
To appear in IEEE Infocom 2000.

A Measurement-Based Admission-Controlled Web Server

Kelvin Li Sugih Jamin†

Electrical Engineering and Computer Science Department
University of Michigan

†
 Sugih Jamin's research is supported in part by the NSF CAREER Award ANI-9734145 and the Presidential Early Career Award for Scientists and Engineers

(PECASE) 1998. Additional funding is provided by MCI WorldCom, Lucent Bell-Labs, and Fujitsu Laboratories America, and by equipment grants from Sun
Microsystems Inc. and Compaq Corp.

Ann Arbor, MI 48109-2122
{nivlek, jamin}@eecs.umich.edu

Abstract- Current HTTP servers process requests using a
first come first serve queuing policy. What this implies is that
the web server must process each request as it arrives. The
result is that the more requests a client makes, the more replies
the server will generate in response. Unfortunately, the band-
width of the network and the processing capabilities of the
server are often limited resulting in an aggressive client, or sets
of clients, consuming the majority of the server’s resources,
limiting other clients’ ability to use their fair allocation. While
the traditional behavior of a web server works efficiently for a
web site that is non-discriminating towards all clients, guaran-
teeing service for preferred clients from the server itself is not
yet possible. This paper describes the algorithm we have de-
signed and implemented on the Apache HTTP server, which
has been shown to be effective in allocating configurable fixed
percentages of bandwidth across numerous simultaneous cli-
ents, independent of the aggressiveness of the clients’ requests.

I. INTRODUCTION

Traditional web servers operate using a first come first
serve queuing policy. As each client makes a request, the
server processes the request, generates a reply, then accepts
the next request for processing. The more requests a client
produces for the server, the more responses the server will
generate to match. If we define the server’s resources by its
limiting hardware capabilities, specifically server network
bandwidth and server processing cycles, then over a fixed
interval of time, the client will consume an amount of the
server’s resources proportional to the number of requests it
makes. While this mechanism is efficient for serving clients
at low server utilization, when server load increases to satu-
ration, some clients may receive poor service or no service at
all. Poor service is defined as being a state when a high re-
sponse time to required resource ratio exists. While this may
still not be of concern to non-discriminating administrators
of web service, this problem of indiscriminate service is of
great interest to service providers who have guaranteed re-
sources to certain clients of preferred status.

Web farms, collections of web servers maintained by a
common administrator hosting one or more web sites, are
becoming increasingly popular to establish because they
allow individuals and organizations to outsource the admini-

stration of their web sites. In order to provide good service
to such a wide variety of clients, it is important to the ad-
ministrators that each client can depend on having band-
width guarantees, perhaps proportional to an amount they
are willing to buy from the web farmer. An admission-
controlled web server would be required here to keep an
unexpectedly popular web site from suppressing the service
from other sites in the farm.

Because of the random nature of web and network traffic,
a web server cannot be expected to accurately regulate its
own utilization without the ability to determine its own
bandwidth consumption. Thus, parameter-based admission-
controlled web servers such as [1] cannot adapt at a fine
enough granularity to allow the server to be optimally util-
ized at all times. It is when resources become scarce that the
fair service of clients is placed in jeopardy. Our measure-
ment-based admission-control algorithms were specifically
designed to regulate the usage of resources at this point.

What this paper describes is the algorithm that we have
developed to allow the web administrator to guarantee re-
sources to preferred clients in spite of the degree of compe-
tition for those available. These clients that are requesting
more resources than they are entitled to are deemed aggres-
sive and regulated until they return to a more passive state.

II. HTTPD BACKGROUND

The difficulty in effectively managing the server’s r e-
sponse to client requests is a result of the server’s archite c-
ture. Briefly, HTTP servers are daemon processes that listen
for client requests through connections on a particular pre-
ferred socket port. When the client makes a connection, the
server attaches a child process to it by either spawning one
anew or awakening a dormant one. The request is then
passed to that child for processing. Although at any par-
ticular point in time multiple child processes may be concur-
rently active, the requests are still funneled through the dae-
mon process which is restricted by the listen queue’s first in
first out (FIFO) queuing policy. The listen queue is a buffer
that places the client on hold, while the server passes its
connection to one of its child processes. This keeps a con-

nection request from being lost if the server cannot respond
quickly enough.

The length of this listen queue can be specified during
the listen socket API call when the server is started. The
length of the listen queue is very important. A short listen
queue may result in lost connection attempts. As a result, an
aggressive client will have a higher probability of filling the
queue as soon as a position becomes available. A long listen
queue may contain stale entries, which are requests no
longer useful for processing since replies beyond a client
specified timeout period are ignored. In addition, when a
long listen queue becomes filled with entries, request laten-
cies tend to accrue.

One of the requirements behind a web server that can
deal with aggressive clients is that the preferred clients’ r e-
quests must be capable of being placed on the listen queue.
It is important for an algorithm which does admission con-
trol to be able to remove requests off the listen queue as
quickly as possible, especially if the requests will be ignored
or delayed, so that preferred clients can be admitted and
processed as soon as possible. While our algorithm does not
use a separate process to clean out the listen queue to set
aside preferred clients for pre-admission, its behavior ad-
heres to this necessity by deferring non-preferred clients so
that CPU time can be used to remove the next request.

III. MEASURING BANDWIDTH

The perception of bandwidth can be understood from dif-
ferent aspects. First, there is the network bandwidth, which
is the actual number of bits transferred within a finite
amount of time. This is a fixed upper limit of the physical
network and interfaces. To measure this quantity of
bits/second from the server is a difficult if not an impossible
task. To do so requires a timer to be set immediately before
the data is transmitted and the measurement to be completed
as soon as the transmission has ceased. With the myriad of
system calls necessary to send a stream of data out of the
server, actual network bandwidth can not be precisely meas-
ured because times recorded may be obfuscated by function
call overhead and process preemption. Because multiple
processes and threads need to share the network interface,
measuring actual network bandwidth from the server meets
many challenges. As we will discuss, actual network band-
width needs only to be estimated.

The perception of bandwidth can also be understood
from the perspective of the client. This is essentially the
response time of the request. When users complain about a
slow network, it is actually a misnomer for a busy network.
Essentially, the client or server needs to wait for the network
to become free before additional transmissions can be made.
This perceived bandwidth measure can still be quantitatively
measured by the following formula:

Time Response

dTransferre Bytes
Bandwidth Perceived =

(1)

The perceived bandwidth can be accurately measured by
the clients and server. From the server, a timer can be
loosely set sometime before the transmission of data, al-
though necessarily after admission. The response time can
then be measured after the data has been sent. (This as-
sumes synchronous/blocking sends.) Overhead for process-
ing the request, such as reading the file from disk, and pre-
and post-processing of requests is included in the response
time. This overhead is independent of file size, and so it
necessarily reduces the perceived bandwidth of the request
by a constant amount. Perceive bandwidth is therefore not a
linear function of file size. This implies that measuring net-
work bandwidth by itself is not an accurate measure from
which to determine server utilization. Clients that request
several small files have a lower perceived bandwidth utili-
zation measurement than clients who request a few large
files although their total network utilization is equal or less
than the latter. The result is that clients with smaller re-
quested files will receive preferential treatment. As long as
the time for data transfer dominates the perceived response
time, the perceived bandwidth is an accurate enough meas-
ure for measurement-based admission-control. Unfortu-
nately, this is not the case given current server technologies.
Processing time is a significant portion of response time at
common file sizes.

Because the processing time cannot be distinguished
from data transfer time, the client application will only be
able to present the data to the user at the rate of the per-
ceived bandwidth. What this allows the server to do is defer
the transmission of data to the client on a per request basis
so that the client will perceive diminished bandwidth.
Without completely starving the aggressive client and caus-
ing the connection to be timed out, aggressive clients can
still be serviced with intermittent delays proportional to their
over-activity, while more passive clients are still serviced
inside the aggressive client’s delay period.

To deal with the natural burstiness of network traffic, the
server keeps track of the current average bandwidth by using
exponential averaging:

[] ()[]αα −⋅+⋅= 1bw old bw new bw avg (2)

Here, α is a constant fractional value between 0.0 and 1.0.
The larger the value of α, the more quickly the average
bandwidth is adjusted to represent the current state of the
server’s utilization. With values of α too large, instantane-
ous values of average bandwidth are not representative of
true network utilization. Contrariwise, as values of α be-
come too small, average bandwidth measurements adjust to
their actual value too slowly resulting in poor utilization
when the server cannot react to transient windows of free

bandwidth. Values of α that worked well ranged from 0.05
to 0.30.

Our initial trials to determine how similar perceived
bandwidth from the server would be to the client led us to
develop a simple bandwidth measurement tool named
bw_tester. This program emulated client requests by
repeatedly placing HTTP requests in series. To simulate N
concurrent clients, an instance of bw_tester was simulta-
neously started on N separate machines. Bandwidth meas-
urements commenced a few seconds after requests were ini-
tiated, and measurements ceased a few moments before the
last request. This ensured that bandwidth measurements
were only made when all N clients were concurrently active.
Each bw_tester instance made requests sequentially. As
soon as a request was completed, the next connection was
immediately made for the new request. The results of the
bandwidth measurements agreed with those derived from the
server. As we continued experimenting by considering trials
with various file lengths, we found that the perceived band-
width was dependent on the file size. The observations sug-
gested that as the file size decreased, the measured perceived
bandwidth would also diminish. This expected phenomenon
was a result of the increased proportion of time spent on a
request as a result of constant processing overhead. Fig. 1
illustrates the outcome from this study.

Determining the utilization of a web server based solely
on the bandwidth measurement may not be entirely accurate.
A web server can have very low bandwidth utilization and
still be fully saturated or overloaded if the requested file
sizes are small. Fortunately, most files that are requested on
the web, have a file size between 100 and 100,000 bytes [2].

0

1

2

3

4

5

6

0 1 2 3 4 5 6
File Size

(Log10(bytes))

B
an

dw
id

th
(L

og
10

 (
by

te
s/

se
co

nd
))

Fig. 1. File Size versus Maximum Measured Bandwidth

IV. ADMISSION PERCEPTION

Since the web server must examine all client requests in
order to establish their source, the concept of admission is
really a decision as to whether the requests will be serviced
by one of the child processes or not. The sooner this deci-
sion is made the more efficiently the server will operate.

A properly working algorithm will reject requests from a
client when it has both received more than its allocation of
bandwidth and when the server is fully utilized. This means
that if the server is not saturated with requests, any client
may take advantage of the unused resources.

When the network or server is busy, users can perceive
poor service a number of ways.

1. The user receives a message from the client appli-
cation explaining that the server is not responding.

2. The server has stalled in the middle of a transmis-
sion.

3. The requests’ data arrives back to the client at a
very slow pace.

The least disquieting of the above three scenarios is the
third. If the information from the server is critical, then it is
better to receive data slowly, then not at all. The first and
second cases waste bandwidth because the user may try to
reload by placing the request again. When another request is
waiting in the listen queue, the server will consume proc-
essing time trying to examine the request again for admis-
sion determination. If the request is made by an automated
information retrieval service, then a user will not be present
to observe the first two most disquieting scenarios, which
tend to reduce server utilization by influencing user morale.
Any automated system that uses brute force repetition to
attain services will cause the servers to react wastefully.
This is why scenario 3 is the most favorable method of
achieving control over server utilization. Here, the auto-
mated system will simply have to wait for a reply like the
other clients.

From our initial bandwidth measurement trials we dis-
covered that the amount of overhead required to process a
request is a very significant portion of the response time. If
processing time is to be spent, it might as well not be in vain
if the client can be satiated with the delivery of data. By this
principle, the user will perceive the admission control of our
algorithm by the third scenario. If the user appears to the
server to be an overly aggressive client, then the second sce-
nario will be observed. In the worst case, as with all web
servers, the first scenario will occur when the listen queue is
full.

The configuration for admission control is specified at
the time of server startup. The first configuration parameter
is the IP address or subnet of the machine or set of machines,
along with the allocation percentage. Rejecting admission
for all groups or for a particular machine is also possible; the
allocation percentage would be set to zero. To specify ad-
mission constraints is to specify the percentage of perceived
bandwidth that each client should receive. Configuration for
IP address or subnet can be done with any pattern matching
language since the IP address of the sending request is
merely a string.

The total bandwidth also needs to be specified. This is a
fixed value that represents the maximum bandwidth that

should be available to all clients. Each client can be guar-
anteed a percentage of this maximum bandwidth when
specified. There are many benefits of specifying a maxi-
mum bandwidth rather than allowing the server to serve to
capacity. Because a fully-loaded server may be less efficient
and reliable, setting the total available bandwidth to a value
less than the actual maximum bandwidth allows the server to
shed load before it loses efficiency. In addition, multiple
web servers may be placed on the same local area network
where their network bandwidth will need to be shared.

V. ALGORITHMS

The measurement-based admission-control algorithm is
easy to implement. Only a few blocks of new code need to
be added to the existing server code. Working with web
server code is analogous to working with any concurrent-
processing paradigm. The primary daemon process is re-
sponsible for preparing shared-memory and other one-time
initialization routines. Each child process working concur-
rently has a distributed algorithm that contributes to the
overall behavior of the server. A managing process ensures
that each of the parallel child processes conform to their
correct behavior by overseeing the accuracy of variables
necessary for inter-child communication.

A. Primary Daemon Process

In addition to the original duties, the primary daemon
process allocates and initializes the shared memory and pre-
pares the required semaphores. The configuration files,
which specify client bandwidth allocation and the total
bandwidth available to all clients, are read into shared mem-
ory. The Bandwidth Manager process is also spawned at
this time.

B. Bandwidth Manager Process

The Bandwidth Manager process is a new process that is
responsible for maintaining the timeliness of the information
stored in the shared memory. As will be discussed, the
bandwidth information is updated each time a request is
made. If no requests have been made, the current bandwidth
utilized by the client should be properly updated. The
Bandwidth Manager periodically reduces the average band-
width of each client if the client has not triggered an update
after a specified amount of time. This is also done by expo-
nentially averaging zero into the current average bandwidth
of the client. The α value would not necessarily be the same
as that used to update the average bandwidth during request
activity. In this case, α would be inversely proportional to
the frequency that the Bandwidth Manager is active.

By tallying up the individual average bandwidths of each
client, the Bandwidth Manager determines the maximum
measured bandwidth of the server at each processing inter-
val. The importance of this value in predicting admission

control will be discussed in the child process algorithm de-
scription.

Since the Bandwidth Manager is constantly active, al-
lowing it to update the shared memory too frequently will
cause the server to waste processing time that could be spent
servicing requests. The server may also not be optimal if the
Bandwidth Manager is not activated often enough to ensure
the bandwidth measurements accurately reflect the amount
actually available. Good results were yielded with an acti-
vation frequency of once every half to one second.

C. Child Processes

Since admission control is done on a per request basis,
each child process is equipped with the algorithms necessary
to determine whether to service the request or not.

A very convenient granularity at which to control overall
utilization would be per request because the expected proc-
essing time of the child processes next action can be estab-
lished based on the requested file’s size alone. Since a file
must be transmitted in its entirety to be of value to the client,
finer grain admission control would result in fragmented and
incompletely sent files as a result of transmission timeouts.
At a higher granularity and without the foreknowledge of the
extent of processing required by the server’s next action,
regulating bandwidth would be based on past bandwidth
measurements. Because the interval length between succes-
sive requests may not necessarily follow a well-understood
probability distribution, future bandwidth utilization cannot
be accurately conditioned based on utilization history alone.
As a result, per request admission control appears to be the
best strategy to ensure both accurate regulation of bandwidth
and the least likelihood of wasteful usage of critical re-
sources.

A request can be found in one of three stages in the child
process:

Processing. The processing stage occurs when the request is
being processed. Processing is required for a request to be
serviced to completion. This includes reading the file re-
quested from disk, and sending the data over the network to
the client. Any number of child processes can be in the
processing stage depending on the capabilities of the server.
Since it is likely that several child processes are in the proc-
ess stage simultaneously and are therefore updating the
bandwidth measurement variables, a semaphore is used to
protect the shared memory. Child processes wait by sleep-
ing a random amount of time until the semaphore is released.
Any request that is in this stage is guaranteed to complete
barring any processing errors.

TABLE I
 LEGEND OF NOTATIONS USED

Symbol Definition

iβ Allocated Bandwidth of Client i

iβ̂ Average Bandwidth of Client i

iδ Available Bandwidth to Client i

Â Total Bandwidth Allocated to All Clients

Â̂ Maximum Measured Bandwidth

Delayed. A request is in the delayed stage when a client is
requesting more data than it has been allocated and when the
server is fully utilized. A child process is delayed by using
the sleep function call. If a request is admitted for proc-
essing, a delay must be calculated so that the flow of re-
quests can be controlled. Calculated per request, the delay is
based on the following formula, where i refers to the client’s
identification from which the request originated:

 sizefile
Â

delay
i

i ×

−=

ˆ
11

δ

(3)

Each child process calculates the delay to be injected delayi

accordingly given the bandwidth available to the client i, iδ ,

the server’s maximum measured bandwidth Â̂ , and the file
size of the request. Notice that the delay is proportional to
the file size of the request, and inversely proportional to the
bandwidth available iδ to the client. If the delay is nega-
tive, there is excess available bandwidth to this client for the
request, and so the delay is set to zero because the request
can be processed immediately. The purpose of injecting
such a precise amount of delay into the response time is to
force the bandwidth measurement of the reply to be that of
the target bandwidth. The target bandwidth is all the band-
width that is available when the server is not fully utilized,
and only the client’s allocated bandwidth otherwise.

The delay formula is quite simple to derive. If one ex-
pands the equation by multiplying the inverse bandwidth
terms by the file size, then the delay becomes the difference
between the time allowed to process the file and how
quickly the file is expected to be transferred if there is no
delay.

The requested file size can be found using the fstat
function call on the file that was specified in the client’s
request. If a web server has a small subset of commonly
used files, then the client can cache these file sizes outside of
shared memory. Files such as index.html and frequently
downloaded graphic files would be prime examples of fre-
quently accessed files whose statistics could be cached for
efficiency.

The maximum measured bandwidth Â̂ is maintained by
the Bandwidth Manager process. Since the instantaneous
utilized bandwidth is calculated periodically by summing up

the average bandwidths iβ̂ across each client’s share, every
time the instantaneous utilized bandwidth exceeds the previ-
ous value of the maximum bandwidth Â̂ , this variable is

updated. Since the Â̂ cannot be accurately determined until
the server has been active for sometime, the initial value is
set to the total bandwidth Â that was specified at startup in
the configuration file. While the maximum measured avail-

able bandwidth Â̂ is approaching its actual value, the delay
calculations will be inaccurate. This is actually a self-
correcting problem because the server adapts so well. If the
Â̂ is too low, since it is set to Â , then the delay injected
into the processing time will be too low. This causes each

client’s utilized bandwidth iβ̂ to be greater then its alloca-
tion, and thus causes the server’s instantaneously measured
bandwidth to exceed Â̂ . When the Bandwidth Manager
process becomes aware of this, Â̂ is updated with a more
accurate value, causing the next series of delay calculations
to be increased.

The calculation of iδ is a delicate matter to ensure that
clients are receiving their fair share of allocated bandwidth
while still maximizing the server’s utilization. The goal is to
achieve the kind of bandwidth distribution accuracy that is
similar to the results of a weighted fair queuing (WFQ) algo-
rithm [3]. Unfortunately, WFQ is not the best queuing
model for a web server. A round robin approach can be too
inefficient to implement because segmenting a request into
packets involves a fragmentation cost. Furthermore, a web
server needs to be able to discard requests even though the
queue of requests may not be full.

To control the flow of bandwidth, the server must estab-
lish what state it is currently in to decide which client to
limit and how much. The server can be in two different
states, which directly affects how much available bandwidth
should be given to each client. The server can either be fully
saturated, or partially saturated. If the server is idle, it is
considered to be in a partially saturated state. If a server is
partially saturated, each client must be receiving its required
bandwidth. Moreover, if a client needs more bandwidth than
its allocation, it will receive it if the server is partially satu-
rated. When a server is fully saturated, the scenario is more
difficult and it becomes very important to determine which
client or clients are receiving a proportion of the bandwidth
greater than their allocation. This misdirected bandwidth
should be delivered to the client or clients that are not re-
ceiving their minimal share.

As mentioned before, if the server is partially saturated,
then all clients must be receiving the amount of bandwidth
they can utilize. Nothing can be said about the proper allo-
cation of bandwidth if the server is fully saturated. A server
can be fully saturated, have disproportionate allocation, and

still be in a correct state if one of the clients does not need
all of the bandwidth that it has been allocated. In this case,
all the clients are still satisfied.

Let the state of unsatisfaction be deemed when there ex-
ists any client that could use more bandwidth than it has so
far utilized but it is not receiving at least its allocation be-
cause of suppression by any one of the other clients. This
state of unsatisfaction can be determined when two condi-
tions exist for any client. These two conditions are 1) when
the client’s average bandwidth is less than its target ban d-
width and 2) the client is active.

()[]Υ Ι
N

j

jjj active tionunsatisfac
1

 ˆ

=

<= ββ
(4)

The determination of whether a client is currently active is
made with a boolean flag. Each time a child process places
a client’s request in the processing stage, the active flag is
updated to on. The Bandwidth Manager process
periodically flips this active flag to off. The reason the
child process does not flip the flag to off by itself at the
end of processing its request is because there is simply not
enough time for the other child processes to read the value
when determining the unsatisfaction condition. It was
observed that the child processes were not being preempted
by each other often enough for the activity values to be read
at on even though the clients were very active. When a
client is not fully utilizing its allocated bandwidth, the active
flag tends to remain in the off state.

When the unsatisfaction condition has been established,
the process handling the client’s request can determine
whether to relinquish bandwidth or try to attain more.
Recall, to increase or decrease the amount of bandwidth
given to a client is a matter of controlling how much delay to
inject into the processing time of a request. The delay
calculation depends fundamentally on the available
bandwidth, if the file size to be sent is fixed.

The available bandwidth is calculated dependent on the
unsatisfaction condition. If the unsatisfaction condition
exists, then the available bandwidth is given by:

≥
<−⋅

=
iii

iiii
ibw avb

βββ
ββββ

ˆ if

ˆ ifˆ2 (5)

Notice that if any client is not satisfied, then the child proc-
ess of the aggressive client will force its available bandwidth
down to its allocated bandwidth. What this ensures is that
every client will always have at least its allocated band-
width. If a client’s average bandwidth is less than its alloca-
tion, then the client needs to be more aggressive at reaching
its target. A formula that worked well was twice the target
bandwidth less the bandwidth already attained. Since more
than one client may be unsatisfied, the amount of available

bandwidth each client can be allowed should be relative to
the amount of bandwidth that it should be receiving, less the
amount that it has already attained.

When the unsatisfaction condition does not exist, it is
only important to maintain this favored condition and allow
the server to be fully utilized. What this involves is ensuring
that no client loses bandwidth to another client while still
allowing clients that could use more bandwidth to attain
more.

To determine how much bandwidth is still available, the
child process must sum up the average bandwidth across all
the clients; This is the bandwidth utilized. Let N be the
number of clients that were allocated separate amounts of
bandwidth. The variable utilized is defined by the value
below:

∑
=

=
N

j
jutilized

1

β̂
(6)

The amount of unused bandwith can be calculated with the
following formula, where the total bandwidth is the amount
specified in the configuration file.

utilized Â bw remaining −= (7)

Once the remaining bandwidth had been determined, the
available bandwidth can be calculated based on this value.
If any bandwidth remains, the client is allowed the total
bandwidth less the amount utilized by other clients. If the
remaining bandwidth approaches zero, then that client will
receive its allocated share. This guarantees that the client
will receive at least its allocated amount.

≤
>−−

=
0 if

0 if)ˆ(

bw remaining

bw remaining utilized B
bw avb

i

i
i

β
β (8)

If any of these available bandwidth calculations result in
values less than zero, the determined available bandwidth is
set to zero. This is a safeguard against temporary spikes in
average bandwidth that may result in inaccurate utilized
bandwidth calculations.

()0,max ii bw avbbw avb = (9)

A user will perceive a slow connection if the request is de-
layed in the processing stage.

Standby/Rejection. A process is in standby if the request
has not yet been processed and is waiting for the bandwidth
semaphore to be released. If a process arrives at this stage
and there are an excess number of processes concurrently
sleeping (a run-time upper limit constant), then the newly
arrived process is immediately killed. This is necessary for

several reasons. As server load increases, the number of
sleeping child processes associated with a client increases
due to the delay stage. Removing the processes of aggres-
sive clients frees the server to service other clients more ef-
fectively. Furthermore, when a client has too many of its
processes in the delayed stage, the calculated delay may ex-
ceed the time out period of the client, and the response will
be ignored anyway. A request that is rejected in this stage
will be perceived by the user as a stalled request.

VI. EXPERIMENTAL EVALUATION

Testing was performed within the confines of the Univer-
sity of Michigan’s eecs.umich.edu network. The purpose of
minimizing the distance between clients and server was to
reduce the unpredictability of request and reply times due to
external traffic and congestion. A variety of tests were per-
formed with various maximum bandwidth specifications and
client bandwidth allocations. Most tests resulted in the accu-
rate dissemination of bandwidth according to allocation.

The following configuration and result exemplifies the
accuracy of the admission control and bandwidth allocation
algorithms:

TABLE II
WEB SERVER BANDWIDTH CONFIGURATION PARAMETERS

Client Allocation (%)
A 10
B 20
C 30
D 40

Total Bandwidth 100 kilobytes

Here in Table II we have specified four clients (N = 4),
labeled A through D, with allocations of total bandwidth 10
through 40 percent, respectively. The total bandwidth was
set to 100 kilobytes per second, a value less than the maxi-
mum bandwidth.

To test the web server for the key characteristics in our
measurement-based admission-controlled web server, it was
necessary to prove that 1) bandwidth was optimally utilized,
2) when a client makes requests, it is given at least its mini-
mum allocation, and 3) the server restricts total bandwidth
utilization across all clients to that specified in the configu-
ration file. There is nothing implied about distributing ex-
cess bandwidth proportionally or evenly to requesting cli-
ents.

Client requests were generated using httperf, a web
server performance measurement tool [4]. One of
httperf’s important characteristics is its ability to gene r-
ate and sustain server load. To use httperf, it is neces-
sary to specify a small number of request parameters, such
as hostname, port, and URI, along with behavioral parame-
ters such as request rate and the number of connections that
should be made in that trial. Instead of making connections
sequentially, one after the completion of another, httperf

forks a requesting process periodically, with an interval
length inversely proportional to the request rate. Each time
a request is made, another port is selected for the new con-
nection. This is how a high degree of server utilization is
sustained.

To enumerate the various combinations of simultaneous
client loads, clients A, B, C, and D executed a batch file
from the UNIX shell, which executed httperf and
sleep, when activity and idleness were specified, respec-
tively. The client activity was directed by the values in Ta-
ble III. Each experimental combination epoch lasted ap-
proximately two minutes. During periods of activity, 10 KB
files were requested at a rate of 6 requests per second per
client.

TABLE III
CLIENT ACTIVITY SCHEDULE

Epoch Client A Client B Client C Client D
1-2 active active active active
3 idle active active active
4 active idle active active
5 idle idle active active
6 active active idle active
7 idle active idle active
8 active idle idle active
9 idle idle idle active
10 active active active idle
11 idle active active idle
12 active idle active idle
13 idle idle active idle
14 active active idle idle
15 idle active idle idle
16 active idle idle idle

17-18 active active active active

Fig. 2 represents the bandwidth that was allocated to each
client over time. For example, client A colored by the light-
est gray, who was allocated 10% of the total bandwidth by
the schedule in Table II, is shown to receive approximately
10 KB/s between times 0 to 240 seconds. At 240 seconds,
client A begins to lose bandwidth because it has entered its
third epoch, a moment of idleness as specified in Table III.
According to Table III, client A will fluctuate between idle-
ness and activity at alternating epochs, which can be seen in
the graph as periods of receiving at least its allocated 10% or
no bandwidth at all. All the other three clients follow the
same behavior.

As Fig. 2 indicates, each client is capable of receiving the
bandwidth allocated when it is requesting it. The server is
also successful in distributing bandwidth such that its total
bandwidth falls very close to the range as specified in the
total bandwidth configuration file as noted in Table II. No-
tice that in the first two epochs 1-2, client D is actually util-

izing a little more than its allocated 40%, but after Â̂ , the
maximum measured bandwidth, comes closer to its actual
value, in the final epochs 17-18, these values are even closer
to their allocation.

TABLE IV
ERROR ANALYSIS

Allocation (%) Actual Allocation (%) Error (%)
10 9.48 0.52
20 19.05 0.95
30 29.90 0.10
40 41.56 1.56

Mean Squared Error 0.0190

The statistics displayed in Table IV were gathered from
approximately 150 data points sampled during the time pe-
riod between epochs 17-18. According to the allocation error
table, the algorithm is quite successful in achieving the re-
quirement specified by the configuration files with a Mean
Squared Error (MSE) of 0.0190. MSE is a commonly used
metric to quantify the difference between a value from an
experiment and its target. The MSE calculation in Table IV
was performed with the following formula:

(10)

()∑
=

−=
N

j

jj Allocation ActualAllocation TargetMSE
1

2

Fig. 3 displays the total and maximum measured band-
width utilization over time graph. As can be observed, utili-
zation is always very close to B, the allocation specified in
the bandwidth configuration file. The utilized bandwidth
peaks above 100 KB sporadically, but the server quickly

adjusts the delay to inject into the response to accommodate
this. Notice that as the server comes to appreciate the actual
maximum bandwidth, the bandwidth allocations become
more accurate.

Recall from Section III that a connection overhead exists
per request. If the size of files that are requested from the
server are consistently less than 10 KB, the average band-
width actually received per client may not be as allocated
and MSE values will increase.

VII. FUTURE WORK

While the algorithms presented in this paper regulate band-
width based on the knowledge of file size, the importance of
dynamically generated web pages should not be down-
played. Additional work needs to be done to determine how
well these algorithms will perform when processing time
consists of a much greater proportion of time than does that
required for data transfer over the network. Algorithms can
be developed that can better differentiate between transmis-
sion time and processing time but additional research needs
to be made as to how to weight each of these measurements
when allocating resources. What we have developed here is
a basic framework with algorithms and formulas that
achieve the basic characteristics necessary for server-based
control over accurate bandwidth allocation and optimal utili-
zation.

0

40

80

120

Epoch Number (Approximately 120 seconds each)

B
an

dw
id

th
 (

K
B

/s
)

Client A (10%) Client B (20%) Client C (30%) Client D (40%)

1 12 1413 159 1065 8 174 182 163 117

Fig. 2. Bandwidth Allocation Over Time

0

50

100

150

Epoch Number (Approximately 120 seconds each)

B
an

dw
id

th
 (

K
B

/s
)

Maximum Measured Bandwidth, B Utilized Bandwidth

21 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Fig. 3. Measured Total and Maximum Bandwidth

VIII. SUMMARY

With the increasing popularity of the web and the limited
capacity of current network and processing technologies, it
becomes ever more important to control how these critical
resources are utilized. Achieving optimality while not satis-
fying any guarantees of availability cannot be an answer to
these problems. What we have provided in our algorithms
for implementing a measurement-based admission-
controlled web server is the ability to accurately control how
bandwidth is distributed across various clients of unequal
requirements. What we have shown is that measurement-
based admission-control is possible without extensive trial
and error-parameterized configuration.

ACKNOWLEDGMENT

We thank Yilun Shang for the initial implementation of the
bandwidth measurement and admission control code.

REFERENCES

[1] L. Cherkasova and P. Phaal, “Session based admission
control: a mechanism for improving the performance of an
overloaded web server,” Hewlett Packard, Palo Alto, CA.

[2] M.F. Arlitt and C.L. Williamson, “Web server workload
characterization: the search for invariants,” Proceedings of
the 1996 ACM SIGMETRICS Conference on the Measure-
ment and Modeling of Computer Systems, Philadelphia, PA,
ACM. 1996.

[3] A. Demers, S. Keshav, and S. Shenker, “Analysis and
simulation of a fair queuing algorithm,” Journal of Internet-
working Research and Experimence, October 1990.

[4] D. Mosberger and T. Jin , “httperf—a tool for measuring
web server performance,” Hewlett Packard, Palo Alto, CA.

[5] A. Feldmann, R. C eres, F. Douglis, G. Glass, and M.
Rabinovich, “Performance of web proxy caching in heter o-
geneous bandwidth environments,” Proc. IEEE Infocom ’99,
March 1999.

[6] B. Laurie, P. Laurie, and R.J. Denn, Apache: The De-
finitive Guide. O'Reilley & Associates, 1997.

[7] W.R. Stevens, Advanced Programming in the UNIX En-
vironment. Addison-Wesley, 1993.

[8] W.R. Stevens, Unix Network Programming. Prentice
Hall, 1997.

