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1. ABSTRACT

Present day routers typically employ monolithic
operating systems which are not easily upgradable
and extensible. With the rapid rate of protocol
development it is becoming increasingly important
to dynamically upgrade router software in an incre-
mental fashion. We have designed and implemented
a high performance, modular, extended integrated
services router software architecture in the NetBSD
operating system kernel. This architecture allows
code modules, calleghlugins, to be dynamically
added and configured at run time. One of the novel
features of our design is the ability to bind different
plugins to individual flows; this allows for distinct
plugin implementations to seamlessly coexist in the
same runtime environment. High performance is
achieved through a carefully designed modular
architecture; an innovative packet classification
algorithm that is both powerful and highly efficient;
and by caching that exploits the flow-like character-
istics of Internet traffic. Compared to a monolithic
best-effort kernel, our implementation requires an
average increase in packet processing overhead of
only 8%, or 500 cycles/2.1ms per packet when run-
ning on a P6/233.
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Figure 1. : Best Effort vs
Extended Integrated Services Routerg|Sr)

* Integrated/differentiated Services

¢ Enhanced routing functionality (level 3 and level 4 rout-
ing and switching, QoS routing, multicast)

e Security algorithms (e.g. to implement virtual private
networks YPN))

« Enhancements to existing protocols (e.g. Random Early
Detection RED))

* New core protocols (e.grv6 [8])

Figure 1 contrasts the software architecture of our proposed

Extended Integrated Services Router (EISR) with that of a

conventional best-effort router. A typical EISR kernel

features the following important additional components: a

packet scheduler, a packet classifier, security mechanisms,

and QoS-based routing/Level 4 switching. Various

algorithms and implementations of each component offer

High performance integrated services routing, modulaspecific advantages in terms of performance, feature sets,

router architecture, router plugins
2. INTRODUCTION

New network protocols and extensions to existing protocolgelatively

and cost. Most of these algorithms undergo a constant
evolution and are replaced and upgraded frequently. Such
networking subsystem components are characterized by a
“fluid” implementation, and should be

are being deployed on the Internet. New functionality isdistinguished from the small part of the network subsystem

being added to modenr routers at an increasingly rapid code that remains relatively stable. The stable part (called the

pace. In the past, the main task of a router was to simpbyore) is mainly responsible for interacting with the network

forward packets based on a destination address lookuRardware and for demultiplexing packets to specific

Modern routers, however, incorporate several new servicesmodules. Different implementations of tBsR components
outside of the core often need to coexist. For example, we
might want to use one kind of packet scheduling on one
interface, and a different kind on another.

In this paper, we propose a software architecture and present

an implementation which addresses these requirements. The

specific goals of our framework are:

e Modularity : Implementation of specific algorithms
come in the form of modules callgtligins’.



» Extensibility: New plugins can be dynamically loaded The main contributions of our work are:

at run time. . . . .
A _ _+ An innovative, modular, extensible, and flexil#esr
* Flexibility : Instances of plugins can be created, config-  networking subsystem architecture and implementation

ured, andbound to specific flowsPlugins can be all- that introduces only 8% more overhead than a best-effort
software modules, or they can be software drivers for  karnel.

specialized custom hardware. o . . .
i « A very fast packet classifier algorithm which provides
* Performance The system should provide for a very highly competitive upper bounds for classification times.
efficient data path, with no data copying, no context  \jth a very large number of filters (in the order of
switching, and no additional interrupt processing. The  50000), it classifiesv6 packets in 24 memory accesses,
overhead of modularity should not seriously impact per-  5nd is much faster for smaller numbers of filters.

formance. ) i * Implementations of plugins for two state-of-the-art
Our proposed framework has been implemented in the packet schedulers: Deficit Round Robrg, [23]) for
NetBsD UNIx kernel. This platform was selected because of  fair queuing, and the Hierarchical Fair Service Curves
its portability (all major hardware platforms are supported), (H-FsG, [27]) scheduler for class-based packet schedul-
efficiency, and extensive documentation. In addition, we  jng: Implementation of plugins for IP security [2].
found state-of-the-art implementations on this platform for
IPv6 [13] and packet schedulers [27, 5] that could be
integrated into our framework.

There are a few commercial attempts that we are aware of
which follow similar lines. The latest versions of Cisco’s
Internet os (10s, [6]) claims to fulfil some of the

We envision several applications for our framework. First, requirements, but since it's a commercial operating system,
our architecture fits very well into the operating system of there is no easy access for the research community and these
small and mid-sized routers. It is particularly well suited to claims are not verifiable. Microsoft's Routing and Remote
the implementation of modern edge routers that areAccess Service for Windowsr (RRAS, previously referred
responsible for doing flow classification, and for enforcing to as “Steelhead” [18, 19]) is an attempt to implement router
the configured profiles of differential service flows. This functionality under WindowsiT. RRAS exports ampl and

kind of enforcement can be done either on a per-applicationallows third party modules to implement routing protocols
flow basis, or on a generalized class-based approach (e.dike osPFandsSNMP agents in user space. Thel does not

CBQ [11]). Our implementation supports both models provide an interface to the routing and forwarding engines,
efficiently. and the platform offers no integrated services components.
A few research projects attempt to achieve some of the goals
mentioned above [12, 20, 21]. Most of them are focused on
the implementation of modulaend-system networking
subsystems instead of routing architectueoutfrom the
University of Arizona is a particularly interesting project
based on the x-kernel that implements an operating system
targeted at network appliances (including routers). It comes
Yet another application of our framework is for network with router components implementing simple QoS support.
management applications, which typically need to monitor Since the whole operating system is implemented from
transit traffic at routers in the network, and to gather andscratch, most of the provided functionality is over-
report various statistics thereof. For such applications, it issimplified and does not provide the large feature set that is
important to be able to quickly and easily change the kindsfound in mature implementations. We discuss these related
of statistics being collected, and to do this without incurring approaches in more detail in [7].

significant overhead on the data path.

Our framework is also very well suited to Application Layer
Gateways ALGS), and to security devices like Firewalls. In

both situations, it is very important to be able to quickly and
efficiently classify packets into flows, and to apply different
policies to different flows: these are both things that our
architecture excels at doing.

In Section 3, we describe our architecture and explain how it
Finally, while our proposed framework is very useful in achieves modularity, extensibility, and flexibility while
real-world implementations, its modularity and extensibility maintaining high-performance. In Section 4, we describe
also make it an invaluable tool for researchers. We plan tothe implementation of a module called the Plugin Control
release all of our code in the public domain and we will Unit (PcU), which is responsible for all control path
attempt to incorporate several core portions into theinteractions with plugins. Section5 outlines the
standard NesD distribution tree. implementation of the Association Identification Umity),
which is used by almost all other components in our design.
The AlU implements an innovative algorithm for packet
classification which efficiently maps packets to code

i . . modules (plugins). In Section 6, we elaborate on example
In the web browser world, a plugin is a software module that is dynami- luai ket hedul hich . | ted
cally linked with the browser and is responsible for processing certain plugins (packet schedulers) which we implemented or

types of application streams (or flows). In a similar fashion, our router @dapted for —our enViron_ment- Seqtion 7 presents
plugins are kernel software modules that are dynamically loaded into theP€rformance results from our implementation, and Section 8

kernel and are responsible for performing certain specific functions on summarizes our ideas.
specified network flows.

L A note on our use of the word ‘plugin’ (instead of ‘module’) is in order.



3. OVERALL ARCHITECTURE

The primary goal of our proposed architecture was to build a
modular and extensible networking subsystem that
supported the concept of flows, and the ability to select
implementations of components based upon flows (in
addition to simple static configurations). Because the
deployment of multimedia data sources and applications
(e.g. real-time audio/video) will produce longer lived packet
streams with more packets per session than is common in
today’s environment, an integrated services router
architecture should support the notion of flows and build
upon it. In particular, the locality properties of flows should
be effectively exploited to provide for a highly efficient data
path. Our plugin framework features:

¢ Dynamic loading and unloading of plugins at run time
into the networking subsystem. Plugins are code mod-
ules which implement a specifigsr functionality (e.qg. .
packet scheduling). Nes$D offers a simple yet powerful
mechanism which allows modules to be loaded into the
kernel which is used to load our plugins into the kernel.
Once a plugin is loaded, it is no different from any other
kernel code. What is required for our system is a compo-
nent which glues the individual plugins to the network-
ing subsystem, and which provides a control-path
interface used by other kernel components (possibly also
other plugins) and user space daemons to talk to the
plugin. In our system, this component is called the
Plugin Control Unit ¥cU). The pcu hides some of the
implementation specific details from the individual plu-
gins and allows them to access the system in a simple yet
flexible fashion.

* Creation of individual instances of plugins for maximal
flexibility. An instance is a specific run-time configura-
tion of an individual plugin. It is often very desirable to
have multiple instances of one and the same plugin con-
currently in the kernel. For example, consider packet
scheduling. A packet scheduler can work with different
configurations on different network interfaces. State-of-

<source address, destination address, protocol, source
port, destination port, incoming interface>

Any of the fields in the six tuple may be wildcarded.

Additionally, for network addresses, a prefix mask may
be used to partially wildcard the corresponding field. For
instance, for the above example, the filter specification
would read<129.*.** 192.94.233.10, TCP, *, *, *>

Clearly, the filter for an end-to-end application flow
would have all fields (except perhaps the incoming
interface) fully specified. We will see later in this section
that a packet matching a particular filter will be passed
to the plugin instance that has been bound to that filter.
This will be shown to happen whenever the packet
reaches a “gate” in the stack; a gate can be thought of
as the entry point for a plugin.

Overall high performance. High performance is guaran-
teed only in part through a fully kernel space implemen-
tation which prevents costly context switches. We
identified two other critical properties which, when com-
bined, guarantee high performance even in a highly
modular environment: the flow-like nature of most inter-
net traffic, and the ability to classify packets into flows
quickly and efficiently. As we show below, the filter
lookup to determine the right plugin instance to which a
packet should be passed happens only for the first packet
of a burst. Subsequent packets get this information from
a fast flow cache which temporarily stores the informa-
tion gathered by processing the first packet. The filter
lookup itself is efficiently implemented using a Directed
Acyclic Graph pAG). We elaborate on these techniques
later in this section, and also in section 5.

Easy integration with custom hardware for high perfor-
mance processing of specialized tasks. This is enabled
by plugins which are software drivers for hardware that
implements the desired functionality. For example, a
plugin could control hardware engines for tasks such as
packet classification or encryption.

the-art packet schedulers are usually hierarchical, with|n order to describe our framework, we first look at the
possibly different modules working on different levels of different components and how they interact in the control
the scheduling hierarchy. Among the nodes of the samepath. In the Section 3.2, we will look at the data path, and
level, modules are specifically configured, which means how individual packets are processed by our architecture.

that they coexist in our framework as plugin instances.

In order to provide a simple and unified interface for the 3.1 The Control Path

allocation of multiple instances of one and the same Figure 2 shows the architecture of our system and the
plugin, the plugins must respond to a set of standardizedcontrol communication between different components. A
messages. By standardizing this message set and impledescription of the different components follows:

menting it in all plugins, we guarantee interoperability
among different plugins and provide a simple configura-
tion interface.

« Efficient mapping of individual data packets to flows,
and the ability to bind flows to plugin instances. Sets of
flows are specified usinfjlters. For example, a filter
might match alfrce traffic from the network 129.0.0.0
to the host 192.94.233.10. Filters can also match individ-
ual end-to-end application flows. Filters are specified as
six-tuples:

IPv4/IPv6 core: The Ipv4/ipv6 core consists of a
stream-linedipv4/iPv6 implementation which contains
the (few) components required for packet processing
which do not come in the form of dynamically loadable
modules. These are mainly functions that interact with
network devices. The core is also responsible for demul-
tiplexing individual packets to plugins as we will show
in the next section. There are no plugin related control
path interactions with the core.



el Py — } involves the following steps:
anager i

T o __usmt e Loading a plugin: Using themodloadcommand, which
s is part of the NetsD distribution, plugins are loaded into
the kernel. On loading, they register themselves with the

PcU by providing a callback function. This function is

Association
Identification
Unit (AIU)

IPv4/IPv6-core

g3 used to send messages to the plugin. There are messages
metsase regsters —t for creating and freeing instances of the plugin and for
e = = e binding plugin instances to flows. Also, plugin develop-
(Pcu) — lam I!Pﬁ ers can define an arbitrary numbe( of plugin spgcnﬁc
messages. Once the callback function for a plugin has
Figure 2. : System Architecture and Control Path been registered, threu can forward these configuration

messages to the plugin.

* Plugins: Figure 2 shows four different types of plugins - « Creating an instance of a plugin:Using the Plugin
plugins implementingpPv6 options, plugins for packet Manager application, configuration messages can be
scheduling, plugins to calculate the best-matching prefix  sent to specified plugins. Typically, these messages ask
(BMP, used for packet classification and routing), and  the plugin to create an instance of itself. In case of a
plugins forip security. Other plugin types are also possi-  packet scheduling plugin for example, the configuration

ble: e.g., a routing plugin, a statistics gathering plugin  information could include the network interface the
for network management applications, a plugin for con-  pjlugin should work on.

gestion controlKED), a plugin monitoring TCP conges-

tion backoff behaviour, a firewall plugin. Note that all Creating filters: Once a plugin has been configured and

. ) . an instance has been created, it is ready to be used. What

plugins come in the form of dynamically loadable kernel has to be defined next is the set of datagrams which
modgles. ) ) should be passed to the instance for processing. This is

*  Plugin Control Unit (PCU): Thepcumanages plugins, done by binding one or more flows to the plugin
and is responsible for forwarding messages to individual  jnstance. To specify the set of flows that are supposed to
plugins from other kernel components, as well as from  pe handled by a particular plugin instance, the Plugin

user space programs (using library calls). Manager or one of the user space daemR®e(or SSP
« Association Identification Unit: The Association Iden- can create filters through calls to the. Recall (from
tification Unit (alu) implements a packet classifier and earlier in this section) that a filter is a specification for

builds the glue between the flows and plugin instances. the set of flows it matches.
The operation of thau will become clear when we .« Binding flows to instances:Next, the binding between

describe the data path in the next subsection. filters and plugin instances must be established. Each fil-
* Plugin Manager: The Plugin Manager is a user space ter in theA|p is _asso_ciated with a pointer to a plugin
utility used to configure the system. It is a simple appli- instance; this pointer is set by making another call to the

cation which takes arguments from the command line  AlU to do the binding.

and translates them into calls to the user-sfamater  Now the system is ready to process data packets. We will
Plugin Library which we provide with our system. This show in the next subsection how data packets are matched

library implements the function calls needed to config- against filters and how they get passed to the appropriate
ure all kernel level components. In most cases, thejnstances.

plugin manager is invoked from a configuration script

during system initialization, but it can also be used to 3.2 The Data Path

manually issue commands to various plugins. We showData packets in our system are passed to instances of

an example of how the Plugin Manager is used in plugins which implement the specific functions for

Section 6. processing the packets. Since data path mechanisms are
« Daemons: TheRsvP[31], ssP[1] (a simplified version ~ @pplied to every single packet, it is very important to

of RsvP), and route daemon are linked against the Routeroptimize their performance. Given a packet, our architecture

Plugin Library to perform their respective tasks. We Should be able to quickly and efficiently discover the set of

implemented asspdaemon for our system, and are cur- instances that will act on the packet.

rently in the process of porting asvpimplementation.  The data path interactions are shown in Figure 3.Before we
After a reboot, the system has to be configured before it iscan explain the sequence of actions, we have to introduce
ready to receive and forward data packets. Configurationthe notion of a gate.

involves th lection of f plugins. Sin lection . S .
olves the selection of a set of plugins. Since a selectio A gateis a point in ther core where the flow of execution

does not necessarily apply to all packets traversing theb h . inst f luain. F
router, a definition of the set of packets which should be . ranches off 1o an instance of a piugin. From an

processed by each individual plugin instance is required.'mplememat'on point Of. view, gates are S|m_ple macros
This configuration can be done either by a SystemWh|ch encapsulate function calls to the that will return

administrator, or by executing a script. Configuration
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again, the first packet that is received would again result in a
cache miss, which would again cause a new cache entry to
be created in the flow table so that subsequent packets can

Association
Identification
Unit (AIU)  |__

in

Figure 3. :System Architecture and Data Path

the correct plugin instance which is to be used for
processing the packet. In many cases, these macros cab.
avoid a function call to theawu altogether, thereby
permitting a more efficient implementation. Gates are
placed wherever interactions with plugins need to take q
place. For example, sometimes after a packet is received by
the hardwarelp security processing has to be done if the
system is configured as entry point into a virtual private
network. In our system,iP security functions are
modularized and come in the form of plugins. A gate is
inserted into ther core code in place of the traditional call 2
to the kernel function responsible fapv6 security
processing. In our current implementation, we use gates for
IPV6 option processingp security, packet scheduling, and

for the packet filter's best-matching prefix algorithm.

To follow the various data path interactions, it is important 3.
to get a basic understanding of the operation oftheThe

AlU is responsible for maintaining the binding between
flows and plugin instances. It makes use of a special data
structure called dlow table to cache flows. Flow tables
allow for very fast lookup times for arriving packets that
belong to cached flows.

In the Alu, all flows start out being uncached (i.e., they do
not have an entry in the flow table). If an incoming packet
belongs to an uncached flow, its lookup in the flow table
data structure will fail (i.e., there is a cache miss). In this 4.
case, the packet needs to be looked up in a different data
structure that we call @lter table. Filter tables store the
bindings between filters and plugins for each gate. The filter
table lookup algorithm finds the most specific matching
filter (described later) that has been installed in the table,
and returns the corresponding plugin instance. Usually, filter
table lookups are much slower than flow table lookups. An
entry for a flow in the flow table serves as a fast cache for
future lookups of packets belonging to that flow. Each flow
table entry stores pointers to the appropriate plugins for all
gates that can be encountered by packets belonging to thé.
corresponding flow. The processing of the first packet of a
new flow with n gates involves filter table lookups to ¢,
create a single entry in the flow table for the new flow.

If a cached flow remains idle (i.e., no new packets are /-
received) for an extended period, its cached entry in the flow
table data structure may be removed (or replaced by a

benefit from faster lookup times.

Section 5.1 describes a very fast filter table lookup
implementation based on directed acyclic graphss$).
Section 5.2 describes our flow table implementation, which
is based on hashing.

As an example, consider the steps involved in processing an
IPv6 packet (see numbers 1-6 in Figure 3). Uncached flow
processing involves the following sequence of events and
actions:

Packet arrival: When a packet arrives, it gets passed to
the IP core by the network hardware. As it makes its
way through the core, it may encounter multiple gates.
Encountering a gate: Assume that the packet has
reached the gate where security processing will be
handled. The task of this gate is to find the plugin
instance which is responsible for applying security pro-
cessing (authentication and/or encryption) to the packet.
Discovering the right instance:The gate makes a call
to theaiu. The parameters of the call are a pointer to the
packet and an identification of the gate issuing the call.
In our case, we would identify theesecurity gate as the
caller.

Packet classification:Thealu first does a lookup in the
flow table, and finds that there is no cached entry avail-
able for the flow. Consequently, it performs a lookup in
the filter table corresponding to thresecurity gate. The
resulting plugin instance pointer is returned to the call-
ing gate (“SEC2” in Figure 3). Note that since this
packet classification step performed by the is the
most expensive step in the whole cycle, an efficient
packet classification scheme and implementation is
important.

Caching of the instance pointer: Before theAiu
returns the instance pointer to the gate, it stores the
pointer in the flow table. Note that entries in the flow
table are identified by the same six tuple used to specify
filters, but without masks or wildcards (all fields have
fully specified values). In other words, a flow table
entry unambiguously identifies a particular flow. In our
example, the pointer to tr8eC2 plugin is stored in the
row of the flow table which corresponds to our packet's
flow.

Returning the instance pointer: The instance pointer
found is returned to the gate.

Calling the instance: The gate calls the plugin
instance, passing the packet as an argument.
Repeating the cycleWhen the call returns, the stack
continues processing the packet, until it encounters
another gate, in which case the same cycle repeats.

different flow). In this case, if the flow becomes active This cycle is executed only for the first packet arriving on an



uncached flow. Subsequent packets follow a faster pathplugins of the same type that have been registered identified
because of the cached entry in the flow table. Note that inby the lower 16 bits of the plugin code; in this case, flow

our system, we have created optimized implementations offilters that have been installed for the corresponding plugin
both the flow and filter tables, allowing for high type are used to pick the right plugin to which the packet
performance on both the cached and uncached paths. Theshould be passed.

implementations are described in Section 5. . .
Our implementation currently supports four types of

Cached flow processing involves the following sequence: plugins, corresponding to different network functioms:
options, P security, Packet Scheduling, and Longest-prefix
Matching (used as part of the packet classifier that is present
in the alu). In the future, we plan to also add support for a
Routing plugin, which would allow routing table lookups to
be based on the flow classification that is performed by the
) . : ; AlU. Other plugins that are envisioned include a plugin for
pointer corresponding to the calling gate is returned. No statistics gathering (useful for network monitoring/
filter table lookups are required. : : .
- ) . management), a plugin for congestion control mechanisms
* Associating the packet with a flow index:Together  (e.g., ReD), a plugin monitoring TCP congestion backoff
with the instance requested, the returns a pointer to  behaviour, and a plugin for firewall functions. Doubtless,
the row in the flow table where the information associ- additional plugin types will be introduced by third parties
ated with the flow is stored. This pointer is called the once we have released our code into the public domain. We
flow index (1x), and is stored in the packet's mhufhe will discuss the implementation of two example plugins in
instance is then called to process the packet, following Section 6.

which th_e'P stack passes the packet on to the next gate. Plugins must fulfill two important requirements: they have

* Processing at subsequent gate©nce the packet has o register a callback function with tikeu when they are
made its way past the first gate, e does not have to  |paded into the kernel, and that callback function must reply
be called upon to classify the packets at the remainingto a set of messages. As mentioned earlier, these messages
gates. Macros implementing a gate can retrieve thefa|| into two categories: standardized messages, and plugin-

instance pointers cached in the flow table by accessingspecific messages. The set of standardized messages
theFix stored in the packet. This allows us to pass pack-include:

ets to the appropriate instances in a very efficient manner

using an indirect function call instead of a “hardwired” * create_instance Creates an instance of a plugin. This
function call. We show in section 7 that this does not  results in the allocation of a data structure that will be

imply significant performance penalties. used to store configuration and run-time information for
that instance. A function to handle a data packet (the
main packet processing function which is called at the
gate) must be specified and functions which are called

e Processing at the first gate:When a packet from a
cached flow encounters tffiest gate, thenu is called to
request the plugin instance. This time, the pointer to the
instance requested is already in the flow table. The flow
table is looked up efficiently, and the plugin instance

Our architecture implements a highly modular system with
minimal performance overhead. Our architecture is scalable
to a very large ”Umb‘?r of gates since the number of gates by theAiu on removal of an entry in the flow or filter
matters only for the first packet arriving on a (uncached) table can ontionally be specified

flow. But even for the first packet, fast retrieval of the . P y P ; ' -

instance is possible with timac based packet classification * free_instance Removes all instance specific data struc-

algorithm that is used to implement the filter tables in our ~ tures. A freed instance can no longer be used by the ker-
system (see Section 5). nel and all references to it are removed from the flow

table and the filter table.
4. PLUGINS AND THE PLUGIN CONTROL e register_instance Registers a plugin instance with the

UNIT (PCU) AlU, and binds that instance to a filter that has to be sup-
Depending on the type of network software component that plied as a parameter. The same instance may be regis-
is implemented by a plugin, it can be very simple (e.g., a tered multiple times with thaiu with different filter
dozen lines of code for am option plugin) or very complex specifications. This message would result in a call to a
(e.g., a state-of-the-art packet scheduler). Each plugin in our registration function that is published by te.

framework is identified by a 32 bit plugin code. The upper . geregister instance Removes the binding between a
16 bits of the code identify the plugin type. The plugin type specified filter in theau and the plugin instance.

refers to the specific network software component it h itself | ol t (200 li fC
implements; thus, there is a direct correspondence betweer] "€ PCU Itself is a very simple componen ( Ines o
code) managing a table for each plugin type to store the

a gate in our architecture and the plugin type. Whenever &~/ . :
packet enters a gate, it will be passed to a registered plugilrl)luglns names and callback functions. Once loaded into the

: . . kernel, plugins register their callback function through a
f th ropriate type. Ther n potentiall multipl ! o
ot the appropriate type ere can potentially be multiple function call to theecu. All control path communication to

the plugins goes through thleeu. Usually, such messages

1 The mbufis a data structure that is used to store packets and packet relatde®Me from user space, either from the Plugin Manager or
information efficiently inesp derived operating system kernels. from one of the daemons using a library call. Fo® is




responsible for dispatching these messages to the targdbngest prefix match).
plugin, and for handling exceptions. We implemented a
dedicated socket type for all plugin related user space
communication with the kernel, which is similar to the
routing socket that is used lbgutedto communicate with
the routing engine in Bsb-based kernel.

Note that since there is one filter table for every gate in our
system, usually multiple lookups (in different filter tables)
are necessary for each packet that is received on an
uncached flow. Why is it that we don’t have a single filter
table that applies for all network functions? The answer is
5. THE ASSOCIATION IDENTIFICATION that the router administrator may have very different sets of
UNIT (AIU) policies for different networking components. For example,
the set of filters that are specified for one function (e.g.
It packet scheduling for QoS) will usually be quite different
from the set of filters that are installed for security
applications (e.g., firewalls). While it is theoretically

The Association Identification UnitAU) is the most
important component in our proposed framework.
implements a packet classifier, fast flow detection, and

provides the binding between plugin instances and filters. ossible to merge all filter tables into a single global filter

To do so, it manages two main data structures: filter table table (by merging the different filter specifications and
and a flow table. In Section 3.2, we described how flow and Dy ging er Sp
creating new filters whenever there is an overlap), such an

filter tables are used; in this section, we will describe their olementation is. oractically infeasible because the Space
implementations. p p y p

requirements for the global table can, even with very few

5.1 Filter Table Implementation Using DAGs installed filters, increase very quickly (exponentially) to
Filter tables are used to classify packets belonging tounacceptable levels.

uncached flows. They are usually invoked only for the first Note that the property of requiring multiple packet
packet of a flow. Nonetheless, many flows may be very c|assification steps (filter table lookups) is not unique to our
short-lived (just one or a few packets), so it is important {0 system. Every common integrated services router does at
have an efficient filter table implementation. least two filter lookups: one for packet scheduling, and one

Several generic packet filtering algorithms have been for routing. Routing in that sense is packet classification
proposed in the literature [2, 10, 20]. These algorithms areWith only one field (destination address) in the six-tuple for
very powerful and flexible when they are used to look into & filter specified, and all the other fields set to wildcards. A
arbitrary packet fields. They usually come with a ‘language’ More generalized approach to routing would involve looking
which allows for the specification of filters in terms of Not just at the destination address, but also at other fields in
individual bytes in the packet header, and the values theyth® packet; this kind of extended routing functionality has
should be checked against. They are complex both in term&0me to be known as L4 switching.

of theoretical background as well as in terms of code size5 1.1 Directed Acyclic Graph (DAG) Implementation
(typically several 1000 lines of C code). To specify a simple o\ i lementation of filter tables makes use of a directed
filter to match a giverrce connection, half a page of filter . vjic"raph gac) to find the best matching filter. The
specification written in the filter's language might be o qjost way to explain the algorithm is to use an example.
requ[:c'ed i (see B[Z].dfor an Iexatmplell of aCEF f||{%r For simplicity, our example assumes filters with only three
specification). Besides complexity, all exceper [10] header fields in place of six. It should be noted that this

ty_plcally provide performgnce Wh.'Ch. is worse than .tha.t of scheme can work with an arbitrary (but constant) number of
tailor-made packet classifiers optimized for a certain fixed filter fields

pattern of packet header.

Furthermore, these existing packet filtering algorithms | # Source Address Destination Protocol
either do not support or cannot efficiently match on partially Address

(arbitrary number of bits) wildcarded fields, and therefore | 1 129.* 192.94.233.10 TCP
cannot be used for efficient detection of best matching | 2 128.252.153.1 128.252.153.7 UDP
prefixes on addresses. This was an important requirement in 3 128.252.153.1 128.252.153.7 TCP
our EISR framework. 7 128,252 153 * - UDP

Unlike generic packet filters that are optimized to search
based on arbitrary bytes (specified by the user) in a packet,
our filter table implementation targets only the Internet \ne consider a filter table containing four filters (see Table
protocol stack, and requires packets to be classified based). the first field in each filter corresponds to the source
upon the same five packet header fields and the interface oRjqress, the second field to the destination address, and the
which the packet was received. Our goal was therefore toyirg field to the protocol. The first filter matches atp

find a fast lookup algorithm for matching the six-tuple traffic from the network 129.0.0.0 to the host 192.94.233.10.
<source address, destination address, protocol, source port,The second and the third filters match adie/Tcp traffic
destination port, incoming interfacem a packet against a  from host 128.252.153.1 to host 128.252.153.7. And the
possibly Iarge set of filters (s_everal .of which may inplude fourth filter matches allupp traffic from network
address fields that are partially wildcarded, requiring a 128 252.153.0. It is easy to see that filter 2 is a proper subset

Table 1: Sample Filters



of filter 4; we say that filter 2 isnore specifichan filter 4. So far, we showed only omaG, which implements a single

Also note that filters 1 and 4 agésjoint filter table. As mentioned earlier, several filter table lookups
may be necessary for each packet, one at each gate that is

LEVEL 1 /% encountered by the packet along its data path. Often, it may
AP0 U AR T AR AR 15 be the case that the same or similar filters are installed in

LEE2 @ ¢ g two or more filter tables. In such cases, it is possible to
192.94.233.10 128.252.154.7| ¢ exploit the information that has been gleaned from a lookup
LEvELs X ' \.@ in one filter table to speed up the lookup for the same packet
- e - UDP in the next and subsequent filter tables. This can be

] @/ ] implemented by having inter-DAG pointers that lead from

® ® @ leaf nodes of one DAG to intermediate or leaf nodes in the

Figure 4. :DAG next DAG. Another optimization to the DAG scheme is to

. ) i collapse multiple nodes into a single node; this can be done
Figure 4 shows the correspondingc. To maich a triple  \yhen multiple wildcarded edges succeed each other without
<128.252.153.1, 128.252.154UpP> corresponding 10 an  4ny pranching at intermediate nodes. Due to space
incoming packet, the triple’s first field, the source address of jijtations, descriptions of these and other optimizations are
the packet (128.252.153.1) is subjected to a longest prefix,ot jncluded here. We have also omitted a discussion of

match against the three prefixes present at level 1 @iae  fijier ambiguities and their resolution. The interested reader
(ie., 129.%, 128.252.153.1, and 128.252.153.%). The mostig referred to [7] for more details,

specific match is clearly (128.252.153.1) and therefore the

edge to node ‘c’ of theac is followed. Next, the second Our DAG-based lookup data structure is an example of a
field, the packet's destination address, undergoes a similamore general data structure which we eali-pruning tries
longest prefix match against prefixes present at level 2 of theCecilia Tries [29] are another example of set-pruning tries.

DAG on edges leading out of node ‘c’. Since there is only The DAG-based algorithm is simple and easy to implement

one such prefix (128.252.154.7), and it matches our input . . . . .
value, the search continues to node ‘f’. On the next level, the(Our implementation requires approximately 800 lines of C

tch function i imol litv check th N Icode), and it is much faster than the ‘typical’ filter
match function 1S a Simpie equality Check on the proloCol 5 4qithms used in existing implementations [17, 22]. While
field from the packet. Since there is a matching outgoing

, ! X most of these existing techniques req@i@) time, n being
edge _for UDP, the filter lookup _progedure terminates,  yhe number of filters, our solution when used with a state-of-
returning filter 2 as the best matching filter.

the-art best matching prefix algorithm (e.g., controlled

Note that the matching function used at each level of theprefix expansion [25]), is more or less independent of the
DAG can be different, and is based on the desired lookupnumber of filters. If we were to characterize the
method for the corresponding field type. For exampleipfor — performance of oupAG approach, it would b®(f), wheref
address fields, a match based on the longest prefix match igs the number of fields in a filter specification. Since any
appropriate. For port numbers, matching can be done orpacket classifier has to look at least once at each field in the
ranges, with the possibility of having the single wildcard packet (except when the set of filters is trivial, e.g. all
* For the protocol and incoming interface fields, an Wwildcards), we argue that our scheme is theoretically
appropriate matching function would be a simple exactoptimal in speed. From a practical standpoint, our current
match (equality) with the possibility of a wildcard match implementation does not exploit hardware properties such
(*). The matching function itself can be independently as the machine’s cache subsystem architecture or main
configured for each level of thmG, and is implemented as memory quirks to improve performance. Also, if there are
a plugin in our framework. For address matching, we many ambiguous filters (see [7]), the memory requirements
implemented two such plugins: one is based on the slowerof our algorithm can be excessive. More advanced
but freely availableeATRICIA algorithm, and the second is techniques such as grid-of-tries [26] can provide better
based on the patented binary search on prefix length [30)memory utilization without sacrificing performance, but
algorithm. For the other levels, we use a default plugin Work only in the special case of two-dimensional filters. It is

provided as part of our kernel, which performs the simple important to note that because of the modular character of
equality checks mentioned above. our implementation, we can easily replace pac-based

) classifier with a new classifier plugin when better
Note that the leaf nodes obacG correspond to the installed approaches become available.

filters, and therefore contain all information associated with

filters. These filter records contain, in addition to a pointer In this section, we have attempted to provide an overview of
to the correct plugin instance, an opaque pointer that can b&heDAG based packet classification algorithm. A description
filled in by the plugin to point to some private data. This can of the implementation details are beyond the scope of this
be used by plugins to store plugin specific (hard) state that ispaper. Section 7 provides some performance results from
associated with installed filters. our current implementation of th®Ac-based packet

o classifier.
5.1.2 Optimizations

Serveral optimizations can be applied to the DAG scheme.



5.2 Flow Table Implementation Using Hashing  Fair Service CurveHcFsg [27]) algorithm, and the second
The flow table is used to cache flow information for iS our own implementation of a simple weighted Deficit
individual end-to-end flows. In other words, each entry in Round Robin §rR, [23]) plugin. These two plugins are
the flow table corresponds to a flow with a fully specified complementary in the sense tieRR is particularly useful
filter (one that contains no wildcards). Since there is no to implement fair queuing among best-effort flows, whereas

wildcarding, hashing can be used to implement flow table H-FSC implem_ents hierarchicgl scheduling similar to Class
lookups efficiently. Based QueuingcBq, [11]) with several advantages over

) ] ) CBQ. We believe thati-Fscrepresents the state-of-the-art in
Out implementation of the flow table uses the five tuple of packet scheduling. One of its main advantages is the
header fields <source address, destination address, gecoupling of delay and bandwidth allocation, which is very
protocol, source port, destination porfrom the packet to yseful if both real-time and hierarchical link-sharing
calculation has been kept very simple to improve jmplementation, packet scheduling plugin instances are
performance. It is executed in 17 processor cycles on achosen per interface. We plan to implement a Hierarchical
Pentium, and is described in Section 5. Hash collisions aregcheduling FrameworkH6R) which will allow different
singly linked list. individual nodes in the scheduling hierarchy. For example,

The array for the hash table is allocated at system boot timethis will allow us to combine both the-Fsc and thebrr
Its size is dependent upon the environment in which theScheduling schemes, wheb&r could be used to do fair
router is usedL@AN vs. regional vs. backbone router); the dueuing for all flows ending in the samersc leaf node.

default value used in our kernel is 32768. Note that in its current implementatioR;FSC usesFIFO
) ) gueueing for all flows matching the same leaf node, which
Each flow record in the hash table includes space for: may result in unfair service to different flows. Thersc

algorithm is well documented in [27] and our results are
consistent with that paper. We will not discuss our port in
more detail in this paper.

0. The six tuple of the corresponding filter

1. A pair of pointers for each gate that is implemented in
the core. One pointer points to the plugin instance that
has been bound to the flow. The second points to pri-6.1 The Weighted DRR Plugin
vate data for that plugin instance; it is used by the plu- The Deficit Round RobinoRR, [23]) algorithm is a very
gins to store per-flow “soft” state. This is used, for simple yet powerful packet scheduling scheme which
example, by theoRRr plugin (Section 6.1) to store a provides fair link bandwidth distribution among different
pointer to a queue of packets for each active flow. flows. The original implementation comes from theQ

2. A pointer to the filter record from which this flow was Module found in theaLTq [5] software distribution. The
derived. ALTQ WFQ modules implement fair queueing for a limited

3. A pointer which is used to link the record onto either a "UMPer of flows, which it distributes over a fixed number of
free list or onto the linked list for a hash bucket. queues.ALTQ came with a basic packet classifier which

4. A small number of flow records is allocated at system qupk%?d rf]lé);\(/jse:.o tgieniz qgilrjezrtg]ipeistglrgg glr;egedlgs cl)r]lfé?se
boot time and linked into a free list (default is 1024). mechanisms to store per-flow information in the flow table
More records are added as the need arises, with theecords, it was straightforward to add a queue per flow
number of allocated records increasing exponentially which guarantees perfectly fair queuing for all flows. In
(e.g. 1024, 2048, 4096, ...) to adapt to the environmentorder to allow bandwidth reservations, we have
as fast as possible. The system can be configured to stofinplemented a weighted form bRR which assigns weights
allocating new flow records after a given maximum tO queues. These weights are fixed for all best effort flows

has been reached, the oldest flow records are recycledéServed flow is added to the system. Since packet
(i.e., the old entries in the cache are replaced with newCiassification is already done very efficiently by te, the
' actual scheduler plugin is very simple (less than 600 lines of

ones). ) . code). It turned out to be extremely useful for
Performance results from our flow table implementation are yemonstrations of the link-sharing capabilities of our
presented in Section 7. architecture.
6. EXAMPLE OF A PLUGIN Shown below are the commands necessary to load and

In this section we will look at an example plugin for packet configure theprr plugin; this will give the reader a feel for
scheduling, in order to give the reader a better feel for howthe simplicity and elegance with which plugins can be put
plugins interact with our architecture and how they are into operation. Note that these commands can be executed at
implemented. any time, even when network traffic is transiting through the
systempmgris our Plugin Manager program, amsdload

We implemented two packet scheduling plugins: the first is; :
a port of Carnegie Mellon University'siu) Hierarchical is the Nessb command that is used to load kernel modules.



e Loading the plugin: the plugin registers with theu Pentium processor provides two instruction pipelines to

under the namedRR'. execute instructions in parallel if no explicit dependencies
wooster# modload -0 drr -e drr combined.o exist among instructions which prevent parallelization.
Module loaded as ID 0 Since the number of cycles consumed by a single instruction

therefore depends on its context, the cycles indicated in this
« Creating an instance: this creates an instance of thesection represent worst case values.
plugin with code ‘0x00030001’ (pc). The upper 16 bits
of the code number represent the plugin type (pt, 3 for
packet scheduling), the lower 16 bits the plugin number.
wooster# pmgr create instance pc=0x00030001
Created plugin instance, handle = 1
< Registering an instance: this binds the plugin instance
(ih) (in case of packet scheduling, we currently use a
static binding to an interface (if))

One of the drawbacks of modularity is that modules are
accessed using indirect function calls. Since all function
pointers come from entries in the flow table which have
been accessed just before the call to the function, it is fair to
assume that the pointer would come out of L2 cache in the
worst case. Assuming this, we found that an indirect
function call requires 12 cycles or 52 ns. This overhead has
to be multiplied by the number of gates throughout the

Woostori# pgmr register static pe=0x00030001 ih=1 kernel. In a typical scenario, with one gate each ifor
Instance registered with interface en0 security, IP options, Routing, and Packet scheduling, we

« Adding a filter: this specifies a filter which matches all Would require roughly 200 ns in the worst case to call all of
trafic  originating at IPv6 source address the plugin instances.
3fe:2000:400:11::4and sets the reserved bandwidth for por the remainder of this section, we will look at the lookup
all flows matching this filter to 80%. Usually, the filter  performance of flow and filter tables, and at the overall
and it's associated QoS would be set by a daeR&P(  forwarding performance of our kernel.
or ssB through a library call, but we implemented it on
the command line as well to allow for simple testing. 7.1 Flow Detection: Hashing
wooster# Jpmgr add filter pt=3 Flow table lookups are a key function in our architecture as
;?:3ﬁe:2°?°f‘°°:11“4’128 bw=80 they are executed for every packet. The function we used for
fter Handle =1 hash key calculation is based on simple additions and byte-
From now on, all flows originating from the specified swap operations. |t requires 17 cycles or 73 ns to compute,
' and turned out to result in a reasonably even distribution of

source address will get at least 80% of the link bandwidth. . _ . . ; ;
Note that the packet scheduler can be tumned off any time b}}ndlwdual flows over the hash table. We simulated hashing

o ) X . .In user space to get a better idea of how well our hash
unbinding or freeing the instance or unloading the plugin ¢, o0 would perform. From [16] we found that a large
module (which frees all instances of the plugin i

tomaticallv): backbone routerr(xXwesT2) has to manage an average of
automatically): 22000 active flows concurrently. We set the hash table size
« Freeing an instance: frees the instance of the plugin withto 32768 and used larger numbers of flows to show how

code ‘0x00030001’ with handle ‘1’. hash table overload affected performance. We passed 50
wooster# ./pmgr free_instance pc=0x00030001 ih=1 million 1Pv6 packets through the flow table lookup
Instance ‘1’ of plugin 0x00030001 freed procedure, and measured lookup times. (Noteithétflow

labels were not used for our measurements.) A flow lookup
We demonstrated therr packet scheduling plugin by required about 118 under regular circumstances without
sending a video stream on a 155 Mhkirs link through a overload. 200% overload caused the lookup time to degrade
router that implemented our framework. We creabee to 1.7us which is still very reasonable.
streams to generate noise, with the objective of disrupting S
the video. As expected, we observed very good quality7'2 Packet Classification . .
video when using bandwidth reservations for the video The DAG scheme uses a best matching prefsvr)
stream, and a significant degradation of the quality without @/gorithm for address lookups, and simple index hashing for
reservations. In case of a reserved video flow, the reserved©rt numbers and the protocol field. Recently, several new
flow remained within approximately 1% of it's reserved BMP algorithms have been proposed to replaceTeiCIA

bandwidth, regardless of the number of active streams. [24] algorithm found in many of todayissp-based routing
engines: Binary search on prefix lengthssry [27]),
7. PERFORMANCE Multiwvay and Multicolumn search [15], and Controlled

In this section, we elaborate on the performance of ourPrefix Expansion [25], to name just a few. Most of these
architecture and implementation. We did all of our schemes are optimized for one lookup table which they
measurements on a Pentium Pro with B&2_evel 2 cache usually try to fit into the processor’'s cache. Performance
running at 233viHz. For our measurements, we used the measurements published in these papers cannot directly be
VTUNE [14] tool to obtain dynamic clock cycle counts. applied to our architecture, because we have a potentially
Further we used special functions to access the Pentium'darge number of smaller lookup tables, one per pertinent
processor clock register (tsc) which is incremented by onenode of the bAG. Furthermore, performance of these
every cycle and allows for very accurate measurements. Thé&chemes largely varies with the type and size of the working



data set. Such trace-driven simulation cannot be applied tqust after the data was received from the network card. This
our framework because appropriate data sets of real-worldvalue was compared to tle®u cycle counter right before
filter patterns are not available. However, the metric for the the packet was output to the hardware of st card
worst case number of memory accesses of mive again. We sent 8 KByte@DP/IPv6 datagramsigvé flow label
algorithms is an interesting measure since it would allow usNOT used) belonging to three different flows concurrently
to give a good worst case estimate of how the classificationthrough our router. Thetm MTU was 9180, so there was no
algorithm performs. Using BsPL, which provides  fragmentation. We sent a total of 100 packets per flow, and
performance typical of most of the modesmP schemes  calculated the average processing time. This was repeated
when used with large prefix databases, the number of worstL000 times. The system had 16 filters installed. We installed
case memory accesses for a full filter lookup calculation arethree gates which called empty plugins for the first test and
shown in Table 2. Since the operations to calculate the haslonly one gate for packet scheduling in care was turned
values are inexpensive compared to memory accesses, an. The results are shown in Table 3 .The first row shows the
reasonably good estimate of the worst case filter lookupprocessing time of the unmodified EMeb 1.2.1 kernel. A
time can be calculated by multiplying the number of packet is received, forwarded and sent back toathe
memory accesses with the memory access delay (60 nshardware within 6460 cycles or 28. With our framework
This leads to a worst case filter lookup time of 1.4 us andturned on, flow detection and the three function calls caused
has to be multiplied by the total number of gates in use toan overhead of roughly 500 cycles or R as expected.
get a worst case estimate of the total lookup time of theNote that filtering has a minor impact on the overall
packet. Again, since this is a worst case number, we expecthroughput since it happens only for the first packet of each
flow. With our DRR plugin installed and guaranteeing fair

Access to function pointer f@mp function 1 gueueing among the three flows, we measured similar
Access to function pointer for index hash 1 performance as amLTQ system running the same
Ip address lookup (2*l0g32)/2*10g,(128)) 10/14 algorithm. Since the packet scheduling code is similar in

both implementations (our implementation ORR is

Port number lookup 4 derived fromALTQ), we benefit only from faster hashing in
Access t@AG edges 6 terms of performance. Packet scheduling introduces an
Total 20/24 overhead of 20% compared to a best-effort kernel. While

20% overhead may sound excessive, it corresponds to the
numbers reported by others. Althoughrsc has very

much better results in real world scenarios where thedn‘rerent scheduling  characteristics fromRR, thereby

number of filters is typically much smaller, and we could making any direct comparison difﬁcult,. [27] reports
benefit from various optimizations to theac data  between 6.8 and 108s' for packet queueing overhead,
structures (see Section 5.1.2). In any case it is important tovhich would correspond to about 25% to 37% overhead.

note that ctjhri]s nurrr:ber Is indepe_nd((jant of the number of filters¢ js important to see that every integrated services platform
in use and how they are organized. requires some sort of packet classification. By carefully

7.3 Overall Packet Processing Time implementing packet classification, we achieve faster

Overall throughput was measured using the Pentium’s CycleIookups foripv6 than other integrated services platforms for

counter. We added a time stamp function into Altel IPva (e.g, [27] states that they require 21§ for packet

: : ; . ; ; classification fonpv4 packets), even thougbv6 addresses
device driver which timestamped every incoming packet are larger. Once the flow a packet belongs to is detected,

picking the right instance of a plugin to which the packet

Table 2: Memory Accesses for a Filter Lookup

Kernel é\f,%.es '-ﬁ/,%e g‘iﬁ‘.‘ve ;Strough should be passed does not cost more than an indirect
[us] head packets/s function call. Thus we showed that on integrated services
Unmodified 6460 27.73 - 36800 platforms, a very flexible and modular architecture can be
Netsp 1.2.1 introduced with almost no additional processing cost.
I 0,
N 69701 2991 7.89% 34100 g CONCLUSIONS AND FUTURE WORK
Architecture We presented an extensible and modular software
NeBsD with 8160 35.0 _ 28600 architecture for high-performance extended integrated
ALTQ and services routers. This architecture allows code modules
DRR called plugins to be dynamically loaded into the kernel and
NetBsD with 8110 34.8| (0.61%) 28729 configured at run time. Instances of plugins can be bound to
our Plugin individual flows. Our implementation of this architecture in
Q;%hggé:;ure the NetBSD kernel relies on fast packet classification
plugin technology that is based on the combination of flow caching

Table 3: Overall Packet Processing Time ) )
9 1 Stoica, Zhang, and Ng's measurements on a Pentium 200 were scaled to

our 233 MHz Pentium.



with a novel DAG-based flow classification algorithm. We 10.

plan to freely distribute our source code, with the objective [1]
of providing the research community with a state-of-the-art

integrated services platform to build upon. 2]

Our architecture enables a very modular design at very lowi3]
cost: we add only 8% overhead compared to a best-effort[ 4
kernel. Our flow classification implementation provides for
extremely fast lookups: in the best case,twé flow entry 5]
for a packet can be found in 1u8 (when the flow is cached

in the flow table). The DAG-based filter lookup algorithm (6]
also has a worst case lookup time of only 24 memory 7]
accesses fapvé.

| 18]

E]

Our future plans include implementing the Hierarchical
Scheduling Framework HEF) to provide a more
sophisticated environment for packet scheduling than what
we've presented so far. Further, we believe that thell0l
integration of routing into the packet classifier makes a lot

of sense. While this is conceptually very simple, it requires [11]
some amount of work to do this in a standasb Unix
kernel, since the routing functions are not very well isolated.
By unifying routing and packet classification, we get QoS-
based routing/Level 4 switching for free. We believe that
these enhanced routing technologies have interestingi3l
properties and a lot of potential. The integration of routing [14]
will make fast packet classification schemes even more ;5
important. While we believe that owaG algorithm is a

valid contribution to the state-of-the-art, we plan to pursue
research in packet classification algorithms, and incorporatel6!
enhanced implementations and algorithms (such as those ir[b]
[26]) into our framework.
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