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1 Recap

Recall from last lecture that we have several ways to model leakage. One model is “only computation
leaks” by Micali and Reyzin [11], which assumes a form of secure memory that does not leak as long
as no computation is done on the data. Another one is “memory leakage” by Akavia, Goldwasser,
and Vaikuntanathan [1], which assumes that everything can leak information.

From an orthogonal dimension we can talk about bounded leakage and continual leakage, where
the former assumes that leakage is just one shot, while the latter allows leakage to happen repeatedly
during computation. The table below summarizes all four possible combinations of leakage models.

only computation leaks memory leakage

bounded
This combination is not
really meaningful.

Most previous work falls in
this model, e.g., [1, 12, 2, 9].

continual E.g., [8] E.g., [4], which we will discuss today.

In last two lectures we have studied bounded memory leakage, and today we are going to study
continual memory leakage. In particular, we are going to discuss signature schemes and encryption
schemes that are secure against continual memory leakage —CML from now on.

2 Definition of Security Against CML

Let us start by defining public-key encryption schemes that are secure against CML.

Definition 1. A public-key encryption scheme E is said to be semantically secure against CML
if, ∀ PPT adversary A, the advantage of A against challenger Ch in the following game is negligible
(in the security parameter n):

A Ch
PK!! (PK,SK1) ← Gen(1n)

L1:{0,1}n→{0,1}λ

""

L1(SK1)!!

update, L2""

L2(SK2)!! SK2 ← Update(PK,SK1)
...

update, Lt""

Lt(SKt)!! SKt ← Update(PK,SKt−1)
m0,m1 ""

c!! b ←R {0, 1}, c = Enc(PK,mb)
b′ "" A wins if b′ = b
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Remarks. In the above game, λ is the leakage bound as we have seen in previous lectures, and t
is polynomial in n.

The function Update has to be poly-time computable, and is what we are going to use to update
the secret key when implementing E . As demonstrated by the figure below, this function implies
that there are many valid secret keys associated with the same public key, and starting from one
of them we can efficiently find some others without ever changing the public key —an advantage of
such a scheme.

The adversary can ask for as many secret keys as needed, but at each time point there is only
one secret key stored in the system (say in a smart card) and all leakage is about the current key.

Finally, it is easy to see that Update has to be randomized, otherwise the adversary can ask for
leakage about SKt at time 1, 2, ..., and ultimately will collect enough information to recover SKt.

Signature Schemes. The definition for signature schemes that are secure against CML is very
similar, and thus skipped in the lecture. The main difference is that the adversary A is also given a
Sign oracle to generate signatures for messages of his choice, and A wins if he manages to generate
a valid signature for a message never queried to the oracle.

3 Construction of Signature Schemes Secure Against CML

Today we focus on schemes that do not allow leakage of the randomness used by the Update procedure
or the Sign procedure (for signature schemes only). Very recently, [10] proposed signature and
public-key encryption schemes that further allow leakage on the randomness used by Update; and
[3] proposed signature schemes that further allow leakage on the randomness used by Sign.

3.1 From One-Way Relations to Signature Schemes

For simplicity, instead of constructing cryptographic schemes that are secure against CML as defined
in previous section, below we consider a different goal. That is, to construct schemes that are secure
against an adversary A who wins the game only if he succeeds in outputting a valid secret key SK∗

for PK. Such a scheme is called a “one-way relation (OWR from now on) secure against CML”,
introduced by [6].

More precisely, a OWR is a scheme consisting of three PPTs Gen,Update, V erify such that:
Gen(1n) = (PK,SK0), Update(SK!) = SK!+1, and V erify(PK,SKk) = 1 for all SKk generated
by Gen and Update. Formal definitions are given in [6] Definition 2.3.

It turns out that the existence of a OWR secure against CML implies the existence of a signature
scheme secure against CML. In particular, we have the following theorem, proved by [9].

Theorem 1. We can construct a signature scheme secure against CML given any OWR secure
against CML.
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Proof. Let the OWR scheme be (Gen,Update, V erify), and let R = {(x,w) : V erify(x,w) =
1}. Our signature scheme in addition uses as building blocks a semantically secure public-key
encryption scheme E = (GenE , Enc,Dec), and a simulation-sound NIZK scheme (", P, V, (S1, S2)) for
the following language L: for any quadruple s = (m, c, PKE , x), s ∈ L if and only if (x,DecSKE (c)) ∈
R where SKE is the secret key corresponding to PKE . (Notice that language L does not depend
on ", length of the common reference string used by the NIZK.)

The signature scheme works as follows.

KeyGen(1n):
Generate a pair (x,w) ∈ R using Gen, a public key PKE for E using GenE , and a random

common-reference string CRS ∈ {0, 1}! for the NIZK.
Set the verification key V K = (x, PKE , CRS), and the secret key SK = w.
(Notice that GenE also generates a corresponding secret key SKE , but the signature scheme does

not need it.)

Signw(m):
Let c = EncPKE (w). Let π be the NIZK proof for (m, c, PKE , x) ∈ L generated by P using

CRS (and the randomness used by Enc as a witness).
Output (c,π) as the signature for message m.

VerifyV K(m, c,π):
Accept if and only if V ((m, c, PKE , x),π, CRS) = 1, where V is the verification function of the

NIZK scheme.

Update(w):
Output w′ = Updatex(w), where Update is the update function for the OWR.

To prove that the signature scheme constructed above is secure against CML, we proceed by
contradiction. Assume that there exists a PPT forger A for the signature scheme. That is, after
seeing leakage on polynomially many secret keys and querying the Sign oracle for polynomially
many times, with non-negligible probability, A outputs m∗ and σ∗ = (c∗,π∗) such that m∗ is never
queried to the Sign oracle and VerifyV K(m∗, c∗,π∗) = 1. We show that there exists a PPT B that
breaks the OWR. That is, given x ← Gen(1n), after seeing leakage on polynomially many witnesses
for x, with non-negligible probability, B outputs w∗ such that (x,w∗) ∈ R.

Upon receiving x from its challenger Ch for the OWR which also knows the corresponding witness
w1, B works as follows.

• It generates (PKE , SKE) ← GenE(1n) and (CRS, τ) ← S1(1n). It gives A the verification
key V K = (x, PKE , CRS), and keeps SKE and τ for its own use.

• Upon receiving the first leakage function L1 from A, B forwards L1 to Ch, and forwards the
reply L1(w1) of Ch back to A.

• For any k > 1, upon receiving the update request and the k-th leakage function Lk from A,
B forwards both to Ch so that Ch updates wk−1 to wk, and forwards the reply Lk(wk) of Ch
back to A.

• Upon receiving a query to the Sign oracle from A with message m, B first generates c =
EncPKE (0

n), and then generates π = S2((m, c, PKE , x), CRS, τ). It then answers A’s query
with (c,π).

• Once A outputs a message m∗ and a signature (c∗,π∗), B outputs w∗ = DecSKE (c
∗) if

VerifyV K(m∗, c∗,π∗) = 1 and m∗ is never queried to the Sign oracle, and outputs ⊥ (as
a sign of failure) otherwise.
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Notice that because E is semantically secure, and because of the zero-knowledge property of
the NIZK, when A asks for a signature for some message, it can never distinguish whether it is
interacting with B or the real Sign oracle. (Otherwise, using a hybrid argument we can either
break the security of E or the zero-knowledge property of the NIZK.) In addition, because B answers
A’s leakage queries honestly, A’s view when interacting with B is computationally indistinguishable
from A’s view when interacting with a honest challenger in its own game for breaking the signature
scheme. Therefore by assumption, when interacting with B, with non-negligible probability, A
output a valid message-signature pair (m∗, (c∗,π∗)) without ever querying m∗.

Accordingly, with non-negligible probability, B outputs w∗ instead of ⊥. Because of the sim-
ulation soundness of the NIZK scheme, we have that (x,DecSKE (c

∗)) ∈ R, i.e., (x,w∗) ∈ R, and
B succeeds in finding a witness for x. This certainly contradicts the hypothesis that the OWR is
secure against CML. Therefore forger A does not exist, and the theorem holds.

3.2 Construction of OWR Secure Against CML

Given the relation between OWRs and signature schemes secure against CML, we now show how
to construct such OWRs. Before talking about any formal construction, let us think about how we
are going to prove that some OWR is secure against CML. The idea of such proof is going to guide
us through the construction.

Say we would like to prove that a given OWR is secure under the DDH assumption. The proof
technique we usually use is a black-box reduction: Suppose there exists a PPT A that breaks the
security of the OWR in the CML game, we use A as a black-box to construct a PPT B that breaks
the DDH assumption, as shown in the following picture.

Because A is free to choose how to represent the leakage functions, intuitively, it seems that B can
only use these leakage functions as black-boxes, and thus will need to generate PK,SK1, SK2, . . .
on his own, and answer A’s queries truthfully. However, if B itself is able to generate secret keys,
what he can get from a secret key generated by A? The idea is that the OWR should have the
following structure: given SK1, it is easy for B to generate other secret keys in a small neighborhood
of SK1, but hard to generate any secret key outside this neighborhood; and given the leakage, A
can not tell what this neighborhood is, and thus the secret key SK∗ he generates falls outside of
this neighborhood with very high probability, and B can use such a key to break DDH. With such
an idea in mind, let us proceed to the construction.

We start by introducing our construction block.

Construction Block: Groups With Bilinear Maps.

Definition 2. A prime (say, q) order group G has a bilinear map e if e : G × G → GT for some
multiplicative group GT , such that ∀ generator g of G, the following two properties hold.

1. bilinear: ∀α,β ∈ Zq, e(gα, gβ) = e(g, g)αβ.

2. non-degeneracy: e(g, g) '= 1, where 1 is the unit of group GT .
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Notice that the DDH assumption is false in any G with a bilinear map e. Indeed, to decide
wether a quadruple (x, y, z, w) is of the form (g, h, gα, hα) or (g, h, gα, hβ) with α '= β, it suffices to
check whether e(x,w) = e(y, z) —equal if the former, not equal if the latter. Therefore we need a
new hardness assumption.

The Linear Assumption.

Definition 3. Let g be a generator of a group G with prime order q, and A = (aij)m×n an m× n
matrix over Zq, then gA ! (gaij )m×n.

Definition 4. ∀d ≥ 2 and ∀n ≥ d+ 1, the linear assumption asserts that gU
n×n
d (q) ∼=C gU

n×n
d+1 (q),

where Un×n
d (q) is the random n× n matrix over Zq of degree d, and Un×n

d+1 (q) is defined similarly.

Typically, n is our security parameter and |q|, the length of q, is of poly(n). The requirement
that the random matrices are square matrices is not crucial, since we can always trunk a non-square
matrix to a square one. Because q is much bigger than n, doing so will not affect much the degree
of the matrix. Finally notice that if d = 1 and n = 2 then the corresponding assumption is precisely
DDH.

Construction of OWR Secure Against CML. Now we proceed to construct a OWR (Gen,Update, V erify)
as follows.

• Gen(1n): Given group G of size q with bilinear map e, let g be a generator and A ← Z2×!
q ,

that is, A is a random 2 × " matrix over Zq. Set PK = gA and SK = gB , where B ← Z!×2
q

such that AB =

(
0 0
0 0

)
. That is, letting Ker(A) = {b : Ab =

(
0
0

)
}, i.e., the kernel of

A, then each column of B is in Ker(A). We also say that B is in the kernel of A, without
causing any ambiguity.

Note. Given only gA and gB , the relation of A and B can be verified efficiently via the
bilinear map. Indeed, letting C = AB, we have that ∀i, j ∈ {1, 2}, cij =

∑!
k=1 aikbkj , and

thus e(g, g)cij =
∏!

k=1 e(g
aik , gbkj ), which can be computed easily given e. Let e(gA, gB) !

e(g, g)AB , we have that this matrix can be easily computed, and AB =

(
0 0
0 0

)
if and only

if e(gA, gB) =

(
1 1
1 1

)
.

• Update(gB): Let R1 ← Z2×2
q . Since each element in matrix BR1 is a linear combination of

elements of B, with coefficients being elements of R1, gBR1 can be easily computed given gB

and R1. The function then outputs gBR1 .

Note. The above update procedure can be easily repeated. That is, given gBR1R2...Rk , the
update procedure choose Rk+1 ← Z2×2

q and output gBR1R2...RkRk+1 .

Also note that starting from gB , the neighborhood of gB within which the witnesses are
updated is gSPAN(B), where SPAN(B) = {BR : R ← Z2×2

q } is the span of B.

• V erify(gA, gB): As mentioned before, given gA and gB it is easy to verify whether AB = 0
or not, via the bilinear map.

We have the following theorem.

Theorem 2. The OWR constructed above is secure against CML under the linear assumption.

To prove this theorem we first introduce the following claim, whose proof is left as an exercise.
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Claim 1. The linear assumption implies that ∀ constant c and ∀ PPT B,

Pr
A ← Z2×"

q

b1, . . . , bc ← Ker(A)

[
B(gA, b1, . . . , bc) = gb

′
s.t. b′ ∈ Ker(A), b′ '∈ SPAN(b1, . . . , bc)

]
= neg(n).

(1)

That is, given gA and b1, . . . , bc ← Ker(A), it is hard to find gb
′
such that b′ ∈ Ker(A) and

b′ '∈ SPAN(b1, . . . , bc).

Now let us prove Theorem 2.

Proof. Suppose the OWR is not secure against CML, that is, there exists PPT A such that with
non-negligible probability (taken over the randomness used by Gen, Update, and A),

A(gA, L0(g
B), L1(g

BR1 , . . . , Lt(g
BR1···Rt)) = gb

′
,

where t = poly(n), b′ ∈ Ker(A), and e(g, g)Ab′ =

(
1
1

)
.

IfA succeeds and b′ '∈ SPAN(B), then let us try to break the linear assumption by constructing a
PPT B such that the probability in Equation 1 is not negligible for c = 2. In particular, given gA, b1,
and b2, B sets B = (b1, b2) and gives gA to A. When A queries with leakage functions L0, L1, . . . , Lt,
B uses Update to answer A’s queries truthfully. Finally, when A succeeds and b′ '∈ SPAN(B), B
outputs gb

′
; otherwise B outputs ⊥. Because B answers A’s query truthfully, A succeeds with

non-negligible probability. Therefore it suffices for us to show that

conditioned on A succeeds, b′ '∈ SPAN(B) with non-negligible probability.

Unfortunately, we do not now how to prove the above statement. To fix this problem, we let
our PPT B break Equation 1 for c = 4 instead of c = 2. In particular, given gA and b1, . . . , b4, B
feeds A with gA, and answers A’s queries L0, . . . , Lt with L0(B0), L1(B1), . . . , Lt(Bt), where each
Bk consists of two random vectors from SPAN(b1, . . . , b4). If A succeeds and outputs gb

′
with

b′ '∈ SPAN(b1, . . . , b4), then B outputs gb
′
, otherwise B outputs ⊥.

By the linear assumption, A can not distinguish whether he is receiving leakage about vectors
from a space of dimension 4 (when playing with B) or from a space of dimension 2 (when playing
the true game). Therefore when interacting with B, A still succeeds with non-negligible probability.

Again it is left to show that conditioned on A succeeds, b′ '∈ SPAN(b1, . . . , b4) with non-
negligible probability. In fact we prove a stronger result, that is, if A succeeds then it outputs
b′ '∈ SPAN(b1, . . . , b4) with overwhelming probability. This is based on the following lemma, for
properly chosen leakage bound λ.

Lemma 1. For properly chosen λ, any leakage function L with leakage bound λ, and any constant
d, let X ⊆ Z!

q be a random subspace of dimension d, then

(L(x1, . . . , xd/2), X) ∼= (L(u1, . . . , ud/2), X),

where each xk is randomly chosen from X, and each uk is uniformly and randomly chosen from Z!
q.

Here “properly chosen λ” means that we can allow leakage for less than one vector, say 0.99 of
a vector can be leaked. Therefore with input d/2 vectors, the allowed leakage rate is 0.99

d/2 , which is
0.499 with d = 4.

Informally, Lemma 1 says that even given leakage on d/2 random samples from X, X itself is
still information-theoretically hidden, just like given “leakage” on d/2 uniform vectors. The proof
of Lemma 1 can be found in [4], and follows from the the proof of the generalized “crooked” leftover
hash lemma [7, 5].
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To use Lemma 1, we take d = 4, X = SPAN(b1, . . . , b4), L = Lk and (x1, x2) = Bk for any k ≤ t.
Notice that the adversary A does not even get leakage on Bk directly —he only gets leakage on gBk ,
and thus X is information-theoretically hidden after A has seen any Lk(gBk). Because there are
only polynomially many leakage functions, by a hybrid argument we have that X is still hidden even
after A has seen all the leakage. Because X is very small compared with Z!

q, with high probability

A will output gb
′
such that b′ '∈ SPAN(b1, . . . , b4). Therefore B will succeed with non-negligible

probability, which contradicts Claim 1, implying that the OWR is secure against CML under the
linear assumption.

4 Encryption Schemes Secure Against CML

Finally, without giving any proof, we claim that the public-key encryption scheme constructed below
is secure against CML. For simplicity, this scheme only encrypts single bits.

• Gen(1n): It is the same as the generation procedure of the OWR in last section. In particular,
PK = gA with A ← Z2×!

q , and SK = gB with B ← Z!×2
q such that AB = 0.

• EncPK(b): EncPK(0) = grA with r ← Z1×2
q ; and EncPK(1) = gU with U the uniform 1 × "

vector.

• DecSK(c): Interpret c as gC for some 1× " vector C, and use the bilinear map e to compute

e(gC , gB) ! e(g, g)CB . Output 0 if e(g, g)CB =

(
1
1

)
, and output 1 otherwise.

• Update(SK): The same as the update procedure of the OWR.
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