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1 Definition and Recap

Recall the definition of differential privacy.

Definition 1 Let M : Xn → Y be a random mechanism. We say that M is (ε, δ)-differentially
private if, for every x, x′ ∈ Xn differing on only one row,

∀T ⊂ Y P [M(x) ∈ T ] ≤ eεP [M(x′) ∈ T ] + δ.

We say that M is ε-differentially private if it is (ε, 0)-differentially private; equivalently, for every
x, x′ ∈ Xn differing on only one row, D∞(M(x)||M(x′)) ≤ ε, where, for random variables X and Y
with range Y, we define

D∞(X ||Y ) = sup
T⊂Y

log

(

P [X ∈ T ]

P [Y ∈ T ]

)

.

The typical range of parameters is ε ∈ [1/n, 1] being a constant such as 0.01 and δ = negl being
cryptographically small.

Observe that, for discrete random variables X and Y ,

D∞(X ||Y ) = max
t∈Y

log

(

P [X = t]

P [Y = t]

)

.

There is also an equivalent simulator-based definition. This says that the amount one learns from
M(x) about any row in x is within ε of what one can learn about it from the rest of the database.

Proposition 2 Let M : Xn → Y be a random function. Then M is ε-differentially private if and
only if there exists a simulator S such that, for every i ∈ [n],

D∞(M(x)||S(x−i)) ≤ ε ∧ D∞(S(x−i)||M(x)) ≤ ε.

Note that we define x−i to be the database with the ith entry hidden.

Note that the equivalence in Proposition 2 can be extended to (ε, δ)-differential privacy.

2 A Bayesian Forumulation of Differential Privacy

Bayes’ theorem gives us an equivalent and intuitive definition of differential privacy. This further
justifies it being the “right” definition.
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Roughly, the next proposition states that the output of a differentially private mechanism does not
significantly change an adversary’s beliefs about an individual. Note that the output of a (useful)
differentially private mechanism will give the adversary information about the distribution. So we
must assume that the adversary knows the distribution as part of his prior; otherwise this is false.
Indeed, we assume the worst case—the adversary has access to all of the database except one entry.

Proposition 3 If M is an ε-differentially private, then, for every x ∈ Xn, i ∈ [n], distribution Xi

on X (the adversary’s prior on xi), and output y of M(x),

D∞(Xi||(Xi|M(Xi, x−i) = y)) ≤ ε ∧ D∞((Xi|M(Xi, x−i) = y)||Xi) ≤ ε,

where X |M(Xi, x−i) = y denotes the distribution of Xi conditioned on the output of M on Xi and
the rest of the database x−i being y.

Proof: By Bayes’ theorem

P [Xi = x′
i|M(Xi, x−i) = y] =

P [M(x′
i, x−i) = y]

P [M(Xi, x−i) = y]
P [Xi = x′

i] (1)

∈ e±ε
P [Xi = x′

i] (by ε-differential privacy).

So the prior and posterior only differ by a multiplicative factor in the range [e−ε, e+ε], which gives
the result. !

Proposition 4 is a converse to Proposition 3. Moreover, we see a different metric being used—
statistical distance.

Proposition 4 Let M : Xn → Y be a randomized mechanism. Suppose that, for every x ∈ Xn,
i ∈ [n], distributions Xi on X , and y ∈ Y,

∆(Xi, (Xi|M(Xi, x−i) = y)) ≤ ε.

Then M is O(ε)-differentially private.

Proof: Let x, x′ ∈ Xn differ on one row i ∈ [n]; let x = (xi, x−i) and x′ = (x′
i, x−i). Define a

distribution Xi by
P [Xi = xi] = P [Xi = x′

i] = 1/2.

Choose γ such that

P [Xi = xi|M(Xi, x−i) = y] = (1 + γ)/2 ∧ P [Xi = x′
i|M(Xi, x−i) = y] = (1 − γ)/2.

Then Xi and Xi|M(Xi, x−i) = y are Bernoulli random variables, whence

γ = ∆(Xi, (Xi|M(Xi, x−i) = y)) ≤ ε.

By Bayes’ theorem,

P [M(x′) = y]

P [M(x) = y]
=

P [M(x′
i, x−i) = y]

P [M(Xi, x−i) = y]
/
P [M(xi, x−i) = y]

P [M(Xi, x−i) = y]

=
P [Xi = x′

i|M(Xi, x−i) = y]

P [Xi = x′
i]

/
P [Xi = xi|M(Xi, x−i) = y]

P [Xi = xi]
(cf. (1))

=
1 + γ

1− γ
= eO(ε).

!

Remarks:
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• Note that the proof of Proposition 4 only requires

∆

(

Bernoulli

(

1

2

)

,Bernoulli

(

1 + γ

2

))

= Ω(γ).

Any metric on distributions that satisfies this will do.

• Propositions 3 and 4 can be generalized to (ε, δ)-differential privacy. For negligible δ, the
statements hold with 1− negligible probability over the randomness of M .

• We allow an arbitrary prior. So differential privacy is resilient to arbitrary side information.
So an individual’s data is safe, given that it is localized to one row in the database. There is
no guarantee if the data is spread over the whole database.

3 Noninteractive Data Release

Ideally, we want a differentially private mechanism M : Xn → Y such that M(x) encodes a number
of important statistics. For example, we want to be able to answer several counting queries P =
{π : Xn → [0, 1]} within accuracy ±α from M(x). Note that a counting query is of the form
q : X → {0, 1} and the answer is q(x) = (1/n)

∑

i∈[n] q(xi).

One method of noninteractive data release is synthetic data: Synthetic data has exactly the same
format as the original data; so M is of the form M : Xn → Xn′

. We say that M is α-accurate for a
set P of queries if, for every π ∈ P , we have |π(x)− π(M(x))| ≤ α. Producing synthetic data turns
out to be problematic. As such, other forms of data release are of interest too.

3.1 BLR Mechanism

The Blum-Ligett-Roth (BLR) mechanism [BLR] is a ε-differentially private α-accurate noninterac-
tive data release mechanism for a set of counting queries P as long as

α ≥ c

(

log |X | log |P|
εn

)1/3

for some universal constant c. Moreover, the BLR mechanism produces synthetic data.

For example, if X = {0, 1}d and P is the class of conjunctions, then |P| = 3d and we require
α ≥ c′d2/3(εn)−1/3. So we can produce ε-differentially private α-accurate synthetic data for any
d-attribute database of size n = poly(d, 1/α, 1/ε).

The downside of the BLR mechanism is that it requires exponential running time and is thus
infeasible in practice. This leads to the following open problem: Can we achieve differentially
private noninteractive data release in polynomial time for some interesting class of queries?

• We know [UV] that creating differentially private synthetic data that preserves even two-
conjunctions is hard (assuming that one-way functions exist).

• For non-synthetic-data release, we know of a close connection to the open problem of traitor
tracing, which we discuss next.
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4 Traitor Tracing

Suppose that we want to broadcast messages—such as a subscriber-only TV channel—to n sub-
scribers (users), but we wish to ensure that non-subscribers do not gain access. Moreover, if sub-
scribers betray the system and give their keys to non-subscribers, we want to be able to identify and
punish the traitors. This goal can be formalized as a traitor tracing scheme as follows.

Definition 5 A (fully resilient) traitor tracing scheme consists of polynomial-time algorithms Setup,
Enc, Dec, and Trace such that the following hold.

• Setup is randomized and Setup(1k, 1n) = (bk, k1, · · · , kn), where bk is the broadcast key and,
for i ∈ [n], ki is the ith user key.

• Enc is randomized, Dec is deterministic, and for every i ∈ [n] andm ∈ {0, 1}, Decki
(Encbk(m)) =

m.

• Suppose that A is a probabilistic polynomial-time adversary that takes as input a subset {ki :
i ∈ I} of the user keys and black-box access to Encbk. The goal of A is to produce an α-pirate
decoder Dec∗—that is, a polynomial-time algorithm such that P [Dec∗(Encbk(m)) = m] ≥ 1/2+
α for all m. However, Trace will identify at least one of the keys ki (i ∈ I) that A used. In
particular,

P

[

AEncbk(ki : i ∈ I) = Dec∗ ∧ TraceDec
∗

(bk) /∈ {ki : i ∈ I}
]

= negligible(k)

—that is, the probability that A successfully produces an α-pirate decoder and Trace fails to
identify a key used in its construction is negligible. Moreover, the running time of Trace is
poly(n, k, 1/α).

We have the following trivial construction of a traitor tracing scheme.

Example 6 Setup computes independent keys k1 · · · kn for a symmetric encryption scheme (Enc′,Dec′)
and bk = (k1, · · · , kn). Then Encbk(m) =

(

Enc′k1
(m), · · · ,Enc′kn

(m)
)

and Decki
(c) = Dec′ki

(ci).
Trace functions as follows.

Let Di = (Enc′k1
(0), · · · ,Enc′ki

(0),Enc′ki+1
(1), · · · ,Enc′kn

(1)). Then D0 ∼ Enc(1) and Dn ∼ Enc(0).
By assumption, P [Dec∗(D0) = 1] ≥ 1/2 + α and P [Dec∗(Dn) = 1] ≤ 1/2 − α. So Dec∗ can 2α-
distinguish D0 and Dn. In particular, by a hybrid argument, there exists i∗ ∈ [n] such that Dec∗ can
α/(n+ 1)-distinguish Di∗ from Di∗−1. Moreover, with high probability Trace can find such an i∗ in
polynomial-time.

By semantic security, for every i ∈ [n], Enc′ki
(0) and Enc′ki

(1) are indistinguishable to Dec∗ unless
A had access to ki. Thus, unless A had access to ki, Di−1 and Di are indistinguishable to Dec∗.
Since Di∗ and Di∗−1 are distinguishable, A had access to i∗.

Clearly Example 6 is unsatisfactory as the key and message lengths grow linearly with the number
of users.
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4.1 Sahai-Waters Traitor Tracing Scheme

Boneh, Sahai, and Waters have constructed a traitor tracing scheme [BSW] that has O(1)-sized user
keys and O(

√
n)-sized ciphertexts (ignoring the security parameter k). It remains open to improve

this.

4.2 Connection to Differential Privacy

Theorem 7 An efficient traitor tracing scheme implies that there is no efficient differentially private
data release mechanism for some class P of efficient queries.

Theorem 7 implies that we cannot have both differentially private data release and traitor tracing
schemes. Currently we have neither.

The intuition behind this result is that differentially private data release summarises the ‘usefulness’
of the data while hiding individual information. However, a traitor tracing scheme prevents keys
being summarised without identifying an individual.

Proof: Suppose that (Setup,Enc,Dec,Trace) is a traitor tracing scheme andM is an ε-differentially
private data release mechanism. Assume that X = {0, 1}d = K = {user keys}. Let P = {πc : K →
{0, 1}}, where c ranges over ciphertexts and πc(k) = Deck(c) is a counting query. Consider the
following.

• Let (bk, k1, · · · , kn+1) = Setup(1k, 1n+1).

• Let x = (k1, · · · , kn) be the database.

• Compute y = M(x). Then y can be used to answer any query in P to within ±α accuracy.
We will use y to produce a pirate decoder.

• If c = Encbk(0), then πc(x) = 0. Likewise, if c = Encbk(1), then πc(x) = 1. But, from y, we
can efficiently estimate πc(x). If α < 1/2, we can decode perfectly. So we have a perfect pirate
decoder Dec∗.

• Now TraceDec∗ outputs one of k1 · · · kn with high probability. This violates the privacy con-
straint.

• Let ki be a most likely output of TraceDec∗ and let x′ be x with ki replaced with kn+1. The
probability that TraceDec∗ outputs ki changes from at least 1/n to negligible. This is a large
multiplicative difference, which violates the differential privacy of M .

!

It remains open to prove an analogue of Theorem 7 for a more natural class of queries.
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