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Notes for Lectures 15–18

1 Defining Digital Signatures

First note that encryption provides no guarantee that a message is authentic. For example, if a
message is encrypted with the one-time pad, the adversary can flip any of its bits by simply flipping
the corresponding bit of the ciphertext. In any public-key encryption scheme, there is no way to
tell the source of the message, because the key is public. Furthermore, the message can be modified
in transit by the adversary in every encryption scheme we studied so far.

Thus, encryption ensures secrecy, but can’t help you figure out who the message came from or
what it was really meant to say. We need digital signatures for that.

A digital signature scheme is a triple of probabilistic polynomial-time algorithms (Gen,Sig,Ver).
The key generation algorithm Gen outputs (PK,SK) when given 1k as input. The signing algo-
rithm Sig takes SK and m as input, and outputs a signature σ. The verification algorithm Ver
takes PK,m, σ as input and outputs 1 or 0 (or true/false, valid/invalid, etc.). We require that
signatures produced by Sig verify as correct by Ver: if (PK,SK) ← Gen(1k), then for all m,
Ver(PK,m,Sig(SK,m)) = 1 (perhaps with probability 1 − negl(k)). We may also restrict the
message space to some set M , and instead saying “for all m,” say “for all m ∈ M .”

The above description says nothing about security. Indeed, to define security, one has to try
a few examples to better understand the notion. Here is an example: suppose my Gen generates
an RSA pair PK = (n, e),SK = (n, d); to sign m, let σ = md mod n, and to verify (m,σ), check if
m = σe mod n. We identified a few problems with this in class: if you have signatures σ1 on m1

and σ2 on m2, you can compute σ1σ2 mod n to obtain a signature on m1m2 mod n. Also, without
observing any signatures at all, you can pick a random σ ∈ Z∗

n and compute m = σe mod n to get
a valid pair (m,σ). Of course, m may not be a meaningful message, but it’s difficult to know what
will be “meaningful” for a particular application.

The definition we want is that the adversary be unable to come up with a signature on a new
message, even after observing signatures on messages of its choice. In other words, the adversary
E? is a probabilistic polynomial-time oracle machine (we use the superscript “?” denotes the fact
that the machine has access to an oracle; when running the machine E with a specific oracle f ,
we write Ef ). Consider the following experiment of running the E with the oracle for the signing
function:

exp-forge(k)
1. (PK,SK)← Gen(1k)
2. (m,σ)← ESigSK(·)(1k,PK)
3. If m was not queried by E to its oracle and VerPK(m,σ) = 1, output 1. Else output 0.

Definition 1. A signature scheme Gen,Sig,Ver is existentially unforgeable under an adaptive
chosen-message attack if for all probabilistic polynomial time E? there exists a negligible function
negl such that Pr[exp-forge(k)→ 1] ≤ negl(k) (the probability is taken over cointosses of Gen, E
and the signing oracle SigSK(cdot)).

The above definition is due to Goldwasser, Micali and Rivest [GMR88] (first appeared in 1984).



Leo Reyzin. BU CAS CS 538. Fall 2003. 2

1.1 The Paradox

Before 1984, it was believed by many to be impossible to achieve, for roughly the following reasons.
Suppose you are trying to prove security of a signature scheme. The way you usually do it is as
follows: if you have E? that can break the scheme, then you somehow use it to break your security
assumption. Thus, you give E? some public key, it forges a signature, and the forgery helps you do
something like invert RSA or break Discrete Logarithm. But in the process, E? will want oracle
access to the signing oracle. So you will need to answer the queries of E? by making signatures on
messages of adversary’s choice. So you will need to know the secret key. But if you already know
the secret key, how can E?’s forgery help you solve a hard problem—after all, it seems like you
could have made that forgery yourself, anyway? This reasoning turned out to be flawed, as we will
see below.

2 Lamport’s One-Time Signatures

Before building full-fleldged signature schemes, let’s consider one-time signatures. One-time sig-
natures have the same definition, except that they allow you to sign only one message; in other
words, the adversary E? is allowed only one oracle query (rather than polynomially many, as in
the definition above). No security is guaranteed if two signatures are available to the adversary.

Let’s restrict ourselves further to just single-bit messages for now. Here’s is the signature scheme:
let f be a one-way function (the same scheme will work with collections of one-way functions; the
notation gets messier, which is why here we focus on a single f). Then for a secret key, choose
two k-bit values x0 and x1, and let the public key be y0 = f(x0) and y1 = f(x1). To sign m = 0,
output σ = x0. To sign m = 1, output σ = x1. To verify (m,σ), check if f(σ) = ym.

Claim 1. The above one-time signature scheme for one-bit messages is secure.

Proof. Indeed, suppose it’s not. Then out of the adversary E?, we will build an inverter A for the
one-way function. On input y, A flips a random coin to get b. Suppose b = 0. Then A picks x0

at random, lets y0 = f(x0), and runs E? on the public key (y0, y). At some point E? may ask for
a single signing query on some message m1, for m1 = 0 or m1 = 1. If m1 = 0, A returns x0 in
response to the query; else A aborts. If A did not abort and E? then outputs a forgery, it will have
to be for m = 1 (because E? is required to forge on a new message), so A will learn σ such that
f(σ) = y and thus will invert f . Similar reasoning works for b = 1.

Note that if E? succeeds with probability ε then A will succeed with probability ε/2, because
the view of E? does not depend on A’s choice of b—hence, the choice will be “lucky” (i.e., will
match the query asked by E?) half the time.

It is easy to extend this scheme for l-bit messages: select 2l values x0
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i . This scheme is due to

Lamport [Lam79], apparently discovered by him as early as 1975.

Claim 2. The above one-time signature scheme for l-bit messages is secure.

Proof. The proof is the same as for the previous claim, except that A has to guess not only the
bit b, but also the message position i. A then generates the secret key by selecting x0
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place of y1−b
i . A will succeed in finding an inverse for y if it can answer the query of E? (i.e.,

if the i-th bit of the query message is b), and if the i-th bit of the forgery message is 1 − b. To
compute the probability of A’s success, note that the query message and the forgery message have
to differ in at least one bit position, which is position i with probability at least 1/l. Thus, A has
probability at least 1/l of guessing i correctly, and then probability 1/2 of guessing b correctly. So
success probability of A is at least ε/(2l).

Note that the above bound on the success probability of A is “tight” in the following sense. If
there is an algorithm that inverts f with probability δ, then we can build an adversary E? that
succeeds in forging a signature with probability roughly 2lδ: namely, E? will try to invert f for at
least one of the 2l public key values. If it succeeds, say, for value yb

i , it will then query the some
message whose i-th bit is 1− b, and then be able to forge a signature on a new message, which is
the same as the query message except in the i-th bit.

Thus, it is meaninful to say that Lamport’s signature scheme is 2l times less secure than the
underlying one-way function.

2.1 What happened to the paradox?

How was it that we were able to prove security of this scheme? After all, A needed to produce
a signature and yet was able to invert a one-way function from a forgery! The point is that A
produced a signature using one part of the key, while gained knowledge if the forgery used another
part of key. The paradox failed to account for the idea that A may not know the entire secret key,
and thus be able to forge signatures some messages and not others, and thus gain knowledge with
some probability less than 1.

3 Collision-Resistant Hashing

Lamport’s signatures can sign l-bit messages if the public key has 2l elements in it. We’d like to
be able to sign arbitrary-length messages regardless of key length. In order to do so, we introduce
the concept of collision-resistant hashing.

Definition 2. Let I be an index set, and for each i ∈ I, let Hi : Di → Ri be a function. Then
{Hi}i∈I is a collection of collision resistant hash functions if:

1. there exists a probabilistic polynomial-time algorithm Gen that on input 1k outputs i ∈ I;

2. |Di| > |Ri|, i.e., the function Hi actually does reduce its domain;

3. given i and x ∈ Di, Hi(x) is efficiently computable;

4. for all probabilistic polynomial-time C, there exists a negligible function negl such that for
all k, if i ∈ I is chosen by Gen(1k), then Pr[C(1k, i)→ (x1, x2) such that x1 	= x2 ∧Hi(x1) =
Hi(x2)] ≤ negl(k), where the probability is over random choices made by Gen and C.

We will construct an example based on the discrete logarithm assumption. Let

I = {(p, g, h)|p = 2q + 1 and p, q are prime, g, h are generators of QRp}.

For (p, g, h) ∈ I and a ∈ {1, 2, . . . , q}, b ∈ {1, 2, . . . , q}, define H(p,g,h)(a, b) = gahb mod p. The
domain and range are Dp,g,h = {1, 2, . . . , q} × {1, 2, . . . , q}, and Rp,g,h = QRp (note that we can
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make the range Rp,g,h = {1, 2, . . . , q} by simply outputting p− (gahb mod p) if gahb mod p > q; this
works because this is an efficiently computable bijection between QRp and {1, 2, . . . , q}, because
exactly one of x, p− x is in QRp for x ∈ Z∗

p for safe p).
Assuming that safe primes can be efficiently generated (for condition 1 in the definition), and

that discrete logarithm modulo a safe prime is hard, this turns out to be collision resistant, because
of the following claim.

Claim 3. Suppose Gen, on input 1k, generates a random k-bit safe prime p and two generators g, h
of QRp. Suppose C can find collisions with probability ε(k). Then there exists an algorithm that,
given a random k-bit safe prime p and g, h ∈ QRp, g 	= 1, finds logg h modulo p with probability ε.

Proof. Given p, g 	= 1, h, first note that g is a generator of QRp, because QRp has prime order, so
everything except 1 is a generator. To find logg h, do the following: if h = 1, output 0. Else h is a
generator of QRp, so run C on 1|p|, p, g, h. If C finds a collision, then it outputs (a1, b1) 	= (a2, b2),
such that ga1hb1 ≡ ga2hb2 (mod p). Hence ga1−a2 ≡ hb2−b1 (mod p). Note that exponents work
modulo q, because the order of g and h is q. Note also that if b2 	= b1, then b2 − b1 is relatively
prime to q, because q is prime and |b2 − b1| < q. Hence, if b2 	= b1, we can compute an integer
c = (b2 − b1)−1 mod q, and then h = g(a1−a2)c, so logg h = (a1 − a2)c mod q. The case of b1 = b2 is
impossible, because then ga1−a2 ≡ 1, so a1 = a2, but we assumed that C outputs two distinct pairs
(a1, b1), (a2, b2).

The above collection of collision-resistant hash functions is not efficient enough for some practical
applications. In practice, people often use ad hoc functions, such as MD5 [Riv92] or SHA-1 [NIS95],
that are not actually families, but rather specific fixed functions (both take arbitrary lengh inputs;
MD5 outputs 128 bits; SHA-1 outputs 160 bits). They are based not on number theory, but rather
on sophisticated bit manipulations.

Note that for any fixed function, there always exists a collision (as long as the domain is larger
than the range), and hence there always is a polynomial-time C that simply outputs that collision
(even if no one knows what C is). So these don’t quite fit our definition (though one can think
of them as being chosen at random from some plausible family by their designers). However, it is
believed that for both of these functions, to find a collision (i.e., to find such C) is quite difficult.
One can view these functions as pulled out at random from some family by their designers.

Finally, it must be noted that a hash function with k-bit outputs can be broken in roughly
2k/2 steps (this is known as the “birthday paradox”). Indeed, if you hash 2 random messages, the
likelihood they collide is roughly 2k. If you hash t random messages, that gives you t(t−1)/2 pairs,
so the likelihood at least one pair collides is roughly t2/2k+1. This is actually an upper bound on
the probability of collision. A lower bound is obtained by the following derviation: probability p of
non-collision is, by simple counting,

p = (1− 1/2k)(1− 2/2k) · · · (1− (t− 1)/2k) (1)

≤ e(−1−2−···−(t−1))/2k
(2)

= et(t−1)/2k+1
(3)

≤ 1− t(t− 1)/2k+1 + (t(t− 1)/2k+1)2/2 . (4)

Line (2) and Line (4) follow from the Taylor series expansion of e−x which gives (1 − x) ≤ e−x ≤
1− x+ x2/2. Thus the probability of collision is at least A−A2/2, where A = t(t− 1)/2k+1, and
is not more than t2/2k+1.
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So if t = 2k/2, the likelihood of collision is quite good. Thus, a collision for MD5 can be found in
264 evaluations, and a collision for SHA-1 in 280 evaluations. 280 operations seem infeasbile today;
264 are feasible with a good deal of time and money.

4 Signatures for Arbitrary-Length Messages

Recall that Lamport’s signatures can sign only messages shorter than the public key (l-bit messages,
whereas the public key has 2l long values). The following construction, using collision-resistant
hashing, allows one to sign long messages with any signature scheme (if the original signature
scheme was one-time, like Lamport’s, then the resulting signature scheme will be one-time, as
well).

Suppose I have a secure signature scheme (Gen′,Sig′,Ver′) that is able to sign messages only
of limited length, say, of length l(k), where k is the security parameter. Suppose I also have
a collision-resistant hash function family {Hi}i∈I with generation algorithm GenH, such that if
i ← GenH(1k), then Hi takes strings of some length s(k) (or perhaps of unbounded length) and
maps them to strings of size l(k). Consider now the following signature scheme (Gen,Sig,Ver):

1. Key generation algorithm Gen(1k): to generate a key, generate (PK′,SK′) using Gen′(1k);
generate hash index i using GenH(1k); output (PK′, i) as the public key and (SK′, i) as the
secret key.

2. Signing algorithm Sig: to sign a message m of size s(k), first hash it to get h = Hi(m), then
sign the hash value using σ = Sig′(SK′, h), and output σ.

3. Verifying algorithm Ver: to verify a signature σ on a message m, first hash the message to
get h = Hi(m), then verify the signature on the hash value using Ver′(PK′, σ, h).

This scheme can sign much longer messages than the original scheme, because, we can have s be
much greater than k (in fact, as Merkle trees below demonstrate, collision-resistant hash functions
can be composed with themselves to work on longer inputs).

The proof of security is quite simple. Given a forger F for the the new scheme, we will construct
a collision-finder C for {Hi} and an adversary E that breaks the original signature scheme. One
of the two will work with probability that is not negligible, which leads to a contradiction. The
details are what you have to fill in on problem set 7.

5 Merkle Signatures

Consider a one-time signature scheme (Gen′,Sig′,Ver′) and a collision-resistant function collection
{Hi}i∈I with generation function GenH. Out of these, Merkle [Mer89] (the paper was written in
1979, but not published until 10 years later) builds a signature scheme (Gen,Sig,Ver) to sign n
messages as follows:

1. Key generation algorithm Gen(1k): run Gen′ n times to get n key pairs (PKj ,SKj) for the
one-time scheme. Run GenH(1k) to obtain select an index i (i.e., a hash function Hi) out
of the collection. Merkle hash the one-time public keys to get the Merkle root r: in other
words, compute s1

1 = H(PK1,PK2), s1
2 = H(PK3,PK4), . . . , s1

n/2 = H(PKn−1,PKn); repeat
this process on the s1 values to get s2

1 = H(s1
1, s

1
2), s

2
2 = H(s1

3, s
1
4), . . . , s

2
n/4 = H(s1

n/2−1, s
1
n/2);

repeat again (logn times over all) to get the single root r. Output r as the public key and
keep the hash index i, the n pairs (PKj ,SKj) and the Merkle tree as the secret key.
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2. Signing algorithm Sig: to sign the j-th message mj , sign it using the j-th one-time key: let
σj = Sig′(SKj ,mj). Output σj ,PKj , and the authenticating path of PKj that leads to r (the
authenticating path consists of the siblings of the path from PKj to the root r).

3. Verifying algorithm Ver: to verify the signature, first use Ver′ to check that the signature is
correct with respect to PKj , then use the authenticating path for PKj to check that it leads
to r (i.e., hash PKj and its sibling to get the value at the parent of PKj ; hash that and its
sibling to get the grandparent, and so on, until the root value, which should match r). If
both checks hold, output 1; else output 0.

To prove that (Gen,Sig,Ver) is a secure signature scheme, we will prove that if it is not secure,
then either {Hi}i∈I is not a collision resistant family, or (Gen′,Sig′,Ver′) is not a secure one-time
signature scheme.

Recall that a hash function is not collision resistant if there exists an algorithm C that, on input
(1k, i), finds a collision with probability that is not negligible in k: two pairs (x1, x2), (y1, y2) such
that Hi(x1, x2) = Hi(y1, y2).

Recall also that a one-time signature scheme is not secure if there exists an algorithm E that,
on input PKO for the one-time signature scheme, asks a single query (a signature σ for a message
m), and then outputs a new message m′ and signature σ′ such that Ver′(PKO, σ

′,m′) = 1 with not
negligible probability.

So suppose F is a forger for (Gen,Sig,Ver). F gets a public key (Merkle root) A as input, asks
a bunch of queries mj and receives signatures σj , and then ultimately outputs a new message m′′

and signature σ′′ such that Ver(σ′′,m′′) = 1 with not negligible probability. I will build both C
and E out of F , and then argue that either one of those two will work.

Recall that C gets (1k, i) as input. To build C out of F , do as follows:

1. Perform the key generation algorithm Gen, as above, except don’t generate another hash key,
but rather use i given in the input. Obtain the public key r and the secret key (PKj ,SKj)
and the Merkle tree.

2. Give r as input to F , and answer F ’s signing queries using the signing algorithm Sig (since
you know all the secret keys).

3. Now F outputs σ′′,m′′. Of course, σ′′ has to contain a public key for the one-time signature
scheme, and its authenticating path to r. If that public key is not one of (PK1,PK2, . . . ,PKn),
then the authenticating path to r must result in a hash function collision somewhere in the
Merkle tree. Output that collision.

Recall that E gets a public key for the one-time signature scheme, PKO, as input, and is allowed
one query to the signing oracle Sig(SKO, ·) for that scheme. To build E out of F , do as follows:

1. Guess a value + between 1 and n at random.

2. Perform the key generation algorithm G, as above, except don’t generate the +-th public key
but rather use PKO given in the input in its place. Obtain the public key A and almost all
of the secret keys (PKj ,SKj) (except SK�) and the Merkle tree.

3. Give A as input to F , and answer F ’s signing queries using the signing algorithm S, except for
the +-th signing query: for the +-th signing query, use the one-time signing oracle Sig(SKO, ·)
to which E is allowed one-time access.
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4. Now F outputs σ′′,m′′. Of course, σ′′ has to contain a public key for the one-time signature
scheme, and the signature with σ′ respect to that public key. If that public key happens to
be one of (PK1,PK2, . . . ,PKn), and, in fact, happens to be the +-th one, then the one-time
signature σ′ is a valid signature with respect to PK� = PKO. Output m′′, σ′.

All that’s left is to argue that either C or E (or both) have not negligible probability of success.
Well, if F succeeds with probability ε, then either with probability at least ε/2 it forges a signature
using a new public key, or with probability at least ε/2 it forges a signature using a public key
from the tree. In the first case, C succeeds with probability at least ε/2, and in the second case, E
succeeds with probability at least ε/2n.

6 Stateful vs. Stateless Signatures

Merkle’s and Naor-Yung (on your homework 7) signature schemes have a serious drawback: they
require the signer to keep some state from one signature to the next. That is, to sign, the signer
needs not only the secret key, but also information about what happened so far. If that information
is incorrect, the signature scheme can be broken (because, for example, the signer might sign two
messages with the same one-time key). If you look carefully at our definition of signatures, keeping
state is not allowed: the input to the signer is the secret key and the message to be signed, but
nothing else. Aside from a syntactic problem that stateful signatures do not formally satisfy the
definition, there is an implementation problem: when implementing the signer in, for example, a
computer, a smart card or a cellular phone, one needs to provide not only for secure storage of the
secret key (which is fixed once at key generation), but also of the state (which changes with each
signature). Thus, one needs to provide for secure read/write memory that survives power loss and
potential physical attacks aimed at modifying it (as opposed to read-only memory for the secret
key in the case of stateless schemes).

The first provably secure stateless signature scheme was a modification of [GMR88] (which
itself was the first provably secure stateful signature scheme) due to Goldreich [Gol86]. We will not
discuss it here. More recent examples (also not discussed here) are to due Gennaro, Halevi and
Rabin [GHR99], and Cramer and Shoup [CS00]; perhaps the most efficient one is due to Fischlin
[Fis02].
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