti, \A Rate Control Scheme for Packet
Video in the Internet," in Proceedings of IEEE INFOCOM '94,
Toronto, Canada, June 1994, pp. 1216{1223.

Baochun Li received his B.Engr. and M.S. de-
grees in computer science from Tsinghua Uni-
versity, Beijing, P.R. China, and University
of Illinois at Urbana-Champaign, respectively.
Currently he is a PhD candidate in the depart-
ment of computer science at University of Illi-
nois at Urbana-Champaign. His research in-
terests include quality of service, application-
aware adaptation, multimedia networking, re-
source management, and distributed comput-
ing. His email address is b-li@cs.uiuc.edu.

Klara Nahrstedt (M' 94) received her A.B.,
M.Sc degrees in mathematics from Humboldt
University, Berlin, Germany, and Ph.D. in
computer science from the University of Penn-
sylvania. She is an assistant professor at the
University of Illinois at Urbana-Champaign,
Department of Computer Science, where she
does research on Quality of Service (QoS)-
aware systems with emphasis on end-to-end
resource management and middleware issues
for distributed multimedia systems. She is the

coauthor of the widely used multimedia book Multimedia: Comput-
ing, Communications and Applications published by Prentice Hall,
and the recipient of the Early NSF Career Award and the Junior
Xerox Award for Research Achievements. Her email address is
klara@cs.uiuc.edu.

