
30

Application-Specific Service Technologies for Commodity Operating
Systems in Real-Time Environments

RICHARD WEST and GABRIEL PARMER, Boston University

In order to eliminate the costs of proprietary systems and special purpose hardware, many real-time and
embedded computing platforms are being built on commodity operating systems and generic hardware.
Unfortunately, many such systems are ill-suited to the low-latency and predictable timing requirements of
real-time applications. This article, therefore, focuses on application-specific service technologies for low-cost
commodity operating systems and hardware, so that real-time service guarantees can be met. We describe
contrasting methods to deploy first-class services on commodity systems that are dispatched with low latency
and execute asynchronously according to bounds on CPU, memory, and I/O device usage. Specifically, we
present a “user-level sandboxing” (ULS) mechanism that relies on hardware protection to isolate application-
specific services from the core kernel. This approach is compared with a hybrid language and runtime
protection scheme, called SafeX, that allows untrusted services to be dynamically linked and loaded into a
base kernel. SafeX and ULS have been implemented on commodity Linux systems. Experimental results
have shown—that both approaches are capable of reducing service violations (and, hence, better qualities
of service) for real-time tasks, compared to traditional user-level methods of service deployment in process-
private address spaces. ULS imposes minimal additional overheads on service dispatch latency compared
to SafeX, with the advantage that it does not require application-specific services to execute in the trusted
kernel domain. As evidence of the potential capabilities of ULS, we show how a user-level networking stack
can be implemented to avoid data copying via the kernel and allow packet processing without explicit process
scheduling. This improves throughput and reduces jitter.

Categories and Subject Descriptors: D.4.7 [Operating Systems]: Organization and Design—Real-time
systems and embedded systems; C.3 [Special-Purpose and Application-Based Systems]: Real-time
and embedded systems

General Terms: Design, Experimentation

Additional Key Words and Phrases: System extensibility, predictability

ACM Reference Format:
West, R. and Parmer, G. 2011. Application-specific service technologies for commodity operating systems in
real-time environments. ACM Trans. Embedd. Comput. Syst. 10, 3, Article 30 (April 2011), 21 pages.
DOI = 10.1145/1952522.1952523 http://doi.acm.org/10.1145/1952522.1952523

1. INTRODUCTION

Recent trends have seen the use of commercial off-the-shelf (COTS) systems and hard-
ware being deployed in real-time and embedded computing environments. For exam-
ple, systems such as Linux are now being deployed in real-time and embedded settings
[Yodaiken and Barabanov 1997]. Not only does this lead to a reduction in development
and operation costs but also it enables a common code base for systems software to be
used in both special- and general-purpose computing. However, COTS systems (e.g.,

Authors’ addresses: R. West and G. Parmer, Computer Science Department, Boston University, 111 Cum-
mington Street, Boston, MA 02215. email: {richwest, gabep1}@cs.bu.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2011 ACM 1539-9087/2011/04-ART30 $10.00

DOI 10.1145/1952522.1952523 http://doi.acm.org/10.1145/1952522.1952523

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 3, Article 30, Publication date: April 2011.

30:2 R. West and G. Parmer

Linux) are typically ill suited to the needs of specific applications, especially when they
must operate with real-time requirements.

The protection afforded by commodity operating systems usually restricts applica-
tions to process-private address spaces via which system calls can be made to access
more privileged services of the trusted kernel. While the process model has many
virtues, it incurs significant overheads due to scheduling, context switching, and inter-
process communication. Similarly, there is often a “semantic gap” between the require-
ments of code that executes at user-level and the interface via which requests are made
for kernel-level services. For example, to implement a real-time monitoring and control
application may require one or more processes to be executed periodically and/or may
involve various tasks to respond to asynchronous events (e.g., hardware interrupts)
with bounded latency. Using traditional system calls to establish handlers for ker-
nel events (e.g., via signals) and to ensure processes execute within specific deadlines
is cumbersome at best, but more typically does not guarantee the necessary respon-
siveness of real-time applications. For this reason, we have been developing various
mechanisms to support application-specific services on commodity operating systems
that can be activated with low latency and executed according to strict timing require-
ments without the need for scheduling and context-switching between process-private
address spaces.

In our original work on support for application-specific service extensions of com-
modity operating systems, we developed SafeX [West and Gloudon 2002]. SafeX is a
hybrid language and runtime approach, supporting kernel-level service extensions with
quality-of-service (QoS) requirements. Extensions are written in a type-safe language
and restricted on the range of memory addresses they may access. By dynamically
linking them into a running kernel, they can be used to affect service management de-
cisions, by monitoring and adapting resource usage on behalf of specific applications.

While SafeX enables applications to bridge the semantic gap between their needs and
the provisions of the underlying system, it conflicts with one of the basic philosophies
of good system design. For many years, system designers have considered the idea of a
kernel to be the address space in which only the most trusted and fundamental services
should reside. For this reason, we have taken lessons learned from SafeX to develop a
new mechanism for deploying “first-class” application-specific services and handlers at
the user level. The idea behind first-class user-level services is to grant them (where
possible) the same privileges and capabilities of kernel services, with the exception
that the kernel may revoke access rights to any services abusing their privileges.

With this vision in mind, this article compares our user-level sandboxing (ULS)
scheme against SafeX for the purpose of implementing real-time and asynchronous
services and handlers on commodity operating systems such as Linux. We show how
user-level services may be dispatched with almost the same latency as kernel-level
interrupt handlers [Wallach et al. 1997], while also being executed without scheduling
and context-switching overheads associated with processes. In fact, both SafeX and
ULS ensure that service extensions are invoked (when necessary) without being at the
mercy of kernel-level scheduling policies that are inherently non-real-time, or which
may result in unbounded delays. For example, in many traditional systems, user-level
processes may register signal handlers to be invoked when specific kernel events occur,
but these handlers only run when the corresponding process is scheduled and that may
be after an arbitrary amount of time.

In contrast, our approaches enable an application process, Pi, to register a first-
class handler that responds to for example, timer interrupts without Pi having to ex-
ecute. Given our ability to bound the dispatch latency of application-specific services,
we show empirically the improved service guarantees and reduced violation rates of
both ULS and SafeX compared with alternative user-level methods of implementing

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 3, Article 30, Publication date: April 2011.

Application-Specific Service Technologies for Commodity OSes 30:3

application-specific services. Specifically, we compare user- and kernel-level implemen-
tations of a feedback-control service, for managing the allocation of CPU cycles to
application processes according to their resource requirements over finite windows
of real time. Such a service might be beneficial to multimedia applications requiring
specific CPU shares at designated time intervals to encode/decode audio and video
streams. Alternatively, a control application may wish to guarantee that the correct
share of CPU time is available to process sensor readings in a timely fashion.

From experiments, we show that ULS and SafeX are low-cost mechanisms for the
timely and predictable execution of application-configurable services and handlers on
commodity operating systems. A series of adaptive CPU service management tests
on Linux shows that ULS handlers and SafeX kernel extensions can reduce deadline
miss rates by a factor of 4, compared to process/thread-based methods of service execu-
tion. ULS and SafeX bridge the gap between the agnostic services of general-purpose
systems and the needs of individual applications, including those with real-time re-
quirements. Unlike SafeX, ULS does not require the core kernel to be polluted with
potentially unsafe code that may jeopardize the integrity of the system and, therefore,
its ability to meet service guarantees. The potential capabilities of ULS are highlighted
with the implementation of a user-space networking stack that improves throughput
and reduces jitter when packet forwarding, without the need for special hardware
support.

In the next section we provide a brief overview of our prior work on SafeX, followed
in Section 3 by further details about the ULS method to deploy first-class services.
The performance benefits of ULS and SafeX are evaluated empirically in Section 4.
Related work is discussed in Section 5, while conclusions and future work are outlined
in Section 6.

2. SAFEX SUPPORT FOR FIRST-CLASS SERVICES

SafeX and ULS represent two disparate methods for achieving some sense of isolation
between first-class services and the rest of the system, while providing a predictable
and efficient execution mechanism. When striving for performance and predictabil-
ity, both methods utilize comparable strategies. Namely, both allow execution in the
context of a “bottom half”1 for low-latency response to events, and both mitigate the
costs of context switches. Likewise, both approaches employ similar runtime checks to
ensure CPU isolation and fairness. However, SafeX relies entirely on language-level
software techniques to provide memory protection while ULS isolates its services out-
side the kernel. A brief summary of the SafeX approach now follows, with further
details available in our earlier work [West and Gloudon 2002].

Language support. SafeX requires that service extensions be written in the Pop-
corn [Morrisett et al. 1999a] programming language. Popcorn is designed for syn-
tactic similarity to C, and is compiled to TALx86, an extended version of the Intel
IA-32 assembly language. TALx86 is an instance of a typed assembly language (TAL)
[Morrisett et al. 1999a] that, by adding typing annotations and typing rules to tradi-
tional assembly language, guarantees the memory, control flow, and type safety of TAL
programs. Popcorn is supported by a number of TALx86 tools that can verify internal
type consistency of TALx86 source files and linked object code.

Memory protection. Ordinarily, extensions running within the kernel address space
may access and modify any data in the system, potentially affecting system integrity
and violating the memory protection enforced on user processes. The type safety of
Popcorn prevents extension code from forging pointers to arbitrary addresses or casting

1A bottom half is functionality required in response to an interrupt that may be processed at a convenient
time, rather than immediately when the interrupt occurs.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 3, Article 30, Publication date: April 2011.

30:4 R. West and G. Parmer

Attribute Classes

Handlers

Class 1

Class 2

Class k

Kernel Service Manager

get_attributes()

set_attributes()

Kernel
policy-specific

structures

Kernel timer queue of
bottom half (SM)

functions

Guard fn

MonitorsEvents out

Events in

Fig. 1. The internals of a SafeX kernel service manager.

pointers to arbitrary types. Therefore, by controlling the pointers passed to extension
code, the parts of the kernel address space that may be accessed by an extension can
be finely controlled.

Another issue raised by passing pointers to extensions is the possibility that memory
referenced by a pointer may be deallocated or reused by the core kernel. Extension code
cannot be trusted to stop using pointers to such memory after reuse or deallocation.
Consequently, some form of garbage collection must be used to safely manage memory
referenced by extensions. The current safe extensions implementation does not do
such garbage collection, but defers deallocation of memory objects until all extensions
referencing them are unloaded from the kernel’s address space.

CPU protection. Extension code may potentially execute for unbounded periods of
time, taking control of the system. SafeX requires that applications reserve CPU time
for extensions before they are executed. SafeX enforces time limits by aborting the
execution of extension code that exceeds its reservation. In this way, SafeX can limit
the total amount of CPU time given to and used by extensions. The CPU time used
by an extension is charged to the associated application so that the total CPU time
consumed on behalf of the application is considered in its scheduling. SafeX tracks
extension execution time by decrementing a counter at each system timer interrupt.

SafeX service managers. SafeX allows service managers (see Figure 1) to be defined
within a kernel, to manage service of a specific nature (e.g., to control scheduling and
synchronization of threads on available CPUs, or to control memory allocation). Each
service manager enqueues and invokes application-specific monitoring and handling
functions that are able to observe actual service levels and, consequently, affect service
changes. Monitor and handler functions operate on attribute classes. These are data
structures that hold the names of various service attributes and their corresponding
values (e.g., a CPU scheduling priority and its corresponding value). Service exten-
sions get and set these attributes by name, as long as they have the necessary access
rights.

Guard functions. Each service manager is equipped with a guard function that is
automatically generated by the code generator in a SafeX daemon process running on
the same host. A guard function is responsible for the mapping of attributes, contained
in attribute classes, to kernel policy-specific structures. It ensures that attributes are
within valid ranges and will not adversely affect the QoS guarantees to the correspond-
ing application, or to other applications. Moreover, each SafeX daemon is capable of
generating code for runtime safety checks of extensions, thereby guaranteeing they
have bounded execution time.

SafeX interfaces. To affect changes to the service received by an application, the han-
dlers need interfaces to adjust the parameters of the underlying mechanism providing

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 3, Article 30, Publication date: April 2011.

Application-Specific Service Technologies for Commodity OSes 30:5

the service. Though handlers execute within the kernel address space, they cannot
be trusted to directly modify core kernel data. SafeX, therefore, provides service ex-
tensions with interfaces to manipulate kernel data structures and perform operations
requiring special privileges (e.g., for synchronization purposes, so that interrupts are
not inadvertently disabled). SafeX interface functions may be used only by services
possessing the capabilities for these interfaces. Such capabilities are in fact pointers
which are unforgeable due to the type safety of the extension language.

SafeX interfaces, like system calls, must validate arguments passed to them by
application-specific services. They must also ensure that requested operations are
safe, as some operations or decisions, while not violating system protection, may have
a negative effect on system performance. SafeX interfaces are therefore responsible
for limiting the possible global effects of operations requested by service extensions
and require careful design, balancing the degree of application control over resource
allocations with a concern for system stability.

3. ULS SUPPORT FOR FIRST-CLASS SERVICES

Overview: The basic idea of user-level sandboxing is to modify the address space of all
processes, or logical protection domains, to contain one or more shared pages of virtual
addresses. The virtual address range shared by all processes provides a sandboxed
memory region into which application-specific services may be mapped. Under normal
operation, these shared pages will be accessible only by the kernel. However, when the
kernel wishes to pass control to a service extension, it changes the privilege level of the
shared page (or pages) containing the service code and data, so that it can be executed
with user-level capabilities. This prevents application-specific service code from violat-
ing the integrity of the kernel, with the benefit that such code can run in the context of
any user-space process, even one that did not register the service with the system. There
is the potential for corrupt or ill-written service extension code to modify the memory
area of a running process. To guard against this, we require application-specific ser-
vices registered with the system to either be written by a trusted programmer, or to
have additional software safety checks (e.g., using type-safe languages [Jim et al. 2002;
Morrisett et al. 1999a, b] or software-based fault isolation [Wahbe et al. 1993]).

In the absence of application-specific services being written by a trusted programmer
(such as a kernel developer who wishes to isolate separate services), we only require
software safety checks on untrusted code mapped to the sandbox. All other application
and system-level code can be written in non-type-safe languages. This differs from the
approach of the SPIN system [Bershad et al. 1995] and JavaOS, which require all
software objects to be type-safe.

3.1. Hardware Support for Memory-Safe First-Class Services

Our approach assumes that hardware provides paging (i.e., MMU) capabilities. A series
of caches, most notably one or more untagged translation look-aside buffers (TLBs), is
desirable but not necessary. This minimum hardware requirement is met by many pro-
cessors made today including those used in embedded systems (e.g., the Intel XScale).

On many processors, switching between protection domains mapped to different
pages of virtual (or linear) addresses requires switching page tables stored in main
memory, and then reloading TLBs with the necessary address translations. Such
course-grained protection provided at the hardware-level is becoming more undesir-
able as the disparity between processor and memory speeds increases [Uhlig et al.
2002]. This is certainly the case for processors that are now clocking in the gigahertz
range, while main memory is accessed in the 108 Hz range. In practice, it is clearly de-
sirable to keep address translations for separate protection domains in cache memory

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 3, Article 30, Publication date: April 2011.

30:6 R. West and G. Parmer

. . . Process-private
address space

Sandbox region

(shared virtual address space)

Kernel Level

User Level

P1 P2

Mapped data

Pn

Extension for PnExtension for P2

Kernel events make

sandbox region

user-level accessible

Fig. 2. Each process address space has a shared virtual memory region, or sandbox, into which application-
specific service extensions are mapped.

as often as possible. ULS avoids the need for expensive page table switches and TLB
reloads by ensuring the sandbox is common to all address spaces.

3.2. Implementation Details

We have implemented ULS on a Linux x86-based system, with a few small changes
(approximately 100 lines) to the core kernel. These changes are required to (1) cre-
ate a shared sandbox region, (2) support protected mapping of a sandboxed service,
(3) allow access to restricted sandboxed memory regions from conventional process ad-
dress spaces, and (4) invoke application-specific services from within the kernel. The
key modifications involve additional entries in the page tables (or, more precisely, direc-
tories) of processes, and the implementation of upcall code that toggles page protection
bits.

For the most part, our approach is not restricted to Linux. However, where necessary,
we describe the system-specific features required for user-level sandboxing to work. The
user-level sandboxing implementation requires a few additional interface functions
over those provided by the traditional system call interface. These interface functions
are contained within kernel-loadable modules and invoked via ioctls, avoiding the
need for new system calls.

Logical protection domains for application-specific services. Traditional operating
systems provide logical protection domains for processes mapped into separate address
spaces. With user-level sandboxing, as illustrated in Figure 2, each process address
space is divided into two parts: a conventional process-private memory region and a
shared virtual memory region. The shared region acts as a sandbox for mapped service
extensions. The sandbox itself is divided into public and protected areas, as explained
later, but this is not a general requirement of the approach. Kernel events delivered
to sandbox code are handled in the context of the current process, thereby eliminating
scheduling costs.

Sometimes it is important for a process to exchange data with services registered in
the sandbox. As a result, we allow controlled access to a region of sandbox addresses
by both code in a process-private region and also the sandbox.

Sandbox regions. The two areas of the sandbox (as shown in Figure 3) have the
same virtual as well as physical addresses in all processes. These areas employ the
page size extensions supported by the Pentium processor and each occupy one 4-MB

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 3, Article 30, Publication date: April 2011.

Application-Specific Service Technologies for Commodity OSes 30:7

Process 1 Process 2Physical Memory

Private

address
space

Mapped Data

Mapped Data

Extension

Stacks

Extension

Code

+

read-only data

Sandbox

public
area

Protected
area

Sandbox

public
area

Protected
area

4MB

4MB

Fig. 3. Sandboxes common to all processes are mapped to the same physical address ranges. Pages of the
sandbox can be mapped into process-private address spaces to exchange data.

page directory entry.2 Although a number of MMU-enabled processors support multiple
page-sizes, a sandbox should be designed to minimize the number of pages it uses while
occupying the largest memory area necessary for extensions. This is to minimize the
TLB footprint of extensions.

One sandbox region is permanently assigned read and execute permission at both
user- and kernel-level and acts as a public area. The other (protected) region is perma-
nently assigned read-write permission at the kernel level but, by default, is inaccessible
at the user level. The protected region can be made accessible at the user level by tog-
gling the user-supervisor flag of its page directory entry and invalidating the relevant
TLB entry via the INVLPG instruction.

Sandbox/upcall threads. Sandboxed code can link with libraries that make system
calls. Care must be taken that an application-specific service registered by one process
does not affect the progress of another process, by issuing a blocking system call. For
example, if process pi registers an extension ei that is invoked at the time process pj
is active, it may be possible for ei to affect the progress of pj by issuing “slow” system
calls. Any sandbox code that issues a blocking system call is promoted to a new thread
of execution, if it is not already associated with its own thread. Since sandbox threads
execute in any process context, essentially they are inexpensive to schedule.

A sandbox-bound thread of execution is created via the create upcall() interface
function, invoked from within a user-space process. This interface function has sim-
ilarities to the POSIX pthread create() library routine, producing a new thread of
control sharing the credentials and file descriptor tables of the caller. The thread pro-
duced by create upcall(), however, does not possess a conventional hardware-based
address space. Instead, sandbox threads execute using the page tables of the last active
address space.

Mapping code into the sandbox. The existence of a shared sandbox requires the
modification to the page tables and address spaces of all created processes (when
they are first “forked”). As stated earlier, all processes will have page tables that
can resolve virtual addresses of instructions and data in this memory area, thereby
enabling sandbox code to execute in any process context.

A loader, utilizing functions from the GNU BFD (Binary File Descriptor) library, is
used to map extensions into the sandbox. In the current implementation, an extension
must be compiled into a target object (currently, ELF) format. The loader then maps
the .rodata and .text sections of the object into the public superpage, with the .bss and
.data sections being mapped into the protected region.

2The 32-bit x86 processor uses a two-level paging scheme, comprising page directories and tables.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 3, Article 30, Publication date: April 2011.

30:8 R. West and G. Parmer

Extension code is activated by upcalls from the trusted kernel. To ensure the pro-
tected region of a sandbox is user-level accessible, the kernel toggles the user-supervisor
flag of the corresponding superpage before issuing the upcall. After toggling the priv-
ilege protection flag, the TLB entry for the superpage must be flushed and reloaded
to eliminate stale flag settings. When the process whose page tables were used by
a sandbox function is again scheduled, the user-supervisor flag must be reset before
the process regains control of the CPU at the user level. This is necessary to prevent
malicious or ill-written processes from accessing the protected sandbox area.

Additional support for user-level sandboxing. As sandbox extensions do not have
conventional address spaces, they are unable to use certain system interfaces related
to memory management without modification. Some of the affected interfaces include
brk(), mmap(), and shmget(). These interfaces are used to fulfill a variety of needs: brk()
affects the breakpoint at the end of the heap data area in a process, while shmget() al-
locates shared memory segments. Likewise, mmap() can allocate either process-private
or shared virtual memory as well as providing memory-mapped file I/O.

In our current implementation, we allow C, Cyclone [Jim et al. 2002] and Cuckoo
[West and Wong 2005] extensions to link with a slightly modified version of the dietlibc
library, to manage sandbox memory, and to make system calls. Cyclone is syntacti-
cally similar to C but provides type-safety and, hence, memory protection for multiple
extensions coexisting in the sandbox. Cuckoo is our own language that is similar to
Cyclone but also provides memory-safety for multithreaded code. We envision type-safe
languages being used for extensions written by untrusted users, to prevent them from
accessing addresses of other sandbox extensions, or the private address space of an
active process at the time the extension is invoked. In contrast, we allow extensions
written in C to be produced by trusted users such as kernel developers, who are aware
of the potential side effects of their code and do not intend to behave in a malicious
manner, by deliberately corrupting the sandbox or process-private address spaces. It
is important to note that “trusted” code implies that code is nonmalicious, not neces-
sarily error-free. The isolation provided by ULS allows the system to survive ill-written
service extensions.

Fast upcalls. Traditionally, signals and other such event notification schemes [Banga
et al. 1999; Lemon 2001] have been used to invoke actions in user-level address spaces
when there are specific kernel state changes. Unfortunately, these schemes incur costs
associated with the traversal of the kernel-user boundary, process context-switching,
and scheduling. Our upcall mechanism operates like a software trap (i.e., the mirror
image of a typical system call), to efficiently vector events to user-level sandbox ex-
tensions. To make function invocations from kernel to user space, we utilize hardware
support in the form of the SYSENTER and SYSEXIT instructions where available, and
stack activations otherwise [Chiueh et al. 1999]. An upcall made while in the context
of any process is termed a pure upcall. Finally, to avoid the problem of generating
upcalls when no user-level process is running, all extensions utilize a private stack in
the sandbox.

Though the expected behavior of application-specific services is to predominantly
make pure upcalls in the context of any currently loaded address space, it is also
possible for services to run in a threaded, schedulable context. For example, if a service
blocks on a slow system call it can continue as a schedulable (albeit not necessarily
real-time) thread. In this case, TLB flushing costs are still mitigated when switching
to the service task.

Beyond memory safety. Issues of memory safety aside, it is also important to ensure
both CPU and I/O protection. CPU protection is ensured in a manner similar to that
in SafeX. Most importantly, the time spent executing a first-class service is bounded
and charged to the process that registered that service. ULS addresses I/O protection

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 3, Article 30, Publication date: April 2011.

Application-Specific Service Technologies for Commodity OSes 30:9

by ensuring that the file-descriptors visible to a first-class service are those inherited
from the registering process (which may not necessarily be the current process at the
time the service is invoked).

4. EXPERIMENTAL EVALUATION

This section begins by assessing the effectiveness of a ULS implementation applied to
a Linux kernel. With the exception of the experiments in Section 4.3, all other cases
involved a patched Linux 2.4.9 kernel running on a series of Pentium 4-based systems.
Unless otherwise stated, the Pentium 4-based systems were clocked at 1.4GHz. The
nature of these experiments was partly to show that sandbox extensions can be ex-
ecuted with bounded overheads compared to user-level services mapped into private
address spaces. Such bounded overheads can be achieved by relying only on page-based
hardware as opposed to specialized features such as segmentation and tagged TLBs.
In the following experimental results, the extensions have been written in C. Our work
with Cyclone and our new language, called Cuckoo [West and Wong 2005], suggests
that runtime overheads of type-safe languages can be kept fairly low, so performance
results should be similar if we used type-safe extensions.

4.1. Interprotection Domain Communication

To investigate the effects of working set size on the effectiveness of sandbox-based
extensions, a number of IPC ping-pong experiments similar to those conducted in
the “small spaces” work [Uhlig et al. 2002] were carried out. These experiments also
considered the effects of both instruction and data TLBs, found on the x86 architecture.
The Pentium 4 processor has a 64 entry data TLB and an 128 entry instruction TLB
for address translation. These experiments demonstrated the ability of ULS to make
the best use of system caches as the size of applications running on the system vary
in working set size. This property will affect the predictable behavior of caching for
normal processes executing on the system.

Two threads exchanged 4-byte messages over connected pipes. One thread simulated
an application thread in a traditional address space with a configurable instruction and
data TLB working set. The second thread (having a small, fixed TLB footprint) acted
as an extension running either in a separate full address space or in the sandbox.
The “application” thread filled some number of TLB entries, sent a message to the
“extension” thread, and read a reply message. To simulate various data TLB sizes,
the application thread read 4 B of data from a series of memory addresses spaced
4160 B apart. To simulate instruction TLB sizes, the application thread performed a
series of relative jumps to instructions spaced 4160 B apart. These spacings avoided
cache interference effects. The TLB miss counts were obtained using the Pentium 4
CPU performance counters.

Figure 4(a) shows the data TLB working set of the application thread was maintained
for up to approximately 45 entries when the extension thread was mapped into the
sandbox. Thereafter, the combined data TLB demands of the OS, application, and
extension no longer fit the 64 entries available on the Pentium 4 and each page access
incurred a TLB miss. Note that, for the extension thread in a traditional address space,
every data page access after the IPC ping-pong incurred a TLB miss regardless of the
working set size, as all TLB entries were purged on every context switch.

As shown in Figure 4(b), the instruction TLB entries of the application thread were
preserved when the extension was located in the sandbox. No instruction TLB misses
occured until the working set approached 110 entries, which is close to the available
128 TLB entries. Thereafter, the number of instruction TLB misses were similar for
both extension types. These results correspond to those in the “small spaces” work that
used the segmentation features of the x86 to implement multiple logical protection

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 3, Article 30, Publication date: April 2011.

30:10 R. West and G. Parmer

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120

D
a
ta

 T
L
B

 M
is

s
e
s

Referenced Data Pages

User
Sandbox

0

50

100

150

200

250

0 20 40 60 80 100 120 140 160 180 200

In
s
tr

u
c
ti
o
n
 T

L
B

 M
is

s
e
s

Referenced Instruction Pages

User
Sandbox

(a) (b)

Fig. 4. Effects of working set sizes in terms of (a) data, and (b) instruction pages on the number of TLB
misses, for interprotection domain communication. The “User” case is for traditional interprocess communi-
cation, while the “Sandbox” case shows communication costs between a process and a sandboxed protection
domain.

11000

12000

13000

14000

15000

16000

17000

18000

19000

0 20 40 60 80 100 120

P
ip

e
 L

a
te

n
c
y
 (

C
P

U
 C

y
c
le

s
)

Referenced Data Pages

User
Sandbox

11000

12000

13000

14000

15000

16000

17000

18000

19000

20000

21000

22000

0 20 40 60 80 100 120 140 160 180 200

P
ip

e
 L

a
te

n
c
y
 (

C
P

U
 C

y
c
le

s
)

Referenced Instruction Pages

User
Sandbox

(a) (b)

Fig. 5. Latency of communication via a pipe between two protection domains, as a function of working set
sizes in terms of (a) data, and (b) instruction pages.

Table I. Microbenchmarks Taken on a 1.4-GHz Pentium 4,512-MB RAM

Operation Cost in CPU cycles
Upcall including TLB flush/reload 11,000
TLB flush and reload (includes call to OpenSandbox()) 8,500
Raw upcall 2,500
Signal delivery (current process) 6,000
Signal delivery (different process) 46,000

domains within a single address space. This shows that our user-level sandbox tech-
nique can achieve interprotection domain communication performance similar to ap-
proaches based on specialist hardware features such as segmentation.

Finally, Figure 5(a) shows the communication latency remained lower with the sand-
box extension even when the data TLB miss rates were similar. Likewise, in Figure 5(b),
the pipe latency is considerably lower for the sandboxed extension, until the instruction
TLB is filled.

In the presence of the execution of application-specific services, we conclude that
caches will perform predictably for user-level processes on the system. This is necessary
to maintain execution isolation of processes from the service extensions.

4.2. Microbenchmarks

Table I presents a number of microbenchmarks that point to the efficiency of using
our fast upcalls method for invoking sandbox code. In this table, the fast upcall costs

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 3, Article 30, Publication date: April 2011.

Application-Specific Service Technologies for Commodity OSes 30:11

are shown for the SYSEXIT/ENTER implementation. CPU clock cycles are measured
using the processor’s time stamp counter. The complete upcall cost includes the CPU
cycles required to go from kernel space to a user-space upcall handler function. This
includes the costs of flushing the sandbox data area TLB entry, placing arguments
on the upcall stack, performing a SYSEXIT, and executing the user-level prologue of
the upcall handler function. The TLB flush and reload time dominates the overall
upcall cost, while the remaining “raw upcall” cost accounts for less than a quarter of
the elapsed cycles. Note that, in these microbenchmarks, the TLB flush and reload
cost includes the time to call our (unoptimized) OpenSandbox() function, which affects
the flow of control and pushes arguments onto the kernel stack. Copying arguments
and trampoline code to the (user-level) upcall stack consumes majority of the clock
cycles associated with the raw upcall. The trampoline code is simply a SYSENTER
instruction, which is referenced by the return address (also on the same stack) of the
upcall handler. A few hundred cycles of the raw upcall can be attributed to the SYSEXIT
instruction, while the rest are associated with saving information on the kernel stack
for when we return via the corresponding SYSENTER.

The signal costs measure the overheads of delivering a signal to user space from
the kernel within the same address space context as well as between different address
spaces. The costs of delivering a signal within the same address space is lower than
the cost of an upcall, but once an address space switch and scheduling operation are
involved, the costs of delivering a signal from kernel to a user-space process are over
four times the cost of a full upcall. Note that the measured cost of delivering a signal to
a different process involves making that process the highest priority, so it is guaranteed
to be scheduled next.

4.3. User-Level Sandboxing Versus SafeX

In this set of experiments, we compared the performance of kernel-level extensions
against user-level approaches for monitoring and adapting system resource usage. The
aim was to see whether it is possible to implement system-wide service extensions in a
user-level sandbox, and still achieve a similar level of control over physical resources
to that of kernel-based approaches, using our SafeX approach. This set of experiments
used a standalone 550-Mhz Pentium III with 256 MB of RAM. In this case, a user-level
sandbox was implemented on a patched Linux 2.4.20 kernel.

Four different methods of dynamically managing CPU usage were compared, for a
set of processes each with specific resource requirements over finite windows of real
time. The four methods implemented a CPU service manager within (1) a user-level
process, (2) a sandboxed thread, (3) a pure upcall function in the sandbox, and (4) a
kernel bottom-half handler.

Three processes, P1, P2, and P3 had target CPU demands of 40 ms every period of 400
ms, 100 ms every period of 500 ms, and 60 ms every period of 200 ms, respectively. A
process missed a deadline if it did not receive its CPU demand within its current period.
For simplicity, the processes were all CPU-bound, had memory footprints less than 4 kB
when stripped of symbols, and merely iterated over a number of integer computations.
Note that, in similar experiments, we considered application processes that encode a
number of video frames into groups of pictures, as part of a multimedia streaming
system. The results of these experiments are not included because they showed similar
performance patterns to those shown in this section. In any case, processes P1, P2,
and P3 had static real-time priorities initialized to 80 ∗ (target/period), where target
and period denote the target CPU time required in a given request period, measured
in milliseconds. Since Linux real-time priorities range from 1 (lowest) to 99 (highest),
kernel daemons were assigned real-time priorities of 97 or higher, thereby ensuring
the whole system continued to function responsively.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 3, Article 30, Publication date: April 2011.

30:12 R. West and G. Parmer

Fig. 6. Pseudocode for monitor and handler extensions used in the experiments.

Fig. 7. Guard function pseudocode.

The kernel-based service manager was invoked once every 10 ms from a Linux timer
queue, to monitor the CPU allocations of the three CPU-bound processes. Similarly, the
upcall-based service manager was invoked once every 10 ms by upcall events triggered
from a timer bottom half. Corresponding handler functions in each case adjusted the
timeslice of the three processes as necessary, using the same PID3 controller described
in prior experiments [West and Gloudon 2002]. Figure 6 shows the pseudocode for mon-
itor and handler extensions created on behalf of all application processes. In the case of
ULS-based monitor and handler functions, appropriate POSIX-compliant system calls
were made to adjust priorities and timeslices of the affected application processes. A
guard function, as shown in Figure 7 allowed a process’s timeslice to increase as long

3Proportional plus integral plus derivative.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 3, Article 30, Publication date: April 2011.

Application-Specific Service Technologies for Commodity OSes 30:13

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70 80 90 100

%
 o

f
C

P
U

time (seconds)

P3
P2
P1

Disturbance

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70 80 90 100

%
 o

f
C

P
U

time (seconds)

P3
P2
P1

Disturbance

Fig. 8. CPU service management controlled by (a) a user-level real-time process, and (b) a sandboxed thread.

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70 80 90 100

%
 o

f
C

P
U

time (seconds)

P3
P2
P1

Disturbance

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70 80 90 100

%
 o

f
C

P
U

time (seconds)

P3
P2
P1

Disturbance

Fig. 9. CPU service management controlled by (a) a pure upcall function in the sandbox, and (b) a kernel
bottom-half handler.

as its average CPU usage, measured over twice its period, was not above the target
utilization. That is, if a process requires target cpu units of CPU time every window of
r time units, and the actual time spent executing on the CPU over a window of 2r is
actual cpu time units, then it is (QoS) safe to execute the process if actual cpu

2 ≤target cpu.
Both the kernel- and pure upcall-based service managers check the identity of the

running process when they are invoked via the kernel timer queue. Accounting infor-
mation for the CPU usage of the current process is updated to the nearest clock tick (or
jiffy). The kernel approach accounts for lost ticks but the sandboxed approach does not,
making the latter method of tracking CPU usage slightly less accurate. In contrast, the
process- and thread-based managers determine the CPU usage of the three processes
via the /proc filesystem, when they are scheduled by the kernel. To ensure predictable
service, the process- and thread-based managers are assigned real-time priorities of 96.

For all four service manager methods, a background disturbance process attempts to
consume all available CPU cycles when it is active. Its execution pattern is based on a
Markov Modulated Poisson Process, with average exponential interburst times of 10 s
and average geometric burst lengths of 3 s. Each burst of the disturbance is triggered
with an initial priority of 96, but when the corresponding service manager is active,
the disturbance’s priority is adjusted to maintain service to the other three processes.
In all cases, the disturbance is scheduled using the POSIX.4 SCHED FIFO policy. The
aim is to maintain fine-grained control over CPU allocation for processes that could be
part of a real-time application.

Figures 8 and 9 show the abilities of each service management method to maintain
CPU allocations of the three processes at their target levels. Both the process- and
thread-based approaches suffer from the need for scheduling by the kernel in order

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 3, Article 30, Publication date: April 2011.

30:14 R. West and G. Parmer

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 10 20 30 40 50 60 70 80 90 100

v
io

la
ti
o

n
 r

a
te

time (seconds)

Kernel Handler
Pure Upcall Fn

Sandbox Thread
User Process

Fig. 10. Deadline violation rates.

to control resource allocation. When the disturbance uses SCHED FIFO scheduling,
it cannot be preempted by a service manager that is scheduled at the same initial
priority. For brevity, we do not include results for the case when the disturbance is
scheduled using a SCHED RR policy, but the pure upcall- and kernel-based approaches
still perform better. Moreover, having the disturbance scheduled using SCHED FIFO
indicates the vulnerability of process- and thread-based approaches to user-level service
management. That is, they are dependent upon the parameters of other schedulable
entities, and the scheduling policy enforced by the underlying kernel. This contrasts
with the pure upcall- and kernel-based service managers, which do not entirely depend
upon the underlying nature of the kernel’s scheduling policy.

As can be seen from Figure 9, implementing an efficient service extension for dynamic
management of CPU cycles is possible using user-level sandboxing. The upcall-based
service manager successfully maintains the target CPU allocations to all three pro-
cesses, without allowing the background disturbance to hog all the resources when it
is active. While the kernel-based approach provides the finest granularity of control
over resource allocation, implementing extensions in the kernel precludes the use of
libraries, system calls, and the benefits of isolating application-specific code outside
the kernel protection domain. With all the user-level approaches, including the pure
upcall method, conventional system calls such as sched setscheduler() are available
to control CPU allocations. In general, the slight reduction in fine-grained control over
resources is offset by the ease of programming at the user level.

The violation rate for tasks P1, P2, and P3, measured in deadlines missed per second,
is plotted in Figure 10 as a function of time. The ability to manage the CPU on a
fine-grained basis is not satisfied by the thread-based methods, even threads running
within a sandbox. However, sandboxed services invoked by pure upcalls are compa-
rable in their ability to manage resources as predictably as SafeX-type methods that
place application-specific services in the most trusted hardware protection domain.
Both upcalls to sandboxed handlers and SafeX kernel extensions yield relatively low
violation rates, close to 0.2 deadlines/s in the steady state, compared to around four
times worse performance for sandboxed threads and user processes.

4.4. User-Level Networking in the Sandbox

As a further application of our ULS approach, we have implemented a network stack
in the sandbox that avoids copying and processing within the kernel [Qi et al. 2004]. In
effect, this allows custom stack configurations to be implemented, so that network data
can be processed in an application-specific manner. For example, one could implement

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 3, Article 30, Publication date: April 2011.

Application-Specific Service Technologies for Commodity OSes 30:15

Kernel

Tx Ring

User Level

Sandbox

1

2

3

Sandbox Memory Manager

4

6

Rx Ring

8

9

Network Driver

5

Network Interface Card (NIC)

11

1210

SBnet Driver

Sandbox Network Stack

Sandbox App

7

(a)

(b) (c)

(d)

Fig. 11. User-level asynchronous networking in a sandbox.

a special-purpose routing protocol in user space using this technique. Such a routing
protocol could be used to forward stream data between hosts according to various
real-time constraints [Fry and West 2004; Parmer et al. 2004].

By implementing a network stack at the user level, we have control over the behaviors
of various communication protocols. In effect, this is similar to U-Net [von Eicken et al.
1995], Ethernet Message Passing (EMP) [Shivam et al. 2001], and the Virtual Interface
Architecture (VIA) [Dunning et al. 1998], which all provide abstractions for user-level
network implementation. In contrast, our work allows user-level extensions to run
efficiently enough to be invoked as handlers for networking events, without the need for
special hardware support. Notwithstanding, the following experiments were intended
to show the potential capabilities of user-level services and how they can perform
predictably and efficiently even for real-time communication where throughput and
jitter constraints are involved.

Figure 11 shows the control path, for the case when sandboxed network services are
invoked when a packet arrives on the network interface card (NIC). This is the control
path experienced by upcalls into the sandbox that are executed in the context of the
active address space at the time of the upcall. We modified the kernel network driver so
that packet processing and interaction with the NIC take place in the sandbox (using
our own SBnet driver). Since device drivers in Linux are commonly implemented as
loadable modules, our sandboxed stack implementation did not require changes to the
core kernel, other than the minimal changes to create the sandbox itself. That said,
the various stages of asynchronous computation involving the networking stack are as
follows.

(1) When a packet is received by the NIC, an interrupt service routine is invoked
in the network driver. This is a basic notification that a packet is ready and a
minimal amount of processing is undertaken. No modifications to the interrupt
handler in the default driver are made, so that it remains as efficient as possible.

(2) When the interrupt handler finishes, execution continues in the network driver
but with interrupts enabled. Space is then allocated from a receiver ring buffer
(label (a)) in the sandbox, by an upcall that directly invokes the sandbox memory
manager.

(3) The return address of this allocation is passed to the network driver. A check is
performed to verify that the memory location is within the sandbox region.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 3, Article 30, Publication date: April 2011.

30:16 R. West and G. Parmer

0

100

200

300

400

500

600

700

0 1 2 4 8 16 24

Number of Background Threads

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

User Mode UDP Relayer Kernel Thread Relayer Sandbox Relayer

Fig. 12. Throughput comparison of an optimized sandbox stack versus alternative user- and kernel-level
implementations.

(4) The network driver informs the NIC of the location into which it can transfer the
packet, using direct memory access (DMA). Because this network driver is exe-
cuted in the kernel domain, it has full I/O permissions for trusted communication
with the NIC.

(5) The NIC copies the received packets into the allocated sandbox memory using
DMA.

(6) After the new packet is resident in the sandbox, an upcall to the SBnet driver
and, hence, the protocol stack occurs. Packets can be accessed from the ring
buffer (label (b)) in the context of a bottom half, so execution is unaffected by host
scheduling. Recall that when a pure upcall is triggered, the handler runs with
user permissions.

(7) At this point in the configurable networking stack, application-specific handlers
can execute. For example, we provide an application that performs transport-level
forwarding of packets to another end host.

(8) After the network stack’s processing is complete, the memory address of a packet
awaiting transmission is placed in an outgoing buffer (label (c)). Control then
returns to the kernel.

(9) Now full I/O permissions are restored, the NIC is notified of the packet it should
transmit.

(10) The NIC uses DMA to retrieve and send the packet onto the network.
(11) After the DMA is complete, the network driver notifies the sandbox extension

that it can free the memory formerly taken up by the packet (as in label (d)).
(12) Upon return from this pure upcall, network processing for this packet completes

and control can return to the previously executing thread.

Though this entire control path seems complex, it is highly optimized and yields
significant performance improvements over conventional user-space network protocol
stacks confined to process-private address spaces. The following experiments showed
the efficiency of our configurable, user-level networking stack. Here, we used three
IBM x-series 305 servers connected via Tigon3 Gigabit Ethernet cards. Each machine
has a 2.4-GHz Pentium 4 CPU and 1024-MB RAM. One machine acting as a source
sends packets of data via an intermediate (or proxy) host, configured with a sandboxed
network stack for packet forwarding/relaying, to a destination host.

Throughput. Figure 12 compares the throughput of a sandboxed networking stack
versus alternative kernel- and user-level implementations, to forward data between
two UDP socket end-points. The alternative user-level approach relays data via a

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 3, Article 30, Publication date: April 2011.

Application-Specific Service Technologies for Commodity OSes 30:17

0

100

200

300

400

500

600

700

800

900

1000

6140

Number of Background Threads

J
it
te

r
in

 t
ra

n
s
fe

r
ti
m

e
(u

-s
e
c
o
n
d
s
)

Sandbox Kernel Socket

Fig. 13. Maximum jitter in transfer time.

process that simply reads from one socket and writes to another. In contrast, the kernel
approach uses a kernel thread to connect two socket end-points. As can be seen, the
kernel method yields the highest throughput when there are no background threads
active on the end-host. However, since both the kernel- and user-level relaying agents
execute in their own thread contexts, they are subject to scheduling overheads. This
can be seen by the fact that only the sandboxed networking approach maintains the
same level of throughput irrespective of the number of background threads.

Transfer time jitter. To conclude our experiments on user-level networking, we mea-
sured the jitter (i.e., variation in the transit time) of packets being forwarded over a
period of time. The reduction, or elimination, of jitter is especially important in environ-
ments which require quality of service constraints to be met. If network performance is
unpredictable (i.e., high jitter is present) then guaranteeing QoS constraints becomes
increasingly difficult, if not impossible.

Running in the context of bottom halves gives the sandbox upcall code the ability
to immediately process each incoming packet, which results in a very small amount
of variation in the transfer time of those packets. In contrast, the kernel and process-
based forwarding agents must suffer from scheduling delays. The amount of deviation
from the average transfer time is a function of the size of the scheduler’s run queue.
Figures 13 and 14 show that a nearly constant amount of jitter is demonstrated by the
sandboxed networking scheme, while the other two approaches show larger and more
variable jitter as the number of background threads increases.

5. RELATED WORK

There have been a number of related research efforts that focus on OS structure,
extensibility, safety, and service invocation. Extensible operating systems [Small and
Seltzer 1996; Bershad et al. 1995; Chiueh et al. 1999; Jones 1993; Ghormley et al.
1997] aim to provide applications with greater control over the management of their
resources. Additionally, microkernels [Accetta et al. 1986] and exokernels [Engler et al.
1995] offer a few basic abstractions, while moving the implementation of more com-
plex services and policies into application-level components. By separating kernel- and
user-level services, microkernels introduce significant amounts of interprocess commu-
nication overhead, although it has been argued that by leveraging hardware support
many such costs can be made to disappear [Liedtke 1995]. In effect, our sandboxing
technique provides a way to construct microkernel services without the inherent costs
of heavyweight interaddress space communication. We support this without the need

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 3, Article 30, Publication date: April 2011.

30:18 R. West and G. Parmer

0

20

40

60

80

100

120

6140

Number of Background Threads

J
it
te

r
in

 t
ra

n
s
fe

r
ti
m

e
 (

u
-s

e
c
o

n
d

s
)

Sandbox Kernel Socket

Fig. 14. Average jitter in transfer time.

for esoteric hardware features (e.g., segmentation as used by Palladium [Chiueh et al.
1999]) to implement fine-grained logical protection domains, so that the latency to
invoke application-specific services is limited to the cost of an upcall and the flush
of a TLB entry. Consequently, unbounded delays due to, for example, priority-based
scheduling of process address spaces do not affect the timely execution of system ser-
vice extensions.

It is worth noting that several other research groups have, in contrast to our work,
leveraged Linux to build real-time and QoS-based systems, such as RTLinux [Yodaiken
and Barabanov 1997], RED-Linux [Wang and Lin 1999], and QLinux [Sundaram et al.
2000]. RTLinux is a small, hard, real-time kernel that executes Linux as a separate
thread. RED-Linux provides a general scheduling framework to support different real-
time scheduling policies within the kernel, while QLinux provides QoS guarantees
to multimedia applications using special thread, packet, and disk scheduling policies.
However, none of these systems has focused on combined hardware and software sup-
port to separate application-specific services from the core kernel, and none has focused
on efficient and predictable methods by which services can be invoked so that schedul-
ing and context-switching overheads are largely eliminated.

This leads to another area of related research, which focuses on service invocation,
kernel event notifications [Banga et al. 1999; Lemon 2001] and upcalls [Clark 1985;
Gopalakrishnan and Parulkar 1998]. Much of this work is concerned with the way to
trigger user-level services or handlers due to some condition or event in the kernel.
With our ULS approach, we enable upcalls to be triggered no matter which address
space is active at the time of a kernel event, thereby greatly reducing the overheads of
service invocation. Almost all other approaches still involve the scheduling of process
address spaces in which to handle events from the kernel.

Finally, while others have considered methods to instrument applications, to inter-
cept requests for resources such as CPU cycles, memory, and bandwidth [Chang et al.
2000], the emphasis of our ULS and SafeX work is to develop safe and predictable
execution domains in which application-specific services may be deployed. Our work
enables COTS systems to be extended with resource management methods to improve
and/or guarantee qualities of service [Rajkumar et al. 1998] to individual applications
without the need for entire QoS architectures [Abdelzaher and Shin 1998; Rosu et al.
1998] to be constructed. As stated above, such execution domains do not suffer from
scheduling and context-switching overheads as would be the case for services mapped
into traditional process address spaces.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 3, Article 30, Publication date: April 2011.

Application-Specific Service Technologies for Commodity OSes 30:19

6. CONCLUSIONS AND FUTURE WORK

This article compares various methods to instrument commodity operating systems
with services and handlers that are tailored to the needs of real-time applications. We
compare methods to deploy service extensions at both the kernel and user levels, using
our SafeX and user-level sandboxing (ULS) schemes, respectively. Both approaches en-
able applications to deploy services in a manner that does not require explicit schedul-
ing and context switching between process-private address spaces, thereby ensuring
bounded dispatch latencies and finer-grained resource management. SafeX relies on
a combination of type-safe language and runtime support to enforce memory, CPU,
and I/O-space protection of untrusted application-specific services within the address
space of the trusted kernel. This enables users to deploy “first-class” services having
the same capabilities as core kernel services, with the exception that the kernel may
revoke access rights on any services abusing their privileges. Such an approach pre-
vents, for example, an application-specific service from running for unbounded amounts
of time and/or altering its resource usage beyond that allowed by the kernel. However,
SafeX places restrictions on how extensions operate within the kernel by preventing
them from disabling interrupts and accessing kernel symbols outside those within a
defined API.

To alleviate the potential problems associated with application-specific services exe-
cuting in the trusted kernel address space, our ULS approach allows first-class services
to execute in a sandbox environment isolated by hardware-level (i.e., page-based) pro-
tection from the kernel. This imposes only minimal additional overheads over those
associated with SafeX when dispatching application services. Specifically, ULS requires
an upcall into a sandboxed memory region as well as a TLB flush of a single page entry.
Such a cost is minimal and bounded compared to the overheads of otherwise scheduling
and context switching between user-level process address spaces.

Experimental results show that ULS and SafeX incur similar performance penalties
and benefits for an example service extension that adaptively manages CPU usage
among competing processes in specific windows of real time. Both approaches yield
lower service violations than alternative user-level methods of application-level re-
source monitoring and management. Given this observation, we feel ULS is preferred
over SafeX as the first step toward supporting application-specific real-time services
on commodity OSes. As evidence of the potential capabilities of ULS, we have imple-
mented a user-space networking stack that avoids data copying via the kernel and
allows packet processing to take place in the context of a kernel bottom half without
explicit process scheduling, thereby increasing data throughput and reducing jitter.
ULS requires no special hardware support other than page-based hardware protec-
tion and timer interrupt support to ensure predictable and low-latency execution of
application-specific services.

Future work involves extending our ULS approach to multiprocessor platforms,
and to provide safe and predictable resource management support for entire virtual
machines rather than the more simplistic services and handlers currently supported.

REFERENCES

ABDELZAHER, T. F. AND SHIN, K. G. 1998. End-host architecture for QoS-adaptive communication. In Proceedings
of the 4th Real-Time Technology and Applications Symposium.

ACCETTA, M., BARON, R., BOLOSKY, W., GOLUB, D., RASHID, R., TEVANIAN, A., AND YOUNG, M. 1986. Mach: A new
kernel foundation for UNIX development. In Proceedings of the Summer USENIX Conference. 93–113.

BANGA, G., MOGUL, J. C., AND DRUSCHEL, P. 1999. A scalable and explicit event delivery mechanism for UNIX.
In Proceedings of the Annual Technical Conference.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 3, Article 30, Publication date: April 2011.

30:20 R. West and G. Parmer

BERSHAD, B. N., SAVAGE, S., PARDYAK, P., SIRER, E. G., FIUCZYNSKI, M., BECKER, D., EGGERS, S., AND CHAMBERS, C.
1995. Extensibility, safety, and performance in the SPIN operating system. In Proceedings of the 15th
ACM Symposium on Operating Systems Principles. ACM Press, New York, NY, 267–284.

CHANG, F., ITZKOVITZ, A., AND KARAMCHETI, V. 2000. User-level resource-constrained sandboxing. In Proceedings
of the 4th Windows Systems Symposium.

CHIUEH, T., VENKITACHALAM, G., AND PRADHAN, P. 1999. Integrating segmentation and paging protection for safe,
efficient and transparent software extensions. In Proceedings of the 17th ACM Symposium on Operating
Systems Principles. ACM Press, New York, NY, 140–153.

CLARK, D. 1985. The structuring of systems using upcalls. In Proceedings of the 10th ACM Symposium on
Operating Systems Principles. ACM Press, New York, NY, 171–180.

DUNNING, D., REGNIER, G., MCALPINE, G., CAMERON, D., SHUBERT, B., BERRY, F., MERRITT, A. M., GRONKE, E., AND

DODD, C. 1998. The virtual interface architecture. IEEE Micro 18, 2, 66–76.
ENGLER, D. R., KAASHOEK, M. F., AND O’TOOLE, J. 1995. Exokernel: An operating system architecture for

application-level resource management. In Proceedings of the 15th ACM Symposium on Operating Sys-
tems Principles. ACM Press, New York, NY, 251–266.

FRY, G. AND WEST, R. 2004. Adaptive routing of QoS-constrained media streams over scalable overlay topolo-
gies. In Proceedings of the 10th IEEE Real-Time and Embedded Technology and Applications Sympo-
sium. IEEE Computer Society Press, Los Alamitos, CA.

GHORMLEY, D. P., RODRIGUES, S. H., PETROU, D., AND ANDERSON, T. E. 1997. Interposition as an operating system
extension mechanism. Tech. rep. CSD-96-920. University of California, Berkeley, Berkeley, CA.

GOPALAKRISHNAN, G. AND PARULKAR, G. 1998. Efficient user space protocol implementations with QoS guaran-
tees using real-time upcalls. IEEE/ACM Trans. Netw. 6, 4, 374–388.

JIM, T., MORRISETT, G., GROSSMAN, D., HICKS, M., CHENEY, J., AND WANG, Y. 2002. Cyclone: A safe dialect of C. In
Proceedings of the USENIX Annual Technical Conference.

JONES, M. B. 1993. Interposition agents: Transparently interposing user code at the system interface. In
Proceedings of the 14th ACM Symposium on Operating Systems Principles. ACM Press, New York, NY,
80–93.

LEMON, J. 2001. Kqueue—a generic and scalable event notification facility. In Proceedings of the USENIX
Annual Technical Conference, FREENIX Track. 141–153.

LIEDTKE, J. 1995. On μ-kernel construction. In Proceedings of the 15th ACM Symposium on Operating Systems
Principles. ACM Press, New York, NY, USA.

MORRISETT, G., CRARY, K., GLEW, N., GROSSMAN, D., SMITH, F., WALKER, D., WEIRICH, S., AND ZDANCEWIC, S. 1999a.
TALx86: A realistic typed assembly language. In ACM SIGPLAN Workshop on Compiler Support for
System Software. ACM Press, New York, NY.

MORRISETT, G., WALKER, D., CRARY, K., AND GLEW, N. 1999a. From System F to typed assembly language. ACM
Trans. Program. Lang. Syst. 21, 3, 527–568.

PARMER, G., WEST, R., QI, X., FRY, G., AND ZHANG, Y. 2004. An Internet-wide distributed system for data-stream
processing. In Proceedings of the 5th International Conference on Internet Computing. CSREA Press,
Las Vegas, NV.

QI, X., PARMER, G., AND WEST, R. 2004. An efficient end-host architecture for cluster communication services.
In Proceedings of the IEEE International Conference on Cluster Computing. IEEE Computer Society
Press, Los Alamitos, CA.

RAJKUMAR, R., LEE, C., LEHOCZKY, J., AND SIEWIOREK, D. 1998. Practical solutions for QoS-based resource
allocation problems. In Proceedings of the IEEE Real-Time Systems Symposium. IEEE Computer Society
Press, Los Alamitos, CA.

ROSU, D., SCHWAN, K., AND YALAMANCHILI, S. 1998. FARA—a framework for adaptive resource allocation in
complex real-time systems. In Proceedings of the 4th IEEE Real-Time Technology and Applications
Symposium. IEEE Computer Society Press, Los Alamitos, CA.

SHIVAM, P., WYCKOFF, P., AND PANDA, D. 2001. EMP: Zero-copy OS-bypass NIC-driven Gigabit Ethernet message
passing. In Proceedings of the ACM/IEEE conference on Supercomputing. ACM Press, New York, NY.

SMALL, C. AND SELTZER, M. I. 1996. A comparison of OS extension technologies. In Proceedings of the USENIX
Annual Technical Conference. 41–54.

SUNDARAM, V., CHANDRA, A., GOYAL, P., AND SHENOY, P. 2000. Application performance in the QLinux multimedia
operating system. In Proceedings of the 8th ACM Conference on Multimedia. ACM Press, New York, NY.

UHLIG, V., DANNOWSKI, U., SKOGLUND, E., HAEBERLEN, A., AND HEISER, G. 2002. Performance of address-space
multiplexing on the Pentium. Tech. rep. 2002-1. University of Karlsruhe, Karlsruhe, Germany.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 3, Article 30, Publication date: April 2011.

Application-Specific Service Technologies for Commodity OSes 30:21

VON EICKEN, T., BASU, A., BUCH, V., AND VOGELS, W. 1995. U-Net: A user-level network interface for parallel and
distributed computing. In Proceedings of the 15th ACM Symposium on Operating Systems Principles.
ACM Press, New York, NY, 40–53.

WAHBE, R., LUCCO, S., ANDERSON, T., AND GRAHAM, S. 1993. Software-based fault isolation. In Proceedings of the
14th ACM Symposium on Operating Systems Principles. ACM Press, New York, NY.

WALLACH, D. A., ENGLER, D. R., AND KAASHOEK, M. F. 1997. ASHs: Application-specific handlers for high-
performance messaging. IEEE/ACM Trans. Netw. 5, 4, 460–474.

WANG, Y.-C. AND LIN, K.-J. 1999. Implementing a general real-time scheduling framework in the RED-Linux
real-time kernel. In Proceedings of the 20th IEEE Real-Time Systems Symposium (RTSS).

WEST, R. AND GLOUDON, J. 2002. ‘QoS safe’ kernel extensions for real-time resource management. In Proceed-
ings of the the 14th EuroMicro International Conference on Real-Time Systems. IEEE Computer Society
Press, Los Alamitos, CA.

WEST, R. AND WONG, G. 2005. Cuckoo: A language for implementing memory- and thread-safe system services.
In Proceedings of the International Conference on Programming Languages and Compilers. CSREA
Press, Las Vegas, NV.

YODAIKEN, V. AND BARABANOV, M. 1997. A real-time Linux. In Proceedings of the Linux Applications Development
and Deployment Conference (USELINUX).

Received January 2006; accepted May 2006

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 3, Article 30, Publication date: April 2011.

