
Boomerang: Real-Time I/O Meets Legacy Systems
Ahmad Golchin

Computer Science Department
Boston University

Boston, USA
golchin@cs.bu.edu

Soham Sinha
Computer Science Department

Boston University
Boston, USA

soham1@cs.bu.edu

Richard West
Computer Science Department

Boston University
Boston, USA

richwest@cs.bu.edu

Abstract—This paper presents Boomerang, an I/O system that
integrates a legacy non-real-time OS with one that is customized
for timing-sensitive tasks. A relatively small RTOS benefits from
the pre-existing libraries, drivers and services of the legacy
system. Additionally, timing-critical tasks are isolated from less
critical tasks by securely partitioning machine resources among
the separate OSes. Boomerang guarantees end-to-end processing
delays on input data that requires outputs to be generated within
specific time bounds.

We show how to construct composable task pipelines in
Boomerang that combine functionality spanning a custom RTOS
and a legacy Linux system. By dedicating time-critical I/O to
the RTOS, we ensure that complementary services provided by
Linux are sufficiently predictable to meet end-to-end service
guarantees. While Boomerang benefits from spatial isolation,
it also outperforms a standalone Linux system using deadline-
based CPU reservations for pipeline tasks. We also show how
Boomerang outperforms a virtualized system called ACRN,
designed for automotive systems.

Index Terms—Partitioning hypervisor, real-time operating sys-
tem, composable task pipelines, input/output

I. INTRODUCTION

Mixed-criticality systems require the spatial and temporal
isolation of tasks to meet timing, safety and security con-
straints [1]. Additionally, these systems involve real-time task
pipelines to implement sensing, processing and actuation.
For example, an automotive system supports low-criticality
infotainment services, which must be isolated from highly
critical driving assistance tasks that process sensor data to
avoid vehicle collisions.

Spatial isolation ensures that one software component can-
not alter another component’s private code or data, or interfere
with the control of its devices. Temporal isolation ensures that
a software component cannot affect when another component
accesses a resource (e.g., a CPU). Lack of temporal and
spatial isolation leads to potential timing or functional failures.
Failure of a highly critical task has potentially catastrophic
consequences, while failure of a low-criticality task has less
significant consequences.

One way to support mixed-criticality systems is to partition
tasks onto separate hardware. This ensures less critical tasks
are unable to directly affect those of greater importance.
Automotive systems have traditionally taken this approach, by
assigning a different functional component to a separate elec-
tronic control unit (ECU) [2]. However, as the complexity of
these systems increases, hardware costs, wiring and packaging

become prohibitive. For this reason, new hardware platforms
that integrate the functionality of multiple hardware compon-
ents, including multicore processors, accelerators, GPUs, and
various input/output (I/O) interfaces are now emerging. Tesla’s
AutoPilot 2.x, for example, already uses platforms such as the
Nvidia Drive PX2 in its cars, to assist with vehicle control.

An integrated solution, combining tasks of different crit-
icality levels on the same hardware, requires an operating
system to correctly enforce temporal and spatial isolation.
Partitioning operating systems such as Tresos [1] and LynxOS
[3] have been developed for automotive and avionics systems,
respectively, in accordance with standards such as AUTOSAR
[4] and ARINC653 [5], to isolate tasks of different criticality
levels. However, these types of systems are not able to take
advantage of legacy software, including libraries and device
drivers written for the newest hardware. In contrast, systems
such as Linux, Windows and OS X are regularly updated
with features that would take an operating system developer
years to reproduce in a clean-slate design. Unfortunately,
general purpose systems lack the necessary temporal and
spatial requirements, including the ability to perform real-time
sensing, processing and actuation required by emerging mixed-
criticality systems.

In this paper, we present a system called Boomerang. Boom-
erang uses a partitioning hypervisor [6], which separates the
hardware of a physical machine into different guest domains
that directly manage their assigned resources. This contrasts
with a conventional multiplexing (or consolidating) hypervisor,
which intervenes in the sharing of physical machine resources
among multiple guests. Boomerang’s approach removes the
hypervisor from resource management, once CPU cores, phys-
ical memory and I/O devices are assigned to separate guests.

Using separate partitions, Boomerang supports the co-
existence of a real-time operating system (RTOS) and a legacy
system such as Linux. Rather than treating these systems
as separate guests, Boomerang establishes a tightly-coupled
symbiotic relationship, such that the RTOS is empowered with
legacy features, and the legacy system is empowered with real-
time capabilities. For example, a Boomerang Linux partition
might support OpenGL and CUDA libraries for hardware
accelerators, camera devices, and machine learning algorithms,
which would be difficult to write and certify for an RTOS.
Likewise, the RTOS partition in Boomerang provides the
timing guarantees for real-time tasks to perform sensor data

1

processing and actuation.
Key to this paper’s contributions is the construction of a

composable tuned pipe abstraction. This abstraction imple-
ments real-time task pipelines that ensure end-to-end guaran-
tees on sensing, processing and actuation, spanning both RTOS
and legacy OS services. Boomerang extends prior work on
tuned pipes between a USB device and a task running in the
same OS [7] to encompass task pipelines spanning an RTOS
and another guest. The aim is to show that Boomerang is
able to combine legacy and real-time services in a way that
ensures information flow is bounded by throughput, loss and
delay constraints.

As stated above, many emerging mixed-criticality systems
require tasks to process sensory inputs before subsequently
generating outputs that affect the actuation of a device. For
example, a cruise control system in an electric car may collect
data from cameras and speed sensors before determining that
the motors need to change speed to keep a safe distance to
the vehicle ahead.

Novel to Boomerang’s composable tuned pipes is the ability
for an integrated RTOS based on Quest [8] to manage I/O that
requires services in a legacy system such as Linux. We show
how to construct composable task pipelines in Boomerang that
combine tasks spanning Quest and a legacy Linux system. By
assigning time-critical I/O to Quest, Boomerang ensures that
complementary services provided by Linux meet end-to-end
timing guarantees. We compare Boomerang to a standalone
Linux system, using specific cores to handle timing-sensitive
I/O. Boomerang not only benefits from spatial isolation, it
also outperforms a standalone Linux system using deadline-
based CPU reservations for pipeline tasks. We also show
how Boomerang outperforms a partitioning hypervisor called
ACRN, designed for automotive systems.

The following section provides background to the problem
addressed by Boomerang. Section III describes the Boomer-
ang partitioning hypervisor and composable tuned pipes. An
evaluation of Boomerang is described in Section IV. Related
work is discussed in Section V. Finally, conclusions and future
work are described in Section VI.

II. BACKGROUND

Boomerang supports composable task pipelines that form a
round-trip path, originating from a device input and ultimately
finishing with a device output. It is designed specifically for
applications that require sensing, processing and actuation.

Figure 1(a) shows the round-trip path in a typical OS. A
device acknowledges the completion of an I/O request by
generating an interrupt. Most systems handle interrupts at
priorities above those of software tasks. They also incorrectly
charge interrupt handling to the task that was preempted by
the arrival of the interrupt. Worse still, a burst of interrupts
within a short time may delay a time-critical task enough to
miss its deadline [8], [9].

Figure 1(a) uses a dedicated core for I/O handling of device
interrupts, to avoid interference with task execution. However,

Figure 1: (a) Round-trip I/O in a single OS, and (b) possible
I/O paths in a Boomerang partitioning hypervisor.

the single OS approach does not provide adequate spatial isola-
tion of tasks of different criticalities, and underutilizes the core
exclusively used for interrupt handling. If the OS malfunctions
then tasks of all criticalities are potentially compromised. In
contrast, Figure 1(b) shows how Boomerang supports three
different classes of I/O using a partitioning hypervisor [10],
[11] to separate highly critical timing sensitive operations from
less critical system components using different guest OSes.

In the first case (shown with a dashed line), all I/O is
contained within the RTOS. Real-time tasks and interrupt
handlers for device I/O share the same processor cores, as
the RTOS ensures predictable timing guarantees on task and
I/O processing.

In the second case, the I/O path traverses a task pipeline
that enters into a legacy OS via secure shared memory. Here,
the legacy OS provides services that would require significant
effort to port to the RTOS. The round-trip I/O path in case 2
is still able to meet end-to-end timing guarantees because the
tasks in the legacy OS are isolated from timing unpredictability
caused by interrupts. This is possible by demoting interrupts
(in the legacy OS) to priorities that are distinctly lower than
those of tasks. Additionally, legacy OSes such as Linux sup-
port SCHED_DEADLINE execution for tasks, thereby ensuring
some degree of timing guarantees, as long as there is no
interference from interrupts [7].

In the third case, it may be necessary for some I/O to be
handled by a legacy system, which has drivers and libraries
that are unavailable in the RTOS. For example, a series of
cameras used in a driverless car need suitable device drivers
and machine learning algorithms to perform object classific-
ation. The outcomes of object classification dictate whether
information needs to be communicated to the RTOS to issue
real-time outputs that adjust vehicle motion. As with the single
OS approach, I/O originating in case 3 may handle interrupts
on a dedicated core, to avoid interference with tasks that serve
RTOS requests in case 2. Alternatively, I/O processing in the
legacy OS is given lower priority than task execution, leaving
critical I/O to the real-time OS.

A. VCPU Scheduling

Boomerang’s partitioning hypervisor allows each guest to
directly manage its assignment of physical CPUs (PCPUs) 1.
This differs from a traditional hypervisor, which schedules

1A PCPU is either a processor core, hardware thread, or individual CPU.

2

guest threads on virtual CPUs (VCPUs) and then maps those
onto PCPUs. Instead, Boomerang’s guest RTOS implements its
own VCPU scheduler using the PCPUs available to it, without
any need for additional scheduling in the hypervisor. At the
same time, other guests running on Boomerang schedule
threads directly on their available PCPUs.

Boomerang uses the Quest RTOS [8] to assign a processor
capacity reserve [12] to each VCPU. Each reserve has a budget
capacity, C, and period, T . A VCPU is required to receive at
least C units of execution time every T time units when it
is runnable, as long as a schedulability test [13] is passed
when creating new VCPUs. This way, the Quest scheduler
guarantees temporal isolation between threads associated with
different VCPUs.

Figure 2: VCPU scheduling hierarchy in Quest.

Figure 2 shows the scheduling of threads and VCPUs for
real-time tasks and interrupt handlers. Tasks are assigned to
Main VCPUs, and separate IO VCPUs are used for interrupt
handling. Main VCPUs are implemented as Sporadic Serv-
ers [14]. Each Sporadic Server keeps track of its VCPU’s
budget usage, and constructs a list of timestamped future
replenishments, to ensure timing guarantees. By default each
Sporadic Server VCPU is scheduled using Rate-Monotonic
Scheduling (RMS) [15], although an alternative policy such as
earliest-deadline first (EDF) may be chosen. With RMS, the
VCPU with the smallest period, T , has the highest priority.

To ensure that tasks are isolated from interrupts, Quest
promotes interrupt handling to a schedulable thread context,
whose execution is charged to an IO VCPU. Each IO VCPU
is associated with the Main VCPU that led to the occurrence
of the interrupt. Such occurrences result from tasks issuing
blocking requests (e.g., via a read() system call), or a
system thread awaiting a kernel event.

Consider a task that issues a blocking I/O request on a
device (e.g., USB interface). When the task blocks, it stops
charging execution time to its Main VCPU. Some time later an
interrupt occurs when an I/O transfer is complete. This causes
a top half handler to execute, which determines the Main
VCPU waiting on I/O. The top half then inserts into a system
ready queue an IO VCPU with a dynamically calculated
budget and period, based on the parameters of its correspond-
ing Main VCPU. Finally, the interrupt is acknowledged, and
all subsequent handling occurs in a bottom half thread context,
when the corresponding IO VCPU is scheduled. Consequently,

all bottom half execution time is charged to its IO VCPU
before the blocked task resumes execution on its Main VCPU.

Each IO VCPU in Quest is given a utilization bound, UIO.
There is one IO VCPU for each device class, with classes
existing for USB, networking, ATA, and GPIO devices, among
others. When an IO VCPU is added to the scheduler ready
queue, its budget is set to UIO×TMain and its period is set
to TMain, where TMain is the period of the Main VCPU of
the source entity associated with the interrupt. Quest is then
able to correctly schedule bottom half interrupt handlers at
the priority of the source task running on a Main VCPU. This
contrasts with systems such as Linux, which schedule bottom
halves (a.k.a., tasklets or softirqs) at priorities that are not tied
to the source of corresponding interrupts.

IO VCPUs have a dynamically calculated budget and period
based on the Main VCPUs they serve, to avoid the overhead of
maintaining replenishment lists for short-lived interrupt service
routines (ISRs). This budget is eligible for use as long as
the sustained IO VCPU’s utilization does not exceed UIO.
This policy is shown to be effective for short-lived interrupt
service routines (ISRs), which would fragment a Sporadic
Server budget as used for Main VCPUs.

Quest requires reprogramming of hardware timers in one-
shot mode, to determine the next system event. This is similar
to Linux’s tickless operation. As IO VCPUs only have one
budget replenishment to consider, rather than a list, this leads
to reduced timer reprogramming overhead.

B. Communication Model

Data flow involves a pipeline of communicating tasks. Each
task processes its input data to produce output, either for
devices or subsequent tasks in the pipeline. This leads to a
communication model characterized by: (1) the interarrival
times of tasks in the pipeline, (2) inter-task buffering, and
(3) each tasks’ access pattern to communication buffers.

Task Interarrival Times. Each task ordinarily samples
input data periodically. However, a task will block if data is
unavailable, leading to aperiodic or irregular intervals between
successive task instances. Either way, a task pipeline’s timing
requirements assume that data will propagate with a minimum
inter-arrival time between tasks.

Register-based versus FIFO-based Communication. A
FIFO-based shared buffer is used in scenarios where data his-
tory is an important factor. However, in sensor-data processing
the most recent data is often more important. For example,
a driving assistance system should always compute outputs
that affect vehicle dynamics from the latest sensor data.
FIFO-based communication results in loosely synchronous
communication: the producer is suspended when the FIFO
buffer is full and the consumer is suspended when the buffer
is empty. Register-based communication achieves asynchrony
between two parties using Simpson’s four-slot algorithm [16].

Implicit versus Explicit Communication. Explicit com-
munication allows access to shared data at any time during
a task’s execution. This might lead to data inconsistency
in the presence of task preemption. Conversely, the implicit

3

communication model [17] essentially follows a read-before-
execute paradigm to avoid data inconsistency. It mandates a
task to make a local copy of the shared data at the beginning
of its execution and to work on that copy throughout its
execution.

Boomerang supports both periodic and aperiodic tasks. It
also supports both register- and FIFO-based communication.
Implicit communication is enforced for data consistency.

III. BOOMERANG

The Boomerang partitioning hypervisor divides processor
cores, physical memory and I/O devices among guest domains.
Each guest manages its physical resources without involvement
of the hypervisor. This has two important properties: (1)
the hypervisor is only used to bootstrap the system and to
establish secure communication channels between guests using
hardware extended page tables (EPTs) 2, and (2) the hypervisor
is removed from runtime management of physical machine
resources, making its trusted code base extremely small.

Boomerang’s partitioning hypervisor has a text segment of
less than 4KB, although more space is needed for EPTs (e.g.,
24KB for a 4GB guest). Given the hypervisor is not accessed
under normal guest operation, the system’s most privileged
ring of protection is less susceptible to security attacks than a
conventional OS image running directly on hardware. In the
latter case, system calls must pass control to the OS kernel,
whereas in Boomerang these are restricted to the local guest.

Unlike traditional hypervisors that multiplex guests onto
the same shared physical machine, partitioning hypervisors
offer opportunities for applications that require security and
timing predictability. Hardware virtualization features isolate
guests, using an additional ring of protection reserved for the
hypervisor. At the same time, time-critical guests are able
to run real-time resource management policies without being
compromised by additional resource management policies in
the hypervisor.

We see partitioning hypervisors as being suitable for mixed-
criticality systems, requiring spatial and temporal isolation
of application tasks and software components according to
different system criticality levels. For example, automotive
systems adhering to standards such as ISO 26262 [18] are
required to meet specific functional safety requirements, ac-
cording to several classes of automotive safety integrity levels
known as ASIL A-D. Software certified to ASIL D standard
operates at the most stringent safety level, where the risk
of failure is potentially life threatening. In contrast, ASIL
A applies to software that has a very low probability of
significant human injury even during failures. Other standards
such as ARINC 653 and DO-178B have similar requirements
for avionics systems. For these types of systems, it is possible
to assign software to machine partitions according to their
safety integrity levels.

2Intel processors with VT-x capabilities refer to these tables as EPTs. AMD-
V processors have similar nested page tables (NPTs).

A. Composable Tuned Pipes

Figure 3 shows a logical representation of a single tuned
pipe (a.k.a., tpipe). A pipe has one pipe processor and two
endpoints, with one endpoint for input and the other for output.
A pipe processor is represented by a VCPU, guaranteeing
at least C units of execution time every T time units when
runnable. Pipe processors are associated with tasks bound to
Main VCPUs, or threaded interrupt handlers bound to I/O
VCPUs.

Figure 3: A tuned pipe.

A tuned pipe guarantees data flowing from an input to
an output endpoint is processed according to specific service
requirements. These requirements apply end-to-end, through a
pipeline of one or more tuned pipes. If the pipeline is lossless,
it ensures specific throughput and delay guarantees, whereas
if it is lossy, it guarantees a maximum fraction of lost data
while meeting delay bounds.

Boomerang maintains a local repository for each guest
OS (a.k.a., sandbox or machine partition), which stores in-
formation about available endpoints. The repository records
a globally unique identifier for each endpoint, in the form:
hostID:sandboxID:asID:epID. This distinguishes endpoints in
different host machines (by hostID) 3, sandboxes (by sand-
boxID), and address spaces (by asID). Access capabilities
restrict which tuned pipes are able to connect to endpoints.

The rules controlling connectivity to endpoints are a topic
of ongoing research. They have implications for secure in-
formation flow analysis [19]–[21], which is outside the scope
of this paper. Notwithstanding, pipelines may be constructed
within a single address space, between address spaces in the
same machine partition, between different partitions on the
same host, and across different hosts.

When creating a tuned pipe, Boomerang automatically cal-
culates (i.e., tunes) the budget and period of the pipe VCPU to
ensure end-to-end guarantees are met. Tuned pipes are created
with a call to tpipe(), as follows:

tpipe_id_t tpipe(ep_t *inp[], int n_inp, ep_t *outp,
qos_t spec, tpipe_task_t func, void* arg);

The input endpoint of the new tuned pipe specifies an array
of pointers, inp, to endpoint types. This array identifies the
endpoint addresses of n_inp inputs to the tuned pipe, along
with the buffering semantics of each input, which will be
discussed in Section III-B.

3In this paper, we restrict communication within the same host machine.

4

Data flowing into the tuned pipe is processed by a specific
callback function (func), which sends its output to specific
destinations connected to the output endpoint, identified by
outp. The callback function takes an optional argument
(arg), and runs in its own thread context. The thread con-
text defines a task, which is bound to a VCPU having an
automatically-generated budget, Ci, and period, Ti, for the
tuned pipe, tpipei. The budget and period are derived from
the quality-of-service (QoS) requirement (spec) for end-to-
end throughput and delay on data processing. This requirement
must also satisfy the schedulability of all VCPUs on a given
physical CPU (PCPU), otherwise the tuned pipe is not created.
If a tuned pipe is successfully created, it is given a unique ID
within its guest OS.
tpipei requires its callback function to process data from

one or more input endpoints and produce output in one
quantum of size Ci, every period, Ti. Functions are selected
from a predefined repository of callbacks. Each callback has
a known worst-case execution time (WCET) based on pre-
profiled timing information to handle a maximum Ii inputs and
produce up to Oi outputs in one quantum. The actual amount
of processing in a quantum depends on the availability of data
in input buffers, and how many outputs need to be written.

Each function in the repository declares the allowable
buffering capabilities for its inputs and outputs. Any tuned
pipe connecting to another with a function that does not match
the allowed buffering capabilities is rejected.

B. POSIX Pipes versus Tuned Pipes

Similarities exist between a pair of tuned pipes and a single
POSIX pipe. The latter provides a shared memory buffer
that is accessible to a group of communicating threads via
file descriptors. The file descriptors describe the endpoint
capabilities, including whether the pipe is readable or writable.

A tuned pipe pair in Boomerang differ from a POSIX pipe
by capturing the timing requirements for data processing and
communication. They also define the buffering semantics for
I/O endpoints. Two pipes, tpipei and tpipej are composed
by connecting the output endpoint of tpipei to the input
endpoint of tpipej . Boomerang allows the composition of two
or more pipes to support either asynchronous (RT_ASYNC) or
semi-asynchronous (RT_FIFO) communication, as shown in
Figure 4.

Figure 4: A two-stage pipeline with (a) 4-slot asynchronous
buffering, and (b) semi-asynchronous ring buffering.

With RT_ASYNC, Simpson’s Four Slot buffering
scheme [16], [22] is used to allow the two pipe threads to
execute independently of each other. Four Slot communication
guarantees freshness and integrity of data objects exchanged
between a producer and consumer, without the sender or
receiver ever having to block. Freshness guarantees the most
recent value of a data object is made available. Integrity
ensures a data object is not partially updated before the
previous object has been read in entirety.

With RT_FIFO, a ring-buffer is established between the
communicating pair of pipes to avoid data loss. However, the
sender must block when the buffer is full, and the receiver
must block when the buffer is empty. This places a timing
dependency on producers and consumers, which potentially
violates end-to-end timing guarantees unless data flow rates
are managed correctly.

C. Device versus Task Pipes

Boomerang’s RTOS provides a pre-defined set of tuned
pipes for all devices involved in real-time I/O. A device
pipe features an IO VCPU for interrupt handling, and an
optional Main VCPU for endpoint buffer management of
shared devices. Sharing requires scatter-gather functions to
move data between the device endpoint buffer and pipe-
specific buffers of task pipes. If a device is not shared, its
handler directly accesses the buffer of a specific task pipe.

The tpipe() call, described earlier, creates a task pipe.
Unlike a device pipe, there is no IO VCPU for interrupt
handling. Task pipes form pipelines between device pipes
that act as the sources and sinks of input and output data,
respectively.

Figure 5: Example composition of a device and task pipe for
asynchronous I/O.

Figure 5 shows an example composition of a device and
task pipe for asynchronous (non-blocking) I/O communication.
The device is assumed to be shared with other tasks. If a
task requires semi-asynchronous device communication for
blocking I/O, it would replace the four slot pipe buffer with a
ring buffer.

D. Pipeline Construction

Pipelines of tuned pipes are constructed in the order in
which data flows, from input to output. A tuned pipe is
responsible for the creation of all buffers that connect to its
input endpoint. It also declares its output endpoint, which
includes a count of the number of outputs it handles. A

5

pipeline is incomplete until all Ii inputs and Oi outputs of
each tpipei are connected.

The output endpoint of each task pipe has a connection to
a default device pipe, which could be a null device. A system
call interface allows this output endpoint to be redirected to
one or more different device pipes.

Once fully connected, the system activates the pipeline by
allowing each tpipe task to be scheduled for execution. Those
tasks that execute in the RTOS are runnable when they have
available budgets on their corresponding VCPUs. Tuned pipe
tasks that execute in Linux are runnable when they have avail-
able budgets in their SCHED_DEADLINE scheduling class.
Linux’s SCHED_DEADLINE scheduling class uses a Constant
Bandwidth Server [23] to limit the maximum CPU bandwidth
consumed by a task within a specific period. The end of the
period is used to define the task deadline, and all tasks are
scheduled earliest deadline first. However, interrupt handlers
are not managed in this scheme.

Boomerang runs our in-house RTOS in one sandbox, and
Linux in another sandbox on the same physical machine. A
Linux kernel module maps a secure shared memory region by
calling into the hypervisor. The hypervisor uses EPTs to map
machine physical memory into each sandbox so they are able
to communicate.

Each sandbox is equipped with kernel services that manage
a local repository of endpoints and tuned pipes. Communica-
tion services allow queries to a remote sandbox, to discover
endpoints and to connect or disconnect from tuned pipes.
Mailbox channels are established by Boomerang to enable
OSes in different sandboxes to send remote OS requests.
Access policies determine whether address spaces in the local
or remote sandbox are able to connect to endpoints of existing
tuned pipes.

Boomerang’s RTOS provides a remote shell to Linux
through inter-sandbox shared memory. Linux uses a kernel
module to allow user-space application programs with root
privilege to execute shell commands on the RTOS. A shell
interface allows pipelines of tuned pipes to be constructed. The
RTOS is able to query endpoints and tuned pipes that exist in
Linux, and issue requests to connect to them via tpipe()
calls.

After the construction of the pipeline, the RTOS runs
an end-to-end throughput and delay analysis. If the end-to-
end requirements are met for the pipeline, the transmission
of data is allowed to begin from the RTOS. Tuned pipe
functions synchronize their start and end of operation life-
cycle using Start-Of-Task and End-Of-Task packets on their
input endpoints.

The following example illustrates a pipeline specification:

[∗](A | B), C | D | E, F [e2e tput | loss rate, e2e delay]

The resultant pipeline is shown in Figure 6. Boomerang’s
repository of tuned pipe functions requires that A and C
connect to a device output endpoint for reading, while E and
F connect to a device input endpoint for writing.

Figure 6: An example pipeline with multiple inputs & outputs.

Boomerang defaults to non-blocking tuned pipe semantics,
where data freshness is more important than lossless commu-
nication. Figure 6 shows four-slot buffering of all pipeline
stages. If lossless communication is required, the entire
pipeline specification is preceded by an asterisk. This pipeline
would then use FIFO buffers between each pair of tuned pipes.

With four-slot buffering, the entire pipeline has an op-
tional end-to-end service specification in terms of tolerable
loss rate and e2e delay. With FIFO buffering, the pipeline
is specified with an optional end-to-end throughput, e2e tput,
and delay. The throughput is measured as the minimum
number of data objects per unit time exiting a final tuned
pipe, while the delay is measured in microseconds. Each data
object represents a message, which is the size of one slot of
either a four-slot or FIFO buffer.

If the QoS specification is omitted, then the pipeline defaults
to best effort. In such case, the VCPUs of each tuned pipe
revert to their default values. If the pipeline overloads the
PCPUs to which it is assigned, leading to an infeasible
schedule, its VCPU periods are repeatedly extended until the
pipeline is schedulable.

The shell interpreter allows parallel sections of a pipeline to
be defined by comma-separated lists of tuned pipes. Here, the
pipeline section A | B runs parallel with C. This could be rep-
resentative of two separate input sensor streams coming from
two different devices. Parentheses ensure correct grouping of
pipeline sequences, while two tuned pipes are connected using
the shell vertical bar symbol (|).

In the example, the outputs of B and C feed into the single
tuned pipe, D. Similarly, the output of D is split across E and
F . D might represent a sensor fusion and control task, while
E and F might be specific actuator tasks that output their data
to different devices. In an automotive system, for example, E
and F might send their outputs to two different CAN buses,
managed by device pipes.

The e2e delay constraint applies to the longest path through
the pipeline, while for FIFO-buffered communication the
e2e tput applies to whichever final task pipe has the lowest
rate of output. If FIFO-buffering were used in the figure,
whichever of E and F had the lowest output rate would dictate
the end-to-end throughput.

As a four-slot buffered pipeline allows each tuned pipe to
read and process whatever data sits in its input buffers, it is
possible that new data has overwritten old data before the
consumer runs. This happens if the producer has an arrival
rate, λ = 1/Tp, greater than the consumer’s service rate, µ =
1/Tc. Here, it is assumed that Tp and Tc are set to ensure

6

one message transfer every corresponding period, regardless
of whether it is a new message or not.

E. End-to-end QoS Guarantees

Given a pipeline of tuned pipes and buffers, Boomerang
runs a constraint solver to determine Ci and Ti for each tpipei.
The function executed by tpipei is assumed to process at least
one of its Ii inputs and generate one of its Oi outputs every
period, Ti. Essentially, one or more processed data messages
propagate through a tuned pipe within Ci execution time.
Boomerang assumes that Ci is derived by pre-profiling the
WCET of the corresponding task function. This WCET is then
stored in the local repository, along with the set of inputs and
outputs used by the function.

For a pipeline to successfully meet its end-to-end timing
requirements, Boomerang must still determine each period,
Ti | Ti>Ci, and possibly scale each service time Ci to forward
more than one message at a time. It follows that a FIFO
buffered pipeline successfully meets its end-to-end timing
requirements if:

1)
∑

i∈l Ti≤e2e delay, for the longest path l,
2) min∀i{mi

Ti
}≥e2e tput, where mi≥1 messages are

transferred by tpipei every Ci,
3) all FIFO buffers are sized to ensure no additional block-

ing delays of tasks, and
4) all task scheduling constraints are satisfied on their

respective PCPUs.
Similarly, a pipeline with four-slot buffering meets its end-

to-end requirements if:
1)

∑
i∈l Ti≤e2e delay, for the longest path l,

2) max{1− Tp

Tc
}≤loss rate, for all Tp≤Tc, and

3) all task scheduling constraints are satisfied on their
respective PCPUs.

The end-to-end delay represents the time for a message to
traverse the longest path through a pipeline. The final message
output from the pipeline is a transformation of data propagated
through each tuned pipe.

The worst-case end-to-end delay is the sum of all the periods
of the tuned pipes in the longest path, plus any blocking
delays. The blocking delays are zero with asynchronous com-
munication as each tuned pipe processes its most recent data,
regardless of it being updated. Similarly, blocking delays are
avoided with FIFO-based communication if each buffer is
never empty or totally full.

It follows that each tuned pipe propagates a message after
Ci worst-case execution time. However, if data arrives at the
inputs to a tuned pipe when it has just depleted its budget,
it must wait Ti − Ci before the budget is replenished. If the
next tuned pipe is not synchronized to start exactly when the
previous pipe forwards its data there could be an additional
delay of Ti − Ci on top of Ci to process the data in tpipei.

To see this more clearly, consider a system of T tasks each
with a service time of 1 time unit every T . Suppose two of
these tasks are associated with tpipe1 and tpipe2. Input data
Din to tpipe1 is processed and forwarded to tpipe2, which

produces Dout. These two tuned pipes form a pipeline, while
all other tasks compete for execution on the same PCPU. Using
either rate monotonic or earliest deadline first scheduling [15]
yields the same schedule in this case: neglecting scheduling
overheads, each task has the same priority. A possible schedule
is shown in Figure 7.

Figure 7: Worst-case delay: Din�tpipe1�tpipe2�Dout.

The worst-case end-to-end delay is when each of the T − 2
tasks other than those for tpipe1 and tpipe2 run immediately
after the data, Din, has arrived. Then, tpipe2 executes and
processes old input data before tpipe1 is able to read Din.
Consequently, tpipe1 does not process Din and forward the
output to tpipe2 until T time after the data first arrived.
Similarly, tpipe2 is not able to run again until 2T − 2, when
it finally reads Din. This is because the scheduler will not
provide it with a budget replenishment until one period after
it last executed. The total end-to-end delay between Dout and
Din is therefore 2T − 1. For large T this approaches a worst-
case delay of 2T . Extending this to more than two tasks in
a pipeline leads to the worst-case end-to-end delay being the
sum of the corresponding tuned pipe periods.

The end-to-end throughput of a path through a FIFO buf-
fered pipeline is limited by the minimum output rate of any
one tuned pipe in that path. A tuned pipe’s output rate is how
many messages it is able to forward in its period. As FIFO
buffering allows tpipei to forward mi≥1 messages per period,
the minimum value of mi

Ti
≥e2e tput for all i is a lower-bound

on overall throughput.
For any pair of tuned pipes connected via FIFO buffers,

it is essential that blocking delays are factored into the end-
to-end service guarantees. Boomerang tries to avoid blocking
on message exchanges by matching the arrival and departure
rates of messages passed through shared FIFO buffers.

Suppose a producing and consuming pair of tuned pipes
have budgets Cp and Cc, respectively. Given Cp = Cin is
sufficient to produce one message in Tp, and Cc = Cout is
sufficient to consume one message in Tc, Boomerang starts
by setting Tp = Tc = ∆, where ∆·n = e2e delay, and n is
the number of tuned pipes in the longest path. This ensures
the producer and consumer are rate-matched, to prevent the
buffer between them either completely filling or emptying.

Rate-matching is applied to all tuned pipes in the pipeline.
If the pipeline cannot feasibly be scheduled on its PCPUs,
each tuned pipe period is scaled by a factor α, where α > 1.
This is repeated until all tuned pipes are schedulable, but leads
to a violation of the end-to-end latency requirement.

To reduce end-to-end latency, Boomerang adjusts tuned pipe
periods, starting with the inputs to the pipeline. For each
tuned pipe pair, Tp is repeatedly halved and Cc is similarly
doubled, ensuring that Tp>Cp, Tc>Cc and all VCPUs are

7

schedulable when possible. The doubling of Cc enables it to
process multiple messages, mc, in one budget cycle. Tp is
reduced until either the entire pipeline meets its end-to-end
delay requirement or it is set as low as feasibly possible. If∑

i∈l Ti≤e2e delay for longest path l, the algorithms stops,
or else it moves onto the next stage in the path, and repeats
the above procedure.

If all stages of the pipeline have been processed from input
to output, the algorithm revisits each consumer whose budget
is set to process multiple messages in one period. For each
consumer, both Cc and Tc are halved, as long as Cc is no
smaller than the time to process one message. If the path’s
e2e delay is satisfied, or tuned pipe periods and budgets
cannot be reduced further, the algorithm stops. At this point
each Cp = mp·Cin and each Cc = mc·Cout, for mp,mc≥1.

If a feasible pipeline schedule is found, each FIFO buffer
is set to have enough space for mp·(d Tc

Tp
e+ 1) messages from

the producer. d Tc

Tp
e accounts for the maximum number of times

the producer can generate mp messages within one period of
the consumer. An additional mp messages may be generated
by the producer by the time the consumer accesses the buffer,
due to potential phase shifting between the two tasks.

For four-slot communication, if the consumer has a smaller
period than a producer at any stage in the pipeline, then the
consumer will always see the most recent data. Given that
four-slot communication restricts each tuned pipe to read,
process and write one message every period, it is impossible
for a pipeline to lose any data if all consumer periods are
smaller than their corresponding producer periods. However,
if a consumer has a larger period than its producer, such that
Tc > Tp, then the producer may overwrite data before the
consumer sees the previous message. It follows that the loss-
rate through a four-slot pipeline is limited to the maximum
value of 1 − Tp

Tc
of any stage in the pipeline. This is an

important metric for sensor data processing, where the fraction
of lost data must be constrained.

Irrespective of four-slot or FIFO-based communication,
all VCPUs serving all tuned pipes in a pipeline must sat-
isfy the system scheduling requirements. For n tuned pipes
scheduled using rate-monotonic scheduling, the scheduling
constraint is satisfied if

∑n
i=1

Ci

Ti
≤n·(21/n − 1). If earliest-

deadline first scheduling is used, the scheduling constraint
is satisfied if

∑n
i=1

Ci

Ti
≤1 on a single PCPU. Boomerang

applies these constraints, including utilization bounds on IO
VCPUs used by device pipes, to ensure pipeline schedulability.
This holds for pipelines encompassing our RTOS and Linux
SCHED DEADLINE tasks.

IV. EVALUATION

We evaluated Boomerang on an Up Squared single-board
computer (SBC), featuring an Intel Pentium N4200 processor,
as shown in Figure 8. We connected a five-channel Kvaser
USBCan Pro 5xHS CAN bus interface via USB 3.0, to emulate
an automotive system.

Traffic on CAN channels 1-3 (CAN1-3) was produced by
Woodward MotoHawk ECM5634-70 ECUs, as used in chassis

Figure 8: Boomerang experimental setup.

and powertrain applications in a real vehicle. Each of these
channels produced data at 20%, 30% and 40% of their 500kbps
bandwidths, respectively. Channels 4 and 5 (CAN4-5) were
replaced with Arduino UNOs [24] equipped with CAN shields,
to collect performance data.

Two separate pipelines were constructed for CAN4 and
CAN5, with thread budgets and periods shown in Table I.
These pipelines shared three device I/O threads: mhydra_rx
and mhydra_tx for Kvaser USBCan scatter-gather func-
tionality, and a USB xHCI bottom half handler (USB_BH).
Pipeline 1 (labeled 1 in Figure 8) consisted of three task
pipes: CanRead, ProcData & CanWrite, to read, process,
and write CAN data, respectively. All tasks ran in the RTOS
except ProcData (τ4), which executed in Linux and rep-
resented a task requiring capabilities unavailable in the RTOS.
Pipeline 1 extended from the RTOS into Linux via a secure
shared memory channel using extended page table mappings.
Pipeline 2 (whose I/O path is shown with a dashed line and
labeled 2) consisted of two task pipes that both ran in the
RTOS. These tasks were RTFusion and RTControl, for
sensor data fusion and control.

Thread Budget (ms) Period (ms) Utilization (%) Core
Pipeline 1 (CAN4: τ1�τ2�τ3�τ4�τ5�τ6�τ1)

USB BH (τ1) 0.1 1 10 0
mhydra rx (τ2) 0.2 1 20 0
CanRead (τ3) 0.1 2 5 0
ProcData (τ4) 0.2 2 10 1
CanWrite (τ5) 0.1 2 5 0
mhydra tx (τ6) 0.2 1 20 0
USB BH (τ1) 0.1 1 10 0

Pipeline 2 (CAN5: τ1�τ2�τ7�τ8�τ6�τ1)
USB BH (τ1) 0.1 1 10 0
mhydra rx (τ2) 0.2 1 20 0
RTFusion (τ7) 0.1 2 5 0
RTControl (τ8) 0.1 2 5 0
mhydra tx (τ6) 0.2 1 20 0
USB BH (τ1) 0.1 1 10 0
Background ×11 – – 57 1

Table I: Pipeline task parameters.

xHCI device interrupts were mapped to Core 0, while all
other device interrupts were redirected to Core 1. 11 back-
ground tasks running on Core 1 generated disk and network
I/O activity. These included five wget tasks that each retrieved
a copy of a 1.9GB binary image over the Internet. Five other

8

tasks performed file copies of a local version of the binary
image to different directories. A periodic task additionally
consumed 20% of the CPU time to bring the total utilization
on Core 1 (including ProcData) to 67%.

Given the above setup, we compared Boomerang to tuned
pipes implemented in a standalone Linux SMP system. The
standalone system did not have the support of Quest, in-
stead mapping all tasks in Table I to the specified cores of
the same OS. Yocto Linux (Pyro release), featuring kernel
4.9.99 with the PREEMPT RT patch, was used in both the
standalone system and Boomerang Linux guest. With Linux
SMP, all threads were assigned budgets and periods within
the SCHED_DEADLINE scheduling class except the USB_BH
bottom half handler.

All experiments featuring Boomerang and Linux SMP were
run for 30s, averaged over 10 runs each. End-to-end delay
results are limited to the first 200 packet transmissions, due to
space. In all results, similar behavior was observed for more
extensive runs.

A. Asynchronous Communication

Asynchronous communication has the potential to suffer in-
formation loss. We constructed two experiments with expected
pipeline losses of 0% and 20%. In both cases, packets for
Pipelines 1 and 2 arrived and departed on CAN4 and CAN5
channels, respectively. We measured the round-trip time for
each packet to be read from and written to each of these
channels. From Table I (Period column), the expected end-
to-end delay for Pipeline 1 is 10ms, and for Pipeline 2 is 8ms.

1) End-to-end Delay: Figures 9a and 9b show the end-to-
end delay for Pipelines 1 and 2, when there is no expected
loss. The horizontal lines represent the expected latency as
calculated from the sum of the task periods. The end-to-end
latency for Boomerang is always less than the theoretically
calculated bound. However, Linux SMP frequently fails to
meet the end-to-end delay requirements. The main reason is
the priority mismatch between bottom-half handlers and the
task awaiting I/O operations. Our RTOS ensures that bottom-
half handlers run at the correct priority with a specific CPU
reservation. Therefore, Boomerang achieves temporal isolation
between tasks and interrupts.

0 50 100 150 200
Packet ID

0

10

20

30

40

50

En
d-

to
-e

nd
 D

el
ay

 (m
s) Boomerang

Linux SMP
Delay Bound

(a) Pipeline 1

0 50 100 150 200
Packet ID

0

10

20

30

40

50

En
d-

to
-e

nd
 D

el
ay

 (m
s) Boomerang

Linux SMP
Delay Bound

(b) Pipeline 2

Figure 9: End-to-end delay with no expected loss.

As Linux is unable to achieve the same level of timing
guarantees, even when tasks are guaranteed CPU reservations,

there are some lost packets as observed by the missing data
points in Figures 9a and 9b. Table II summarizes the end-
to-end latency results. It also shows that Linux suffers packet
losses of 28% and 56% for Pipelines 1 and 2, respectively.

System Min (ms) Max (ms) Avg (ms) Loss (%)
Pipeline 1 (Delay bound = 10 ms)

Boomerang 0.79 9.57 3.27 0
Linux SMP 2.1 31.5 11.70 28

Pipeline 2 (Delay bound = 8 ms)
Boomerang 0.92 7.97 4.35 0
Linux SMP 1.8 24.77 6.79 56

Table II: Latency - no expected loss.

Boomerang experienced a total of 20623 interrupts com-
pared to 16693 for Linux SMP during these experiments.
Linux has fewer overall interrupts but more on Core 0.
We conjecture this is caused by local APIC timer inter-
rupts, which are influenced by the budget management of
SCHED DEADLINE tasks. However, this requires further
investigation. Notwithstanding, Linux SMP fails to meet end-
to-end delay guarantees because of its unpredictability in
interrupt handling.

2) Loss: Sensor data processing is often tolerant of lost
samples. We increased the periods of certain pipeline tasks, as
shown in Table III, to allow up to 20% lost data. The expected
latency for Pipeline 1 is now changed from 10ms to 11ms due
to increased periods of ProcData and CanWrite. Similarly,
the expected latency of Pipeline 2 is changed from 8ms to
8.5ms due to the increased periodicity of RTControl.

Task Pipeline Loss (%) Budget (ms) Period (ms)

ProcData 0 0.2 2
20 0.2 2.5

CanWrite 0 0.1 2
20 0.1 2.5

RTControl 0 0.1 2
20 0.1 2.5

Table III: Task parameters for different loss constraints.

Figures 10a and 10b show the the performance of Boom-
erang versus Linux SMP. Once again, both pipelines transfer
data within their end-to-end delay bounds with Boomerang,
but not with Linux SMP. The packet latency for Pipeline 2 is,
on average, worse for Linux SMP in Figure 10b compared to
Figure 9b. This is because the RTControl task might not
receive a packet until a later period due to lost transfers. The
task period itself is also larger to cause the increased likelihood
of packet loss.

Boomerang keeps the loss ratio within 20%, as observed
in Table IV. However, Linux SMP loses 50-55% of the 200
packets sent across each pipeline.

B. ACRN Partitioning Hypervisor

The experiments in Section IV-A were repeated with an
implementation of tuned pipes in the ACRN partitioning
hypervisor. ACRN has similarities to Jailhouse [11], but is
already ported to the Up Squared board and is targeted at the

9

0 50 100 150 200
Packet ID

0

10

20

30

40

50
En

d-
to

-e
nd

 D
el

ay
 (m

s) Boomerang
Linux SMP
Delay Bound

(a) Pipeline 1

0 50 100 150 200
Packet ID

0

10

20

30

40

50

En
d-

to
-e

nd
 D

el
ay

 (m
s) Boomerang

Linux SMP
Delay Bound

(b) Pipeline 2

Figure 10: End-to-end delay with 20% allowed loss.

System Min (ms) Max (ms) Avg (ms) Loss (%)
Pipeline 1 (Delay bound = 11 ms)

Boomerang 0.64 10.96 4.87 3.5
Linux SMP 2.24 98.21 14.46 55

Pipeline 2 (Delay bound = 8.5 ms)
Boomerang 0.64 2.38 1.07 0
Linux SMP 3.49 96.02 13.91 50

Table IV: Latency - 20% allowed loss.

same applications as Boomerang. ACRN specifically supports
safety-critical applications such as Automotive SDC (Software
Defined Cockpit) and IVE (In-Vehicle Experience), similar
to Boomerang [25]. It supports partitioning of CPU cores,
memory, and I/O devices among one Service OS (SOS) and
multiple User OSes (UOS). The SOS provides backend device
drivers and bootstraps UOSes.

Figure 11: Inter-sandbox communication in ACRN.

The ACRN tuned pipe implementation uses a virtual net-
work bridge and tap devices for inter-sandbox communication.
Figure 11 depicts how data is exchanged between a UOS and
the SOS, using shared memory ring buffers mapped to both
VMs. A UOS request passes through a TCP stack and virtual
device driver, causing a VMExit. Then the hypervisor notifies
the SOS about the new message. Virtio services within the
SOS deliver the message to the appropriate backend device
driver, where it passes through the TCP stack and into user-
space. Although capable of mimicking network communica-

tion between two guests, this approach incurs far more timing
unpredictability compared to Boomerang’s dedicated shared
memory communication channels. Data exchanges between
tuned pipes in ACRN incur VMExits and, hence, control flow
transitions via the ACRN hypervisor that are avoided with
Boomerang. The consequence of this is shown in Figures 12a–
12d, where ACRN is compared with Linux SMP. Linux SMP
has already been shown to be less predictable than Boomerang
in Section IV-A.

In these experiments we used a PREEMPT RT-patched
ClearOS Linux based on kernel version 4.19.73 for both the
SOS and UOS, as recommended by the ACRN developers.
Both ACRN and Linux SMP had the same mapping of
threads to cores, as shown for Boomerang in Table I. ACRN
additionally partitioned tasks and resources in the same way
as Boomerang in Figure 8, except the SOS replaced Boom-
erang’s Quest RTOS, and the UOS featured ClearOS Linux
instead of Yocto Linux. We intentionally did not port the
Quest RTOS to ACRN as it would leave little difference
between the solution provided by Boomerang and ACRN,
except the implementation of the hypervisor and inter-sandbox
communication method.

As Boomerang already outperforms Linux SMP, it follows
that ACRN’s lack of timing predictability makes it inferior for
end-to-end communication guarantees.

C. Synchronous Communication
We repeated experiments with Pipelines 1 and 2 using FIFO-

buffering. The constraint solver described in Section III-E is
used to establish correct budgets, periods and buffer sizes when
pipelines are constructed. The updated budgets and periods are
presented in Table V. Buffer sizes are 4, 2 and 4 messages,
respectively between CanRead and ProcData, ProcData
and CanWrite, and RTFusion and RTControl.

Task Budget (ms) Period (ms) Utilization (%)
Pipeline 1 (CAN4)

CanRead 0.1 2 5
ProcData 0.2 4 5
CanWrite 0.2 4 5

Pipeline 2 (CAN5)
RTFusion 0.1 2 5
RTControl 0.125 2.5 5

Table V: Synchronous pipeline (common threads not shown).

1) Throughput and Delay: The expected end-to-end delay
of Pipeline 1 is increased to 14ms because of the increased
periods of the tpipe threads. Figures 13a and 13b show
the revised end-to-end delays. Measurements are summarized
in Table VI. FIFO buffering does not improve the latency
for Linux SMP because of previously mentioned issues with
interrupts. However, it reduces the packet loss for Linux
SMP, as a buffer holds messages even if a tpipe thread is
interrupted.

Table VII shows the throughput with Boomerang and Linux
SMP are similar, although the standard deviation is smaller
with Boomerang. Arrival rates (λ) from CAN4 and CAN5 are
shown for each pipeline.

10

0 50 100 150 200
Packet ID

0

10

20

30

40

50
En

d-
to

-e
nd

 D
el

ay
 (m

s) Linux SMP
ACRN
Delay Bound

(a) Pipeline 1 - no expected loss

0 50 100 150 200
Packet ID

0

10

20

30

40

50

En
d-

to
-e

nd
 D

el
ay

 (m
s) Linux SMP

ACRN
Delay Bound

(b) Pipeline 2 - no expected loss

0 50 100 150 200
Packet ID

0

10

20

30

40

50

En
d-

to
-e

nd
 D

el
ay

 (m
s) Linux SMP

ACRN
Delay Bound

(c) Pipeline 1 - 20% allowed loss

0 50 100 150 200
Packet ID

0

10

20

30

40

50

En
d-

to
-e

nd
 D

el
ay

 (m
s) Linux SMP

ACRN
Delay Bound

(d) Pipeline 2 - 20% allowed loss

Figure 12: ACRN versus Linux SMP for asynchronous communication.

0 50 100 150 200
Packet ID

0

20

40

60

80

100

En
d-

to
-e

nd
 D

el
ay

 (m
s) Boomerang

Linux SMP
Delay Bound

(a) Pipeline 1

0 50 100 150 200
Packet ID

0

20

40

60

80

100

En
d-

to
-e

nd
 D

el
ay

 (m
s) Boomerang

Linux SMP
Delay Bound

(b) Pipeline 2

Figure 13: FIFO buffered synchronous communication.

System Min (ms) Max (ms) Avg (ms) Loss (%)
Pipeline 1 (Delay bound = 14 ms)

Boomerang 0.77 11.23 4.25 0
Linux SMP 0.96 65.24 33.10 0.5

Pipeline 2 (Delay bound = 8.5 ms)
Boomerang 0.70 5.03 1.56 0
Linux SMP 0.70 38.46 12.84 0

Table VI: Latency - FIFO buffering.

System Min (msg/s) Max (msg/s) Avg (msg/s) stddev
Pipeline 1 (λ=100 msgs/s)

Boomerang 99 101 99.77 0.63
Linux SMP 86 105 98.1 4.39

Pipeline 2 (λ=125 msgs/s)
Boomerang 123 126 124.77 0.73
Linux SMP 120 126 123.17 1.39

Table VII: Synchronous throughput.

D. MIMO Pipelines

Boomerang supports the construction of pipelines with mul-
tiple inputs and outputs (MIMO). We constructed a pipeline
based on Figure 6, representative of automotive tasks where
multiple sensor inputs are combined to control more than one
actuator. Using the labeling in that figure, tuned pipes A− F
have the following (budget, period) pairs in milliseconds:
A (0.1,1), B (0.2, 2), C (0.1, 1), D (0.4, 2), E (0.1, 1) and
F (0.1, 1). A reads input from CAN4 while C reads input
from CAN5. Similarly, E writes back to CAN4, and F writes
to CAN5. The CAN4 path traverses ABDE, while the CAN5
path traverses CDF . Tuned pipe D is shared by both paths; it
runs in Linux while all other tuned pipes operate in the RTOS.

Tables VIIIa and VIIIb summarize the latencies and
throughput, while Figure 14 shows the end-to-end delay. The

Min
(ms)

Max
(ms)

Avg
(ms)

Std
Dev

Loss
(%)

CAN4 path (Delay bound=10 ms)
0.86 9.63 2.56 1.32 0
CAN5 path (Delay bound=8 ms)
0.70 5.00 2.11 0.86 0

(a) Latency

Min
(msg/s)

Max
(msg/s)

Avg
(msg/s)

Std
Dev

CAN4 path (λ=100 msgs/s)
99 101 99.74 0.58

CAN5 path (λ=125 msgs/s)
124 126 124.74 0.58

(b) Throughput

Table VIII: MIMO pipelines in Boomerang.

delay bounds of the two paths are 10ms and 8ms, accounting
for 4ms worst-case delay from mhydra rx/tx and USB BH
threads, using the parameters shown in Table I. Even with
multiple device inputs and outputs, both paths through CAN4
and CAN5 transfer data within their expected bounds.

0 50 100 150 200
Packet ID

0

5

10

15

20

25
En

d-
to

-e
nd

 D
el

ay
 (m

s) Boomerang CAN4 Path
Boomerang CAN5 Path
Delay Bound CAN4 Path
Delay Bound CAN5 Path

Figure 14: MIMO pipeline delay guarantees.

V. RELATED WORK

A. Operating Systems

Mercer et al implemented processor capacity reserves in the
Mach micro-kernel [12], to provide tasks with budgets and
periods. Steere et al used a reservation-based scheme along
with a feedback-based controller to adjust CPU allocations
among tasks [26]. Linux supports reservation-based scheduling
using the PREEMPT_RT patch [27] and SCHED_DEADLINE
[28] task execution managed by a Constant Bandwidth
Server [23]. LITMUSRT [29] is a Linux-based system that sup-
ports configurable real-time schedulers, including those with
reservations. Multiple RTOSes attempt to provide temporal
isolation to tasks [30]–[32]. However, these systems do not
properly handle events such as interrupts, which may interfere
with the timing requirements of real-time tasks.

RT-Linux virtualizes interrupts for non-time-critical parts of
the system, thereby ensuring real-time service to time-critical

11

tasks [33]. Similar approaches have been adopted by Wind
River Linux [34], the Real-time Application Interface (RTAI)
for Linux [35], Xenomai [36], and NASA’s CFS Linux [37].
Zhang et al integrated interrupt handling with task scheduling
in Linux. A bottom half handler for a device interrupt inherited
the highest priority of a blocked process waiting on the
device [9]. However, interrupt handling was not limited to
a CPU reservation, meaning a burst of interrupts could still
interfere with tasks.

Many real-time OSes provide a single address space, multi-
threaded solution for multicore machines [38]–[40]. However,
this is insufficient for many safety-critical domains, requiring
both temporal and spatial isolation between components of
different criticality levels. The Quest RTOS [8] not only
supports multiple address spaces, but also provides a Priority-
Inherited Bandwidth-preserving Server approach to serve the
interrupts in a timely manner along with CPU-bound tasks.
While Quest provides timing isolation for both I/O- and CPU-
bound tasks, it does not support the richness of services found
in a legacy system such as Linux.

B. Hypervisors

Several hypervisors attempt to support both temporal and
spatial isolation of guests [41]–[44]. RT-Xen [45] adds real-
time scheduling support to the Xen [46] hypervisor. How-
ever, all these hypervisors multiplex their guests on a shared
physical machine. They virtualize interrupts, and perform
additional resource management operations that conflict with
the policies within each guest.

Partitioning hypervisors allow guests to directly manage
subsets of machine resources. The Quest-V [10] separation
kernel [47] uses a partitioning hypervisor to support the co-
existence of the Quest RTOS and one or more general purpose
OSes. Each guest OS runs simultaneously on separate cores in
a multicore machine, with device interrupts delivered directly
to the guest that owns the device.

PikeOS [48] and Muen [49] are separation kernels that sup-
port multiple guest OSes. However, unlike Quest-V, interrupts
are trapped into the hypervisor, and subsequently delivered to
the guest OSes. Jailhouse [11] and ACRN [50] have similarit-
ies to Quest-V. Jailhouse uses Linux to bootstrap a system that
provides cells for system inmates. These are essentially restric-
ted hardware subsets assigned to guests. ACRN’s philosophy is
to allow a service OS to manage machine resources on behalf
of other safety-critical OSes. However, as with Jailhouse, there
is currently no way to communicate between guests with end-
to-end timing guarantees. Boomerang’s partitioning hypervisor
is modeled on the approach taken by Quest-V, but provides
support for composable tuned pipes spanning multiple guests.

C. Predictable Communication

Boomerang’s support for composable tuned pipes is inspired
by Scout [51], which treats paths through a sequence of
services as first-class schedulable entities. Path processing is
entirely within the context of a single thread that is scheduled
according to the bottleneck queue. Boomerang, in contrast,

schedules each component of a pipeline with a separate time-
budgeted thread. This allows paths to be interleaved and
executed on different PCPUs, spanning different sandboxes.

RAD-FLOWS [52] provided a design framework for pre-
dictable data communication. Golchin et al developed a system
abstraction for predictable data delivery between USB devices
and a real-time process [7]. Boomerang provides support for
real-time I/O to span multiple tasks in different guest VMs.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents Boomerang, an I/O system comprising
real-time task pipelines in a partitioning hypervisor. Boomer-
ang’s partitioning hypervisor connects a built-in guest RTOS
(Quest) with a legacy system such as Linux, via secure
and predictable shared memory communication channels. The
legacy OS benefits from timing predictable services that are
isolated from less critical code. At the same time, the RTOS
benefits from the pre-existing services, including libraries
and lower criticality device drivers of a legacy non-real-time
system.

Boomerang supports composable tuned pipes, for real-time
task pipelines that require guaranteed end-to-end service on
data transfers. The system provides real-time task pipelines
with complementary legacy services that are timing predictable
using CPU reservations.

Experiments show that real-time task pipelines guarantee
end-to-end throughput, delay and loss requirements in Boom-
erang. This is the case for all pipelines contained within
the RTOS and which span both the RTOS and Linux. In
contrast, task pipelines in a Linux-only system are not able to
ensure end-to-end service constraints, even when using CPU
reservations. This is because of task interference by interrupts
from I/O devices. The interrupt handlers need to be assigned
suitable CPU reservations at appropriate priorities that match
the pipelined tasks they serve. Alternatively, if I/O processing
is assigned to a dedicated core, it reduces system utilization.
Finally, other partitioning hypervisors such as ACRN rely on
heavyweight networking protocols and VMExits to perform
inter-guest communication via shared memory, rendering them
unsuitable for real-time data processing.

Future work will extend Boomerang’s composable tuned
pipes to span different physical machines. We see a pro-
gramming model for real-time pipes useful in data flow
machines and stream processing applications, such as those
in neuromorphic computing.

ACKNOWLEDGMENT

This work is supported in part by the National Science
Foundation (NSF) under Grant # 1527050. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily
reflect the views of the NSF. Thanks also to Drako Motors
for equipment used in this work. This paper has been greatly
improved by the feedback of the RTAS reviewers.

Source code for this work will be made available via
www.questos.org.

12

REFERENCES

[1] R. O. Bernhard Leiner, Martin Schlager and B. Huber, “A Comparison of
Partitioning Operating Systems for Integrated Systems,” in Proceedings
of the 26th International Conference on Computer Safety, Reliability and
Security (SAFECOMP), Nuremberg, Germany, 18-21 September 2007.

[2] G. Niedrist, “Deterministic Architecture and Middleware for Domain
Control Units and Simplified Integration Process Applied to ADAS,”
2016, https://www.tttech.com/technologies/adas.

[3] LynxSecure Embedded Hypervisor and Separation Kernel, 2019,
https://info.lynx.com/products/lynxsecure-programmable-processor-
partitioning-system.

[4] AUTOSAR, 2019, AUTomotive Open System ARchitecture –
http://www.autosar.org.

[5] Wind River Systems, August 2008, ARINC 653 - An Avionics Standard
for Safe, Partitioned Systems.

[6] Siemens Corporate Technology, “Jailhouse Partitioning Hypervisor,”
October 2014, https://github.com/siemens/jailhouse.

[7] A. Golchin, Z. Cheng, and R. West, “Tuned Pipes: End-to-End Through-
put and Delay Guarantees for USB Devices,” in Proceedings of the 39th
IEEE Real-Time Systems Symposium (RTSS), Dec 2018, pp. 196 – 207.

[8] M. Danish, Y. Li, and R. West, “Virtual-CPU Scheduling in the Quest
Operating System,” in 2011 17th IEEE Real-Time and Embedded
Technology and Applications Symposium. IEEE, 2011, pp. 169–179.

[9] Y. Zhang and R. West, “Process-Aware Interrupt Scheduling and Ac-
counting,” in Proceedings of the 27th IEEE International Real-Time
Systems Symposium, ser. RTSS ’06. Washington, DC, USA: IEEE
Computer Society, 2006, pp. 191–201.

[10] R. West, Y. Li, E. Missimer, and M. Danish, “A Virtualized Separation
Kernel for Mixed-Criticality Systems,” ACM Transactions on Computer
Systems, vol. 34, no. 3, pp. 8:1–8:41, Jun. 2016.

[11] R. Ramsauer, J. Kiszka, D. Lohmann, and W. Mauerer, “Look Mum, No
VM Exits! (Almost),” in Proceedings of the 13th Workshop on Operating
Systems Platforms for Embedded Real-time Applications (OSPERT),
2017.

[12] C. W. Mercer, S. Savage, and H. Tokuda, “Processor Capacity Reserves
for Multimedia Operating Systems,” in Proceedings of the IEEE Inter-
national Conference on Multimedia Computing and Systems, 1994.

[13] J. Lehoczky, L. Sha, and Y. Ding, “The Rate Monotonic Scheduling
Algorithm: Exact Characterization and Average Case Behavior,” in
Proceedings of the IEEE Real-Time Systems Symposium (RTSS), 1989.

[14] B. Sprunt, “Scheduling Sporadic and Aperiodic Events in a Hard Real-
Time System,” Software Engineering Institute, Carnegie Mellon, Tech.
Rep., 1989.

[15] C. L. Liu and J. W. Layland, “Scheduling Algorithms for Multiprogram-
ming in a Hard Real-Time Environment,” Journal of the ACM, vol. 20,
no. 1, pp. 46–61, 1973.

[16] H. Simpson, “Four-slot Fully Asynchronous Communication Mechan-
ism,” IEEE Computers and Digital Techniques, vol. 137, pp. 17–30,
January 1990.

[17] A. Hamann, D. Dasari, S. Kramer, M. Pressler, and F. Wurst, “Commu-
nication Centric Design in Complex Automotive Embedded Systems,”
in Proceedings of the 29th Euromicro Conference on Real-Time Systems,
Dagstuhl, Germany, 2017.

[18] ISO, “ISO 26262-3: Road vehicles - Functional safety - Part 3: Concept
phase ,” 2011.

[19] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazieres, “Making
information flow explicit in histar,” in OSDI ’06: Proceedings of the
second USENIX symposium on Operating systems design and imple-
mentation, 2006, pp. 263–278.

[20] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey, D. Ziegler,
E. Kohler, D. Mazières, F. Kaashoek, and R. Morris, “Labels and Event
Processes in the Asbestos Operating System,” in SOSP ’05: Proceedings
of the twentieth ACM symposium on Operating systems principles. New
York, NY, USA: ACM Press, 2005, pp. 17–30.

[21] D. E. Bell and L. J. LaPadula, “Secure Computer System: Unified
Exposition and Multics Interpretation,” Mitre Corporation, Bedford, MA,
Tech. Rep. ESD-TR-75-306, March 1976.

[22] J. Rushby, “Model Checking Simpson’s Four-slot Fully Asynchronous
Communication Mechanism,” Computer Science Laboratory–SRI Inter-
national, Tech. Rep. Issued, 2002.

[24] Arduino Homepage, 2019, http://arduino.cc.
[23] L. Abeni and G. Buttazzo, “Integrating Multimedia Applications in Hard

Real-Time Systems,” in Proceedings of the 19th IEEE Real-time Systems
Symposium, 1998, pp. 4–13.

[25] S. Sinha, A. Golchin, C. Einstein, and R. West, “A Paravirtualized
Android for Next Generation Interactive Automotive Systems,” in Pro-
ceedings of the 21st International Workshop on Mobile Computing
Systems and Applications (HotMobile 2020), Austin, Texas, USA, March
3–4 2020.

[26] D. C. Steere, A. Goel, J. Gruenberg, D. McNamee, C. Pu, and J. Walpole,
“A Feedback-driven Proportion Allocator for Real-rate Scheduling,” in
Proceedings of the Third Symposium on Operating Systems Design and
Implementation, ser. OSDI ’99. USENIX Association, 1999, pp. 145–
158, new Orleans, Louisiana, USA.

[27] PREEMPT RT, 2019, https://rt.wiki.kernel.org/index.php/Main Page.
[28] Linux, “SCHED DEADLINE Policy,” 2019,

https://www.kernel.org/doc/Documentation/scheduler/sched-
deadline.txt.

[29] J. M. Calandrino, H. Leontyev, A. Block, U. C. Devi, and J. H.
Anderson, “LitmusRT : A Testbed for Empirically Comparing Real-
time Multiprocessor Schedulers,” in 2006 27th IEEE International Real-
Time Systems Symposium (RTSS’06). IEEE, 2006, pp. 111–126.

[30] VxWorks, 2019, https://www.windriver.com/products/vxworks/.
[31] D. Bayer and H. Lycklama, “MERT-A Multi-environment Real-time

Operating System,” in ACM SIGOPS Operating Systems Review, vol. 9,
no. 5. ACM, 1975, pp. 33–42.

[32] J. J. Labrosse, MicroC/OS-II: The Real Time Kernel. CRC Press, 2002.
[33] V. Yodaiken, The RT Linux Manifesto, 1999.
[34] Wind River Systems, 2019,

https://www.windriver.com/products/linux/.
[35] L. Dozio and P. Mantegazza, “Linux Real Time Application Interface

(RTAI) in Low Cost High Performance Motion Control,” Motion Con-
trol, vol. 2003, no. 1, pp. 1–15, 2003.

[36] Xenomai, Last Released: 2018, https://xenomai.org/.
[37] NASA, “cfsLinux,” 2019, https://cfs.gsfc.nasa.gov/.
[38] eCos, “Embedded Configurable Operating System,”

http://ecos.sourceware.org/, 2019.
[39] OAR Corporation, “

RTEMS,” Last Release: 2016, https://www.rtems.org/.
[40] Real Time Engineers Ltd., “FreeRTOS,” 2019, https://www.freertos.org/.
[41] W. R. Systems, “Wind River Hypervisor,” 2019,

https://www.windriver.com/products/operating-systems/virtualization/.
[42] Mentor, “Mentor Embedded Hypervisor,” 2019,

https://www.mentor.com/embedded-software/hypervisor/.
[43] Tenasys, “eVM for Windows,” 2019,

https://www.tenasys.com/products/evm-for-windows/.
[44] M. Masmano, I. Ripoll, A. Crespo, and J. Metge, “Xtratum: a Hyper-

visor for Safety Critical Embedded Systems,” in 11th Real-Time Linux
Workshop. Citeseer, 2009, pp. 263–272.

[45] S. Xi, J. Wilson, C. Lu, and C. Gill, “RT-Xen: Towards Real-time
Hypervisor Scheduling in Xen,” in Proceedings of the ninth ACM
international conference on Embedded software. ACM, 2011, pp. 39–
48.

[46] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the Art of Virtualization,” in
ACM SIGOPS operating systems review, vol. 37, no. 5. ACM, 2003,
pp. 164–177.

[47] J. Rushby, “The Design and Verification of Secure Systems,” in Eighth
ACM Symposium on Operating System Principles (SOSP), Asilomar,
CA, Dec. 1981, pp. 12–21, (ACM Operating Systems Review, Vol. 15,
No. 5).

[48] SYSGO, “PikeOS,” Last release: Version 4.2, April 2017,
http://www.sysgo.com/products/pikeos-rtos-and-virtualization-concept.

[49] R. Buerki and A.-K. Rueegsegger, “Muen - An x86/64 Separation Kernel
for High Assurance,” University of Applied Sciences Rapperswil (HSR),
Tech. Rep, 2013.

[50] Project ACRN, 2019, https://projectacrn.org/.
[51] D. Mosberger and L. L. Peterson, “Making Paths Explicit in the Scout

Operating System,” in Proceedings of the Second USENIX Symposium
on Operating Systems Design and Implementation, ser. OSDI ’96. New
York, NY, USA: ACM, 1996, pp. 153–167.

[52] R. Pineiro, K. Ioannidou, S. A. Brandt, and C. Maltzahn, “RAD–
FLOWS: Buffering For Predictable Communication,” in Proceedings of
the 17th IEEE Real-Time and Embedded Technology and Applications
Symposium, April 2011, pp. 23–33.

13

