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ABSTRACT
Modern chip-level multiprocessors (CMPs) contain multiple pro-
cessor cores sharing a common last-level cache, memory intercon-
nects, and other hardware resources. Workloads running on sep-
arate cores compete for these resources, often resulting in highly-
variable performance. To improve fairness and performance, it is
helpful to co-schedule workloads having minimal cache and other
forms of resource contention. In this work, we develop several
cache modeling techniques to help make informed resource man-
agement decisions.

Using only commonly-available performance counters on exist-
ing processors, we introduce an efficient online technique for es-
timating the cache occupancies of software threads. We derive
an analytical model that considers the impact of set-associativity,
line replacement policy, and memory locality effects. We demon-
strate the effectiveness of occupancy estimation with a series of
CMP simulations using SPEC benchmarks. Our occupancy esti-
mation technique is currently being used to develop online utility
functions, such as miss-ratio curves (MRCs), which capture perfor-
mance impacts as a function of resource usage. We are leveraging
both online cache occupancy estimation and MRC construction in
our ongoing studies of cache-aware scheduling.

Categories and Subject Descriptors
D.4.8 [Operating Systems]: Performance—measurements,
modeling and prediction

General Terms
Measurement

1. CACHE OCCUPANCY ESTIMATION
For the purposes of our model, we consider a shared last-level

cache that may be direct-mapped orn-way set associative. Our
objective is to determine the amount of cache space occupied by
some thread,τ , at timet, given contention for cache lines by mul-
tiple competing threads.

Since hardware caches reveal very little information to software,
we use hardware performance counters to infer cache state. Using
two commonly-available hardware performance events, namely the
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local andglobal last-level cache misses, we estimate the number of
cache lines,E, occupied byτ at timet. Global cache misses are
accumulated across all cores, rather than just the local core.

We start by assuming the shared cache is accessed uniformly at
random and later relax this requirement in Section 1.1. We also
assume each cache line is allocated to a single thread at any time.
Data sharing is not considered in this paper, although it is part of
our ongoing work.

Cache occupancy is effectively dictated by the number of misses
experienced by a thread, because cache lines are allocated in re-
sponse to such misses. Essentially, the current execution phase of a
threadτi influences its cache investment, since any of its lines that
it no longer accesses may be evicted by conflicting references to
the same cache index by other threads. Evicted lines no longer rel-
evant to the current execution phase ofτi will not incur subsequent
misses that would cause them to return to the cache.

In what follows, letml represent the number of misses experi-
enced by thelocal thread,τl, under observation over some sam-
pling interval. This term also represents the number of cache lines
allocated due to misses. We denotemo to represent the aggregate
number of misses by every threadother than τl, on all cores of
a CMP that cause cache lines to be allocated in response to such
misses. Finally,τo represents all other threads, as though they were
acting as a single aggregate thread.

Theorem. Consider a cache of size C lines, with E cache lines
belonging to τl and C−E cache lines belonging to τo at some time,
t. If, in some interval, δt, there are ml misses corresponding to τl

and mo misses corresponding to τo, then the expected occupancy
of τl at time t + δt is: E′ = E + (1 −

E

C
)·ml −

E

C
·mo

Proof. The proof is presented in the full paper [1].

The linear model described above consists of an inexpensive
computation that requires only the ability to measure per-core and
per-CMP cache misses, which is provided by most modern proces-
sor architectures.

1.1 Set-Associative Caches
So far, our analysis has assumed that each line of the cache is

equally likely to be accessed. Over the lifetime of a large set of
threads, this is a reasonable assumption. However, commodity
CMPs featuren-way set associative caches, and line replacement
policies based on schemes such asleast recently used (LRU). We
modified the linear model to additionally incorporate cachehit in-
formation, thereby reflecting line reuse probabilities due to LRU ef-
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Figure 1: Co-runner occupancies for quad-core system.
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Figure 2: Occupancy estimation for 4 out of 10 workloads in an over-committed quad-core system.

fects. As with miss counts, hit counts are available via performance
counters on most modern processors. Consequently, the occupancy
equation can be rewritten as

E′ = E(1 − mopl) + (C − E)mlpo (1)

wherepl is the probability that a miss falls on a line belonging to
τl, andpo is the probability that a miss falls on a line belonging to
τo. In the theorem described earlier each line is equally likely to be
replaced, meaningpl = po = 1/C. Considering LRU effects, we
calculate

rl = (hl + ml)/E (2)

ro = (ho + mo)/(C − E) (3)

to quantify the frequency of reuse of the cache lines ofτl andτo,
respectively, since we are unable to precisely know which line is the
least recently used.hl andho represent the number of cache hits
experienced byτl andτo, respectively, in the measurement interval.
Considering the probability that a miss evicts a line belonging to a
thread is inversely proportional to its reuse frequency, we assume
the following relationship:

po/pl = rl/ro (4)

Furthermore, since a miss must fall on some line in the cache with
probability1:

plE + po(C − E) = 1 (5)

Solving Equations 4 and 5, we obtain:

po = rl/[roE + rl(C − E)] (6)

pl = ro/[roE + rl(C − E)] (7)

The values ofpo andpl from Equations 6 and 7 can be used in
Equation 1 to obtain the hit-adjusted occupancy estimation model,
which approximates LRU effects.

1.2 Experiments
We evaluated the cache estimation models on Intel’s CMPSched$im
simulator, which supports binary execution and co-scheduling of
multiple workloads. We configured the simulator to use a 3 GHz
clock frequency, with private per-core 32 KB 4-way set-associative
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Figure 3: MRC for twolf00 (misses per kilo-instruction).

L1 caches, and a shared 4 MB 16-way set-associative L2 cache. All
caches used a 64-byte line size and pseudo-LRU policy.

Performance counters measuring L2 misses and hits were sam-
pled once per millisecond, after which the occupancy estimates
were updated for each software thread. Since cache occupancies
exhibit rapid changes at this time scale, we averaged occupancies
over 100 millisecond intervals.

Figure 1 shows results for four different co-running benchmarks
from the SPEC CPU2000 and CPU2006 suites in a quad-core con-
figuration. Likewise, Figure 2 shows the same benchmark results
for an over-committed system, which includes six other threads
(not shown) competing for the four cores. Threads are scheduled in
round-robin order with a quantum of 100 milliseconds. Even when
threads are descheduled in a system that is over-committed, our es-
timates closely track actual occupancies. Finally, Figure 3 shows
a sample MRC generated using our online technique implemented
in VMware’s ESX hypervisor, compared to offline page-coloring
runs. Further details, along with more occupancy estimation and
MRC results, are in the full paper [1].
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