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This article presents the design of user-level scheduling hierarchies in the COMPOSITE component-based
system. The motivation for this is centered around the design of a system that is both dependable and
predictable, and which is configurable to the needs of specific applications. Untrusted application developers
can safely develop services and policies, that are isolated in protection domains outside the kernel. To ensure
predictability, COMPOSITE enforces timing control over user-space services. Moreover, it must provide a means
by which asynchronous events, such as interrupts, are handled in a timely manner without jeopardizing the
system. Towards this end, we describe the features of COMPOSITE that allow user-defined scheduling policies to
be composed for the purposes of combined interrupt and task management. A significant challenge arises from
the need to synchronize access to shared data structures (e.g., scheduling queues), without allowing untrusted
code to disable interrupts. Additionally, efficient upcall mechanisms are needed to deliver asynchronous
event notifications in accordance with policy-specific priorities, without undue recourse to schedulers. We
show how these issues are addressed in COMPOSITE, by comparing several hierarchies of scheduling polices,
to manage both tasks and the interrupts on which they depend. Studies show how it is possible to implement
guaranteed differentiated services as part of the handling of I/O requests from a network device while
diminishing livelock. Microbenchmarks indicate that the costs of implementing and invoking user-level
schedulers in COMPOSITE are on par with, or less than, those in other systems, with thread switches more
than twice as fast as in Linux.
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1. INTRODUCTION

As software complexity increases, it becomes increasingly more difficult to verify that
system and application-level code will behave correctly under various operating con-
ditions. Likewise, the need for fault isolation to be a central focus of system design is
becoming increasingly important. Safety critical systems require both dependability
and predictability, with emphasis placed on timely execution and fault tolerance. To
limit the scope of impact of potentially faulty or misbehaving software on the overall
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system, it makes sense to encapsulate logical units of functionality in separate com-
ponents mapped to their own protection domains. Likewise, untrusted software, or
software developed by third-parties, needs to be isolated from the trusted kernel pro-
tection domain. Component-based systems [Bruno et al. 1999; Parmer and West 2007b]
and micro-kernels [Liedtke 1995; Accetta et al. 1986] provide solutions to the separa-
tion of services and applications. Extensibility is integral to these system designs, in
that application-specific services can be added to a system, and mapped to their own
logical protection domains, thereby bridging the “semantic gap” between application
needs and existing service provisions. The challenge, however, is to ensure that the
interaction between such services remains predictable and efficient.

Of particular importance in this article is the ability to extend and configure the
scheduling policies of the system for specific applications and subsystems. There is
an incentive for applications to aggressively specialize scheduling around their re-
quirements: custom scheduling policies enable increased predictability [Parmer and
West 2007a; Goyal et al. 1996; Ruocco 2006; RTLinux; Aswathanarayana et al. 2005],
and increased efficiency [von Behren et al. 2003]. Embedded systems benefit from
customizability as scheduling policies are chosen based on the goals of the system:
the target utilization, the schedulability analysis properties and assumptions, and the
temporal isolation requirements. These factors vary considerably even when comparing
only Rate-Monotonic and Earliest-Deadline First scheduling [Buttazzo 2005], let alone
more complicated policies. Open real-time systems in which hard real-time tasks share
a processor with best-effort applications additionally motivate customized scheduling
policies. The best-effort portion of the system might require a specific time-sharing pol-
icy optimized for throughput, while the hard real-time subsystem requires a scheduler
that provides timing guarantees and isolation from the rest of the system. However,
there is a tension between enabling configurable scheduling policies for multiple sub-
systems or applications, and system reliability. If untrusted applications could load
possibly faulty scheduling code into the kernel, they could cause system failure, or
could monopolize the processor for their own benefit at the cost of other applications
and services.

This article focuses on the design of predictable and efficient user-level services in
our COMPOSITE component-based system. We show how a hierarchy of component-based
schedulers can be supported with our system design, enabling different applications
and subsystems to customize their temporal behavior, while more privileged sched-
ulers ensure temporal isolation. A component, in this context, is a collection of code
and data that defines some functionality that is accessed by other components through a
well-defined interface. Importantly, these components are encapsulated: the only way
to harness their functionality is through the interface. In COMPOSITE, all significant
system policies are implemented in separate components, including memory manage-
ment, scheduling, networking, and synchronization. Each component executes in a
separate protection domain at user level. In this article, we focus on protection do-
mains that provide memory isolation via hardware page-tables. Page tables are used
to limit the ranges of memory that are accessible by each component. One compo-
nent scheduler cannot adversely effect another scheduler by inadvertently accessing
its data-structures, and if, for instance, the scheduler for a best effort subsystem fails,
it will not effect the hard real-time scheduler. By isolating such services in user-space,
we avoid potentially adverse interactions with the trusted kernel protection domain,
that could otherwise render the system inoperable, or could lead to unpredictability.

We show how a series of schedulers can be composed to manage both the handling
of interrupts as well as conventional threads of execution. Specifically, in situations
where threads make I/O requests on devices that ultimately respond with interrupts,
we ensure that interrupt handlers are scheduled in accordance with the priority of the
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threads that led to their occurrence. In essence, there is a dependency between inter-
rupt and thread scheduling that is not adequately solved by many existing operating
systems [Zhang and West 2006; Druschel and Banga 1996], but which is addressed in
our component-based system. Specifically, interrupts are given precedence over soft-
ware threads scheduled by the OS/kernel regardless of if they do processing for a
low-priority, or high-priority thread. This relationship between system threads and
interrupt processing creates a dependency. For example, a thread waiting on a ser-
vice request, such as a blocking I/O operation, forms a dependency on the subsequent
interrupt handling triggered by a response from the I/O device itself. In embedded
systems, both computation and reaction must predictably occur in response to physical
stimuli. As this will often involve cooperation between interrupt-execution, and multi-
ple system tasks, a careful consideration of these dependencies is required to produce
predictable responses.

While micro-kernels offer a means by which new services can be deployed at user
level, interprocess communication (IPC) is still mediated by the trusted kernel. Such
IPC mechanisms require thread switching, often involving scheduling decisions. In
early micro-kernel designs, IPC costs were deemed prohibitive, but more recent sys-
tems have addressed such costs, often by using hardware-specific features [Liedtke
1995]. In COMPOSITE, communication between components is carried out by thread mi-
gration [Ford and Lepreau 1994; Parmer 2010] to avoid scheduling costs during IPC.
A thread executing in one component may communicate with, and continue execution
in, another component. This design also avoids complications concerning thread syn-
chronization on IPC [Steinberg et al. 2005; Ruocco 2008]. The preemption of a thread
in a component, and subsequent invocation of that component by another thread can
yield multiple threads concurrently executing in that component.

User-level schedulers introduce design challenges due to the need to make schedul-
ing decisions both predictably and efficiently. Synchronization around scheduler data-
structures is complicated by the fact that interrupts are not allowed to be disabled.
Preventing interrupts from being disabled is required for COMPOSITE to be predictable.
Similarly, for efficiency, it is undesirable to issue kernel requests to access synchro-
nization objects such as semaphores, especially if the cost of kernel-user transitions
is high. Worse still, kernel-provided synchronization mechanisms such as semaphores
may yield deadlock or livelock situations on access to user-level scheduling structures.
As an example, suppose τ1 is executing scheduler policy code. It is preempted while
holding a semaphore, S, that ensures mutually exclusive access for the scheduling run-
queue. An upcall thread, τ2 (e.g., for a timer interrupt), tries to access the runqueue,
attempts to take S, and cannot proceed. At this point, the kernel needs to know which
thread to schedule, but as it has no scheduling information, it must upcall into the user-
level scheduler to find the next thread to execute. However, this will cause yet another
attempt to acquire S. Thus, neither τ1 nor τ2 are able to make effective progress. In
Section 2.4 we detail a solution that avoids blocking synchronization primitives by us-
ing a wait-free technique. Other problems include the use of atomic instructions which
can lock the memory bus, causing undue latencies. We address these practical issues
in COMPOSITE using an optimistic synchronization mechanism, based on “restartable
atomic sequences” [Bershad et al. 1992] and inspired by futexes [Franke et al. 2002].
During typical execution, synchronization is ensured without relying on atomic instruc-
tions or kernel invocations. This utility is used both for interthread synchronization in
schedulers and for synchronization between threads and a non-preemptive kernel, and
does not require a kernel-resident scheduler.

Another significant challenge is the predictable scheduling and accounting of asyn-
chronous events, such as interrupts. One of the goals of COMPOSITE is to associate inter-
rupts with their own threads of execution, for the purposes of scheduling. However, we
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Fig. 1. An example component graph. Fig. 2. Thread execution through components.

wish to avoid invocations of user-level schedulers every time an asynchronous event
occurs, as this would be too expensive. Consequently, COMPOSITE provides a mechanism
by which asynchronous threads can be executed in accordance with their scheduling
constraints without direct invocation of user-level schedulers.

In COMPOSITE, when an interrupt occurs it is initially trapped by the base kernel.
From there, an upcall is made into a user-space component to handle the interrupt.
Associated with each such upcall is a brand, that identifies user-level scheduler infor-
mation for the interrupts. Additionally, brands record the sequence of components that
are to be executed by the upcall in response to an asynchronous event.

In the following sections we elaborate on the design details within COMPOSITE, fo-
cusing on the design of hierarchical component services for predictable and efficient
scheduling and interrupt management. Section 2 describes in further detail some of the
design challenges of COMPOSITE, including the implementation of hierarchical sched-
ulers. This is followed by an experimental evaluation in Section 3. Related work is
discussed in Section 4 while a summary of conclusions and future work are presented
in Section 5.

2. COMPOSITE COMPONENT-BASED SCHEDULING

In COMPOSITE, a system is constructed from a collection of user-level components that
define the system’s policies. These components communicate via thread migration and
compose to form a graph as depicted in Figure 1. Edges imply possible invocations. Here
we show a simplified component graph with two tasks, a networking component, a fixed
priority round-robin scheduler, and a deferrable server. As threads make component
invocations, the system tracks their progress by maintaining an invocation stack, as
shown in Figure 2. In this example, the downward control flow of a thread proceeds
through A, B, C, and D. Each of these invocations is reflected in its execution stack.
On return from D and C, the thread pops components off of its execution stack, and
invokes E. Its invocation stack after this action is shown with the dotted lines. An
invocation stack is maintained in each kernel thread structure. This stack is analogous
to a thread’s C runtime execution stack, but instead of tracking function invocations,
it is a kernel data-structure that tracks component invocations. In addition to invoked
components, each entry in the stack tracks the register state necessary to resume
execution in a component that is returned to (for example, the instruction and stack
pointers).

One of the goals of COMPOSITE is to provide a base system that is configurable for the
needs of individual applications. However, for performance isolation, it is necessary
that global policies maintain system-wide service guarantees across all applications.
Consequently, we employ a hierarchical scheduling scheme [Regehr and Stankovic
2001] whereby a series of successive schedulers are composed in a manner that main-
tains control by more trusted schedulers, while still allowing policy specialization for
individual applications. In addition to traditional notions of hierarchical scheduling, we
require that parent schedulers do not trust their children, and are isolated from their
effects. In this way, the affects of faulty or malicious schedulers are restricted to their
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Table I. cos sched cntl Options

COS SCHED PROMOTE SCHED promote component to be a child scheduler
COS SCHED DEMOTE SCHED remove child subtree’s schedulers privileges
COS SCHED GRANT THD grant scheduling privileges to child scheduler

for a specific thread
COS SCHED REVOKE THD revoke scheduling privileges to a child

scheduler’s subtree for a specific thread
COS SCHED SHARED REGION specify a region to share with the kernel
COS SCHED THD EVT specify an event index in the shared region to

associate with a thread

subtree in the scheduling hierarchy. By comparison, scheduler activations [Anderson
et al. 1991] are based on the premise that user-level schedulers interact with a more
trusted kernel scheduler in a manner that cannot subvert the kernel scheduler. COM-
POSITE adopts a mechanism that generalizes this notion to a full hierarchy of schedulers
that all exist at user level.

COMPOSITE exports a system call API for controlling the scheduler hierarchy. A root
scheduler promotes other system components to be children schedulers. Processing
time is allocated between the root’s threads, and its children schedulers. The children
schedulers themselves, can create children schedulers for whom they are the parent.
In this way, CPU scheduling policy is delegated throughout a hierarchy of schedulers.
A pointer within a component scheduler’s kernel structure always refers to its parent
scheduler. This is used to prevent the scheduling hierarchy from deviating from a tree
structure. Cycles and even general acyclic graphs are prevented by ensuring that a
component can never be promoted to a child scheduler if it already is a scheduler with
a parent. This limitation ensures that parent schedulers can completely control and
account for the CPU allocation of child subsystems. Likewise, parent schedulers can
demote their children. This operation is recursive and removes the ability to schedule
not only from direct children, but also their children (and so on). To bootstrap the
system, the root scheduler automatically is given scheduling capabilities. Creating
new child schedulers is done with feedback from abstract application requirements [Gai
et al. 2001], or via application specified policies.

A component that has been promoted to scheduler status has access to the cos sched
cntl(operation, thd id, other) system call. The root scheduler automatically can
use this system call. Here operation is simply a flag, the meaning of which is detailed
in Table I, and other is either a component id, or a location in memory, depending
on the operation. In a hierarchy of scheduling components only the root scheduler
is allowed to create threads. This restriction prevents arbitrary schedulers from
circumventing the root scheduler for allocating kernel thread structures. This is
necessary so that the root scheduler can define policy to prevent kernel memory denial
of service attacks. For example, the root scheduler can implement thread creation
policies (e.g., quotas) for specific subsystems or applications. A parent scheduler can
allow a child scheduler to schedule a specific thread by granting scheduling privileges
to it via cos sched cntl(COS SCHED GRANT THD,...). These privileges can only be
granted on threads that the granting scheduler already is able to schedule. The root
scheduler automatically can schedule all threads. Likewise, the COS SCHED REVOKE THD
flag can be used to recursively remove scheduling privileges from child schedulers.
In conjunction, these calls enable a parent to strictly control the subsystems that can
define temporal policy for specific threads. Importantly, the COMPOSITE kernel prevents
a single thread from being schedulable by two children again so that a scheduler can
maintain strict control and accounting information for its threads.
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In COMPOSITE, each kernel thread structure includes an array of pointers to cor-
responding schedulers. These are the schedulers that have been granted scheduling
privileges to a thread. The array of pointers within a thread structure is copied when a
new thread is created to the new thread, and is modified by the cos sched cntl system
call. Certain kernel operations must traverse this array of schedulers for threads and
must do so with bounded latency. To maintain a constant overhead for these traver-
sals, the depth of the scheduling hierarchy, thus the length of these arrays, is limited
at system compile time.

Threads are both created and passed up to other components via the thd id t
cos thd cntl (component id, flags, arg1, arg2) syscall. To create a new thread,
the root scheduler makes a system call with the COS THD CREATE flag. If a nonroot
scheduler attempts to create a new thread using this system call an error is returned.
Threads all begin execution at a specific upcall function address added by a COMPOSITE

library into the appropriate component. Such an invocation is passed three arguments:
the reason for the upcall (in this case, because of thread creation) and the user-defined
arguments arg1 and arg2. These are used, for example, to emulate pthread create by
representing a function pointer and the argument to that function.

Section 2.2 will discuss mechanisms for efficiently and predictably scheduling
interrupt execution and maintaining accurate processing time accounting for sys-
tem threads. This support requires a shared region of memory between each
scheduler and the kernel, and for specific threads to be associated with entries
within this shared region. The shared region is setup for a scheduler by invoking
cos sched cntl(COS SCHED SHARED REGION,...) and passing in the address of the re-
gion. A specific thread that has been granted to a scheduler can be associated with a
entry in that region using the COS SCHED THD EVT flag. Only components that have been
promoted to a scheduler can setup a shared region, and only if a scheduler has been
granted scheduling abilities to a thread can it successfully use COS SCHED THD EVT.

2.1. Implementing Component Schedulers

Unlike previous systems [Ford and Susarla 1996; Aswathanarayana et al. 2005; Stoess
2007] that provide user-level scheduling, the operation of blocking in COMPOSITE is not
built into the underlying kernel. This means that schedulers are able to provide cus-
tomizable blocking semantics. Thus, it is possible for a scheduler to allow arbitrary
blocking operations to time-out after waiting for a resource if, for example, a deadline
is in jeopardy. Importantly for real-time systems, the schedulers—in coordination with
lock components—define the blocking and scheduling semantics for shared resource
contention [Parmer and Song 2010]. This is in contrast to systems with user-level
schedulers whereby the scheduler is informed of a thread’s blocking, but is not given
any context regarding why the thread is blocking [Ford and Susarla 1996; Aswatha-
narayana et al. 2005; Stoess 2007]. In this way, user-level components and schedulers
have the power to incorporate appropriate protocols to combat priority inversion (e.g.,
priority inheritance or ceiling protocols [Sha et al. 1990]).

Not only do schedulers define the blocking behavior, but also the policies to determine
the relative importance of given threads over time. Given that schedulers are respon-
sible for thread blocking and prioritization, the interesting question is what primitives
does the kernel need to provide to allow the schedulers to have the greatest freedom
in policy definition without compromising predictability or efficiency? In COMPOSITE, a
single system call is provided, cos switch thread(thd id, flags) that permits sched-
ulers with sufficient permissions to dispatch a specific thread. This operation saves the
current thread’s registers into the corresponding kernel thread structure, and restores
those of the thread referenced by thd id. If the next thread was previously preempted,

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 1s, Article 32, Publication date: November 2013.



TECS1301-32 ACM-TRANSACTION November 12, 2013 17:32

Predictable and Configurable Component-Based Scheduling in the Composite OS 32:7

the current protection domain (i.e., page-table information) is switched to that of the
component in which the thread is resident.

In COMPOSITE, each scheduling component in a hierarchy can be assigned a different
degree of trust and, hence, different capabilities. This is related to scheduler activations,
whereby the kernel scheduler is trusted by other services to provide blocking and
waking functionality, and the user-level schedulers are notified of such events, but are
not allowed the opportunity to control those blocked threads until they return into the
less trusted domain. This designation of duties is imperative in sheltering more trusted
schedulers from the potential ill-behavior of less trusted schedulers, increasing the
reliability of the system. An example of why this is necessary follows: suppose a network
device driver component requests the root scheduler to block a thread for a small
amount of time, until the thread can begin transmission on a TDMA arbitrated channel.
If a less trusted scheduler could then restart that thread before this period elapsed, it
could cause detrimental contention on the channel. Additionally, if a thread blocks in
wait for a specific event (i.e., an interrupt from an external stimulus), a scheduler should
be able to ensure that event did indeed happen before the thread is woken. Schedulers
of higher trust (parent schedulers) must be able to ensure that child schedulers with
the ability to dispatch to a specific blocked threads will not interfere with the blocking
semantics of that parent scheduler. Thus, to enable more trusted schedulers to make
resource contention decisions (such as blocking and waking) without being affected
by less trusted schedulers, a flag is provided for the cos switch thread system call,
COS STATE SCHED EXCL, which implies that only the current scheduler and its parents
are permitted to wake the thread that is currently being suspended.

2.2. Brands and Upcalls

COMPOSITE provides a notification mechanism to invoke components in response to asyn-
chronous events. For example, components may be invoked in response to interrupts
or events similar to signals in UNIX systems. In many systems, asynchronous events
are handled in the context of the thread that is running at the time of the event occur-
rence. In such cases, care must be taken to ensure the asynchronous execution path
is reentrant, or that it does not attempt to block on access to a lock that is currently
being held by the interrupted thread. For this reason, asynchronous event notifications
in COMPOSITE are handled in their own thread contexts, rather than on the stack of the
thread that is active at the time of the event. Such threads have their own priorities so
they may be scheduled in a uniform manner with other threads in the system. Addition-
ally, a mechanism is needed to guide event notification through multiple components.
For example, if a thread reads from a UDP socket, and an interrupt spawns an event
notification, it may be necessary to traverse separate components that encompass both
IP and UDP protocols.

Given these constraints, we introduce two concepts: brands and upcalls. A brand is
a kernel structure that represents (1) a context, for the purposes of scheduling and
accounting, and (2) an ordered sequence of components that are to be traversed during
asynchronous event handling. Brands are given priorities by schedulers corresponding
to the importance of handling a given event notification. An upcall is the active entity,
or thread associated with a brand that actually executes the event notification. Brands
and upcalls are created using the cos brand cntl system call. In the current imple-
mentation, only the root scheduler is allowed to make this system call as it involves
creating threads. The system call takes a number of options to create a brand in a
specific component, and to add upcalls to a brand. Scheduling permissions for brands
and upcalls can be passed to child schedulers in the hierarchy in exactly the same
fashion as with normal threads. An upcall associated with a given brand is invoked
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Fig. 3. Branding and upcall execution.

by the cos brand upcall(brand id, flags) system call, in a component in which that
brand has been created.

Figure 3 depicts branding and upcall execution. A thread traversing a specific path
of components, A, B, C, D, requests that a brand be created for invocation from C: TB =
cos brand cntl(COS BRAND CREATE BRAND, C). Thus, a brand is created that records the
path already taken through components A and B. An upcall is added to this brand with
cos brand cntl(COS BRAND CREATE UPCALL, TB). When the upcall is executed, compo-
nent B is invoked, as depicted with the coarsely dotted line. This example illustrates a
subsequent component invocation from B to E, as depicted by the finely dotted line.

When an upcall begins execution in a component, it invokes the generic upcall func-
tion added to the component via the COMPOSITE library. If an event occurs that requires
the execution of an upcall for the same brand as an active upcall, there are two options.
First, if there is an inactive upcall associated with a brand, then the inactive upcall
can be executed immediately to process the event. The precise decision whether the
upcall is immediately executed depends on the scheduling policy. Second, if all upcalls
associated with a brand are active, then a brand’s pending count of events is incre-
mented. When an upcall completes execution and finds that its brand has a positive
event count, the count is decremented and the upcall is reinstantiated.

Brands and upcalls in COMPOSITE satisfy the requirements for asynchronous event
notification, but an important aspect is how to efficiently and predictably schedule
their corresponding threads. When the execution of an upcall is attempted, a scheduling
decision is required between the currently running thread and the upcall. The scheduler
that makes this decision is the closest common scheduler in the hierarchy of both the
upcall and the currently executing thread. Additionally, when an upcall has completed
execution, assuming its brand has no pending notifications, we must again make a
scheduling decision. This time the threads that are candidates for subsequent execution
include: (1) the thread that was previously executing when the upcall occurred, (2) any
threads that have been woken up by the upcall’s execution, and (3) any additional
upcalls that occurred in the meantime (possibly due to interrupts), that were not
immediately executed. At the time of this scheduling decision, one option is to upcall
into the root scheduler, notifying it that the event completed. It is then possible for
other schedulers in the hierarchy to be invoked. Unfortunately, invoking schedulers
adds overhead to the upcall, and increases the response time for event notification. We,
therefore, implement a novel technique in which the schedulers interact with the kernel
to provide hints, using event structures, about how to perform subsequent scheduling
decisions without requiring invocations of the schedulers during upcall execution. This
technique requires each scheduler in the system to share a private region with the
kernel. This region is established by passing the COS SCHED SHARED REGION flag to the
cos sched cntl system call detailed in Table I.

Corresponding threads under the control of a given scheduler are then associated
with an event structure using the COS SCHED THD EVT flag. Each of these event struc-
tures has a priority field. These priority fields are scheduler-specific and simply imply
a total ordering of tasks. Depending on the policy of a given scheduler, these can be
dynamic (to reflect changing time criticality of a thread, as in the case of a deadline)
or static (to reflect different degrees of importance). Numerically lower values for the
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Fig. 4. Shared kernel-scheduler region used to 1) pass event status information (via the evt flags field)
and thread execution time from kernel to scheduler (via the execution cycles field), and 2) pass information
regarding relative thread (and upcall) priority from scheduler to kernel (via the thd priority) field. Thread
A is scheduled by the parent scheduler, while both B and C are schedulable by the parent and child scheduler
(i.e., the parent granted scheduling privileges to the child).

priority field represent higher execution priority relative to other threads. Within the
event structure, there is also a flag section to notify schedulers about the execution sta-
tus of the thread associated with the event. This is relevant for inactive upcalls, as they
are not currently schedulable. The last field of the event structure is an index pointer
used to maintain a linked list of pending events that have not yet been processed by
the scheduler.

Event structures are placed in a corresponding shared memory region, accessible
from the kernel regardless of which protection domain is currently active. Figure 4
illustrates these data structures and their relationship to the schedulers, the kernel,
and system threads. Thus, when an upcall is performed, the event structures for the
closest common scheduler in the hierarchy to the currently running thread and the
upcall thread are efficiently located, and the priority values in these structures are
compared. If the upcall’s brand has a lower numeric priority field than the current
thread, the upcall is immediately executed. The scenario is more complicated for the
case when the upcall has completed execution, and another thread must be chosen
for execution. In this case, the kernel checks to see if a scheduler with permissions to
schedule the previously executing thread has changed its preference for which thread
to run: does the scheduler still give highest priority to the thread that was interrupted
by the interrupt? If this happens it will be reflected via the shared memory region
between the scheduler and the kernel. Changes to the scheduling order might be due
to the fact that the upcall invoked a scheduler to wake up a previously blocked thread.
Additionally the kernel considers if another upcall was made while the current upcall
was executing, but is deferred execution. If either of these conditions are true, then an
upcall is made into the root scheduler allowing it to make a precise scheduling decision.
However, the system is designed around the premise that neither of these cases occur
frequently, and most often the system needs only to switch immediately back to the
previous thread. This is typically the case with short running upcalls. However, if the
upcalls execute for a more significant amount of time and the root scheduler is invoked,
the consequent scheduling overhead is amortized. This mechanism is tailored to avoid
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Fig. 5. Simplified scheduler component code. Kernel support prevents the scheduler from missing events
that occur between when process evts is called, and when the next thread is dispatched.

excessive overheads for I/O devices with a high interrupt frequency. In such cases, it is
important to avoid switching to schedulers and incurring the associated overhead.

Kernel-Scheduler Synchronization. Interrupts can execute at any time, causing im-
portant changes to upcall state. The scheduler will typically process these events before
making policy decisions, and then dispatching the next thread. This protocol is depicted
in Figure 5. When processing events, threads might be added or removed from the run-
queue as upcalls either activate or complete execution.

Asynchronous interrupts can occur in between when a thread has processed all
pending events, and when a thread is dispatched. Therefore, any such events will
not be considered when calculating the next thread for execution. This can lead to
lower priority threads being executed when higher priority threads are runnable. To
prevent this in COMPOSITE, a flag exists in the shared region of memory between each
scheduler and kernel that the kernel sets to 1 when an event occurs. As part of the
process evts call, the user-level scheduler resets this flag to 0. Thus, when a thread
calls cos switch thread, the kernel can check this flag. If it is set, then an event has
occurred between the time the scheduler processed the events, and when it dispatched.
In such a case, the kernel returns a specific error code (here denoted as !SUCCESS) to the
scheduler that then processes the events and recomputes which thread to execute next.

This protocol enables user-level schedulers to maintain control over scheduling policy
while still allowing events to occur asynchronously and with a low latency. The kernel
ensures that consistent scheduling decisions are made by actively enforcing that events
must be processed before valid scheduling decisions can be made.

Associating Interrupts with Brands. COMPOSITE provides the brand wire system-call
that associates a brand with a specific hardware interrupt source. When an interrupt
arrives from that source, it automatically attempts to execute an upcall associated
with that brand. This requires the normal checks to see if the brand has a higher
priority than the currently executing thread, and only if it does will the upcall execute
immediately.

It should be noted here that a limited amount of computation occurs at interrupt-
time. That is to say that interrupts occur at hardware-defined priorities typically
higher than the current software thread. We attempt to promote this execution to a
schedulable upcall thread as soon as possible to minimize the impact of the interrupt’s
execution, and to schedule the majority of the interrupt-driven execution. Hardware
techniques exist that can prevent even this small amount of interrupt-time processing.
These include intelligent NICs that can classify incoming packets and prioritize
interrupts [Druschel and Banga 1996], or unified hardware/software prioritization
schemes [del Foyo et al. 2006]. Though these techniques could be adopted in COMPOSITE,
we leave this for future work. Instead, this article investigates the complementary
software support to determine how upcalls (whenever they occur) can be efficiently
and predictably scheduled.

Given these mechanisms which allow user-level component schedulers to communi-
cate with the kernel, COMPOSITE supports low asynchronous event response times while
still maintaining the configurability of scheduling policies at user level.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 1s, Article 32, Publication date: November 2013.



TECS1301-32 ACM-TRANSACTION November 12, 2013 17:32

Predictable and Configurable Component-Based Scheduling in the Composite OS 32:11

2.3. Thread Accountability

Previous research has addressed the problem of accurately accounting for interrupt
execution costs and identifying the corresponding thread or process associated with
such interrupts [Druschel and Banga 1996; Zhang and West 2006]. This is an impor-
tant factor in real-time and embedded systems, where the execution time of interrupts
needs to be factored into task execution times. COMPOSITE provides accurate account-
ing of the costs of asynchronous event notifications and charges them, accordingly, to
corresponding threads.

As stated earlier, brands and upcalls enable efficient asynchronous notifications to
be used by the system to deliver events, for instance, interrupts, without the over-
head of explicit invocation of user-level schedulers. However, because thread switches
can happen without direct scheduler execution, it is more difficult for the schedulers
themselves to track total execution time of upcalls. If the problem were not correctly
addressed, then the execution of upcalls might be charged to whatever thread was run-
ning when the upcall was initiated. We, therefore, expand the event structure within
the shared kernel/scheduler region to include a counter, measuring progress of that
event structure’s associated thread. In our prototype implementation on the x86 ar-
chitecture, we use the time-stamp counter (TSC) to measure the amount of time each
thread spends executing by taking a reading whenever threads are switched. The pre-
vious reading is subtracted from the current value, to produce the elapsed execution
time of the thread being switched out. This value is added to the progress counter in
that thread’s event structure for each of its schedulers and is depicted in Figure 4 as
execution cycles. When a thread in the scheduler processes the events, it will update
the execution times of each thread with an event an a corresponding execution cycles
value. On architectures without efficient access to a cycle counter, execution time can
be sampled, or a simple count of the number of times upcalls are executed can be
reported.

Observe that COMPOSITE provides library routines for common thread and scheduling
operations. These ease development as they hide event structure manipulation and
automatically update thread accountability information.

2.4. Efficient Scheduler Synchronization

When schedulers are implemented in the kernel, it is common to disable interrupts
for short amounts of time to ensure that processing in a critical section will not be
preempted. This approach has been applied to user-level scheduling in at least one re-
search project [Bruno et al. 1999]. However, given our design requirements for a system
that is both dependable and predictable, this approach is not feasible. Allowing sched-
ulers to disable interrupts could significantly impact response time latencies. Moreover,
scheduling policies written by untrusted users may have faulty or malicious behavior,
leading to unbounded execution (e.g., infinite loops) if interrupts are disabled. CPU pro-
tection needs to be maintained as part of a dependable and predictable system design.

An alternative to disabling interrupts is to provide a user-level API to kernel-
provided locks, or semaphores. This approach is both complicated and inefficient,
especially in the case of blocking locks and semaphores. Assuming blocking locks
were provided by the kernel, the scheduler would use one to protect its shared data
structures such as the run-queue. Before a scheduling policy decision were made, this
lock would be obtained. However, this solution is untenable. If the kernel-provided lock
were currently taken by another thread, the current thread attempting to take the
lock would have to block. However, the action of blocking requires a scheduling policy
to decide which thread to execute next. As the scheduling policy exists in a user-level
component, kernel locks have to invoke the user-schedulers. Unfortunately, when the
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user-component then attempts to access its run-queue, it will again find that the lock
is contended causing this entire process to be repeated without forward progress. This
is an inherent circular dependency between the user-scheduler and kernel-provided
locks that will produce livelock and starvation, and thus, unpredictable behavior.
Additionally, with kernel-provided locking, it is unclear how strategies to avoid priority
inversion could be included in such a scheme as the kernel is oblivious to thread
priorities. Due to these complications, the COMPOSITE kernel instead achieves mutual
exclusion with nonblocking algorithms.

Preemptive nonblocking algorithms also exist, that do not necessarily require kernel
invocations. These algorithms include both lock-free and wait-free variants [Hohmuth
and Härtig 2001]. Wait-free algorithms are typically more processor intensive, while
lock-free algorithms do not necessarily protect against starvation. However, by ju-
dicious use of scheduling, lock-free algorithms have been shown to be suitable in
a hard-real-time system [Anderson et al. 1997]. It has also been reported that in
practical systems using lock-free algorithms, synchronization delays are short and
bounded [Hohmuth and Härtig 2001; Mehnert et al. 2002].

To provide scheduler synchronization that will maintain low scheduler runtimes,
we optimize for the common case when there is no contention, such that the critical
section is not challenged by an alternative thread. We use lock-free synchronization on
a value stored in the shared scheduler region, to identify if a critical section has been
entered, and by whom. Should contention occur, the system provides a set of synchro-
nization flags that are passed to the cos switch thread syscall, COS SCHED SYNC BLOCK
and COS SCHED SYNC UNBLOCK, to provide a form of wait-free synchronization. In essence,
the thread, τi waiting to access a shared resource is “helped” by thread τ j , that currently
has exclusive access to that resource, by allowing τ j to complete its critical section, and
immediately switch back to τi. The assumption here is that the most recent thread to
attempt entry into the critical section has the highest priority, thus it is valid to immedi-
ately switch back to it without invoking a scheduler. These synchronization primitives
are used to implement a critical section that protects a scheduler’s data-structure. This
semantic behavior exists in a scheduler library in COMPOSITE, so if it is inappropriate
for a given scheduler, it can be trivially overridden. As threads never block when at-
tempting access to critical sections, we avoid having to put blocking semantics into the
kernel. The design decision to avoid expensive kernel invocations in the uncontested
case is, in many ways, inspired by futexes in Linux [Franke et al. 2002].

Scheduler/Kernel Synchronization Details. Correct implementation of the
cos switch thread is surprisingly difficult. Specifically, the manner in which the
arguments to the system-call are passed has a great influence on the predictability
of the call. If the identifier for the next thread to dispatch to is passed to the kernel
via register, a condition can occur in which the incorrect thread (i.e., not the one
with highest priority) is switched to leading to unpredictable periods of priority
inversion. For example, a thread τ0 executing scheduler policy to determine the next
thread to execute will be holding the scheduler’s critical section and, before calling
cos switch thread, will release the critical section. Between the time when the critical
section is released, and when the system call is made to dispatch to the next thread,
threads could be woken up, or blocked. If the next thread is stored in thread-local
location (i.e., registers or the thread’s stack), then τ0 would ask the kernel to dispatch
to an incorrect thread—not the highest priority runnable thread. This situation is
depicted in Figure 6(a), where the thread is preempted between releasing the critical
section, and switching to the next thread.

In COMPOSITE, we ensure that this situation does not occur by preventing a thread
from dispatching to another thread with this outdated state. Specifically, when a thread
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Fig. 6. (a) Thread-local variable used to dispatch to next thread. (b) A memory region shared by scheduler
and the kernel is updated by all dispatching threads, and is used to avoid priority inversion.

chooses the next thread to execute given the scheduler’s policy, this value is stored in the
region of memory shared between kernel and the scheduler rather than in a register.
This is depicted in Figure 6(b). Whenever any dispatching occurs, the memory region
is updated to reflect this. The kernel implementation detects if cos switch thread
is invoked with a stale thread identifier by comparing the next thread passed in the
register with the next thread in the shared memory region. In the case of a discrepancy,
the kernel returns an appropriate error code from the system call (not SUCCESS). The
calling thread then queries the scheduling policy to recompute the proper next thread
to execute.

Predictable, Efficient Atomic Instructions. Generally, many of the algorithms for non-
blocking synchronization require the use of hardware atomic instructions. Unfortu-
nately, on many processors the overheads of such instructions are significant due to
factors such as memory bus locking. We have found that using hardware-provided
atomic instructions for many of the common scheduling operations in COMPOSITE often
leads to scheduling decisions having significant latencies. For example, both the kernel
and user-level schedulers require access to event structures, to update the states of
upcalls and accountability information, and to post new events. These event structures
are provided on a per-CPU basis, and our design goal is to provide a synchronization
solution that does not unnecessarily hinder thread execution on CPUs that are not
contending for shared resources. Consequently, we use a mechanism called restartable
atomic sequences (RASes), that was first proposed by Bershad et al. [1992], and involves
each component registering a list of desired atomic assembly sections. These assembly
sections either run to completion without preemption, or are restarted by ensuring
the CPU instruction pointer (i.e., program counter) is returned to the beginning of the
section, when they are interrupted.

Essentially, RASes are crafted to resemble atomic instructions such as compare
and swap, or other such functions that control access to critical sections. Common
operations are provided to components via COMPOSITE library routines.1 The COMPOSITE

system ensures that if a thread is preempted while processing in one of these atomic
sections, the instruction pointer is rolled back to the beginning of the section, similar to
an aborted transaction. Thus, when an interrupt arrives in the system, the instruction
pointer of the currently executing thread is inspected and compared with the assembly

1In this article, we discuss the use of RASes to emulate atomic instructions but we have also crafted
specialized RASes for manipulating event structures.
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Fig. 7. Example compare and exchange atomic restartable sequence.

section locations for its current component. If necessary, the instruction pointer of
the interrupted thread is reset to the beginning of the section it was executing. As
this operation can only occur when an interrupt triggers, RASs have an additional
benefit that they avoid the traditional need for either language-based, or architectural
memory barriers that are required in many nonblocking algorithms. These barriers
enforce ordering between loads and stores, and can impose significant overhead. This
ordering is a natural side-effect of interrupts.

The roll-back to the beginning of a RAS is performed at interrupt time and is made
efficient by aligning the per-component list of assembly sections on cache lines. We
limit the number of atomic sections per-component to 4 to bound processing time.

The RAS mechanism is useful for multiple reasons: (1) it can provide atomic se-
quences even on embedded architectures that do not have support for atomic instruc-
tions, (2) it can significantly improve efficiency on architectures with inefficient atomic
instruction support as it does not require memory barriers or special architectural
support, (3) and it can lower system interference as it does not require bus or inter-
connect locking. RAS are used in COMPOSITE to process event structures, and to acquire
execution stacks on component invocation. The performance benefit of this technique
is covered in Section 3.1. The largest deficiency of RAS is that they do not provide
synchronization between multiple processors. This is discussed shortly.

Figure 7 demonstrates a simple atomic section that mimics the cmpxchg instruc-
tion in x86. Libraries in COMPOSITE provide the cos cmpxchg(void ∗memory, long
anticipated, long new val) function which expects the address in memory we wish
to change, the anticipated current contents of that memory address, and the new value
we wish to change that memory location to. If the anticipated value matches the value
in memory, the memory is set to the new value which is returned, otherwise the antic-
ipated value is returned. The library function calls the atomic section in Figure 7 with
register eax equal to anticipated, ebx equal to the memory address, ecx equal to the
new value, and returns the appropriate value in edx.

Synchronization and Multi-Processors. Observe that RASes do not provide atomicity
on multi-processors. They do not utilize memory barriers, or other hardware support,
so no memory access ordering is ensured by them across different processors. For a
large class of data-structures that are partitioned across processors (e.g., COMPOSITE

event structures, run-queues for many scheduling policies), they can be used without
modification. Such partitioning is often used to ensure scalable data-structure access
times with an increasing number of processors. However, for data structures that
are shared between processors, traditional methods such as atomic instructions must
instead be used for synchronization. Complicated synchronization techniques use a
combination of both partitioned and global data-structures to optimize for certain types
of data-structure access (i.e., read vs. write) [Gamsa et al. 1999].

One topic relevant to multi-processor systems is interprocessor interrupts (IPIs)
that are used for notification or cooperation between processors. The basic mechanism
of brands and upcalls is adapted in a straightforward manner to expose IPIs to
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Fig. 8. Functions that different scheduling policies must implement.

components in COMPOSITE. A brand is associated with each IPI, and when an interrupt
occurs, the execution of the brand’s upcall is triggered.

Predictability of COMPOSITE Synchronization Mechanisms. It is not immediately obvi-
ous that the synchronization mechanisms used in COMPOSITE are predictable. The loops
in Figures 5 and 6 do not appear to be bounded, and the number of times that a RAS can
be rolled-back also does not seem bounded. Lock-free algorithms pose comparable chal-
lenges in that a thread performs some computation and at some point checks if it can
“commit” its work. If another thread has interfered (by altering the data-structure), the
computation must be repeated. The same techniques used to make lock-free algorithms
predictable, thus statically analyzable, are used to perform analysis on COMPOSITE [An-
derson et al. 1997]. The general theme of these techniques is to derive a maximum
bound on the number of preemptions for each thread (e.g., which is related to period,
WCET, and priority of different threads in a fixed priority periodic task model). Each of
the sections of synchronization code that can be recomputed (loops and RAS) are only
reexecuted due to preemptions. The contribution to a thread’s WCET of the COMPOSITE

synchronization mechanisms is the WCET of the content of each individual loop (from
Figures 5 and 6) and the RASs times the maximum number of preemptions.

Scheduling policies could also ensure that RAS and scheduling loops are not un-
bounded. Dynamic priority policies can increase a thread’s priority to decrease the
number of times a thread is preempted to ensure forward progress.

2.5. Scheduler Implementation and Interfaces

The mechanisms for implementing user-level, component-based, customizable sched-
ulers in COMPOSITE are relatively complex. It would be unrealistic to assume that sched-
uler developers have mastered these intricacies. Thus we abstract a scheduler’s code-
base into two sections: (1) the scheduler policy, and (2) a library that interfaces with
the COMPOSITE kernel via the event structures in the shared scheduler/kernel memory
region, performs synchronization around run-queues, and dispatches threads.

Scheduler Policy. Policy implementers must provide only a small set of functions
that are called whenever an appropriate event has taken place. The prototypes of
these functions are depicted in Figure 8. They include functions to create and remove
threads (add and remove them from consideration for scheduling), time-management
functions describing how long specific threads have executed, and how many timer ticks
have elapsed (for child schedulers, multiple ticks might elapse before they execute), a
function to decide the next thread to execute, and functions to block a thread and wake
it (i.e., remove it from or add it to the run-queue, respectively).

Using this interface, a static priority, round-robin scheduler with a large amount of
debugging functionality, comments, and white-space is implemented in 350 lines of C
code.
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Fig. 9. Implementation of library code for scheduling.

Fig. 10. The component interface for a scheduler.

Scheduler Library. Here we detail how all of the mechanisms of Section 2 are in-
tegrated, giving an example from the scheduler library. Additionally, we discuss the
scheduler component’s interface with other components.

Given the mechanisms described previously for synchronization, events, and account-
ability, and the functions provided by the scheduler policy, Figure 9 depicts the sched-
uler library code that decides the next thread to run, and switches to it. process evts,
in this case, has multiple duties as it parses all events that have happened since
its last invocation and performs a number of operations: (1) remove or add threads
as appropriate from the run-queue via thread block and thread wakeup, (2) update
thread and upcall execution times via time elapsed, and (3) clear the pending event
flag (Section 2.4).

Figure 10 depicts the major functions constituting the scheduler component’s inter-
face that other components use to access the scheduler’s functionality. These include
functions to block a calling thread (perhaps because it is waiting for an event), to block
a thread with a dependency (e.g., because it is contending a shared resource), and
to wake up a thread that has previously blocked. Additionally, there are functions to
create a new thread in a specific component, passing a set of parameters that might
include, for instance, a static priority, and to discontinue execution of a thread. The
rest of the functions in the interface provide higher-level abstractions to calling compo-
nents. sched component take and sched component release provide a critical section
abstraction for each calling component that is similar to the critical section that the
scheduler uses to protect its own structures. Additionally, a component in the system
can be designated to control time-outs. This component uses the last two functions
to set a thread to be the “wake-up thread”, and to set a timeout for that wake-up
thread. The scheduler, then, simply wakes up that thread if the appropriate amount
of clock ticks have elapsed. The wake-up thread returns to its component and can pro-
vide higher-level abstractions for timeouts for the rest of the system’s threads. This
interface, though simple, has been used to support complex applications such as a
web-server [Parmer 2009]. Specialized scheduling policies can extend this interface as
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Table II. Hardware Measurements

Operation Cost in CPU cycles

User → kernel round-trip 166
Two user → kernel round-trips 312
RPC between two address spaces 1110

Table III. Linux Measurements

Operation Cost in CPU cycles

Null system call 502
Thread switch in same process 1903
RPC between 2 processes using pipes 15367
Send and return signal to current thread 4377
Uncontended lock/release using Futex 411

they see fit, for example to provide reflexive facilities [Patil and Audsley 2005; Ruocco
2006].

3. EXPERIMENTAL EVALUATION

All experiments are performed on IBM xSeries 305 e-server machines with Pentium
IV, 2.4 GHz processors and 904 MB of available RAM. Each computer has a tigon3
gigabit Ethernet card, connected by a switched gigabit network. We use Linux version
2.6.22 as the host operating system with a clock-tick (or jiffy) set to 10 milliseconds.
COMPOSITE is loaded using the techniques from Hijack [Parmer and West 2007a], and
uses the networking device and timer subsystem of the Linux kernel, overriding all
other control flow.

3.1. Microbenchmarks

Here we report a variety of microbenchmarks: (1) Hardware measurements for lower
bounds on performance. (2) The performance of Linux primitives, as a comparison case.
(3) The performance of COMPOSITE operating system primitives. All measurements were
averaged over 100000 iterations in each case.

Table II presents the overheads we obtained by performing a number of hardware
operations with a minimum number of assembly instructions specially tailored to the
measurement. The overhead of switching from user level to the kernel and back (as in
a system call) is 166 cycles. Performing two of these operations approximately doubled
the cost. Switching between two protection domains (page-tables), in conjunction with
the two system calls, simulates RPC between components in two address spaces. It is
notable that this operation on Pentium 4 processors incurs significant overhead.

Table III presents specific Linux operations. In the past, the getpid system call has
been popular for measuring null system call overhead. However, on modern Linux
systems, such a function does not result in kernel execution. To measure system-call
overhead, then, we use gettimeofday(NULL, NULL), the fastest system call we found. To
measure context switching times, We use the NPTL 2.5 threading library. To measure
context switch overhead, we switch from one high-priority thread to the other in the
same address space using sched yield. To measure the cost of IPC in Linux (an OS
that is not specifically structured for IPC), we passed one byte between two threads in
separate address spaces using pipes (passing the byte from process A to B and back
to A). To understand how expensive it is to create an asynchronous event in Linux,
we generate a signal which a thread sends to itself. The signal handler is empty,
and we record how long it takes to return to the flow of control sending the signal.
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Table IV. COMPOSITE Measurements

Operation Cost in CPU cycles

RPC between components 1629
Kernel thread switch overhead 529
Thread switch w/ scheduler overhead 688
Thread switch w/ scheduler and accounting overhead 976

Brand made, upcall not immediately executed 391
Brand made, upcall immediately executed 3442
Upcall dispatch latency 1768
Upcall terminates and executes a pending event 804

Upcall immediately executed w/ scheduler invocations 9410
Upcall dispatch latency w/ scheduler invocation 5468

Uncontended scheduler lock/release 26

Last, we measure the uncontended cost of taking and releasing a pthread mutex which
uses Futexes [Franke et al. 2002]. Futexes avoid invoking the kernel, but use atomic
instructions.

A fundamental communication primitive in COMPOSITE is a synchronous invocation
between components. Currently, this operation is of comparable efficiency to other
systems with a focus on IPC efficiency such as L4 [Stoess 2007]. We believe that
optimizing the fast-path in COMPOSITE by writing it in assembly can further reduce
latency. Certainly, the performance in COMPOSITE is an order of magnitude faster than
RPC in Linux (as shown in Table IV).

As scheduling in COMPOSITE is done at user level to ease customization and increase
reliability, it is imperative that the primitive operation of switching between threads is
not prohibitive. The kernel overhead of thread switching when accounting information
is not recorded by the kernel is 0.22 microseconds. This is the lower bound for scheduling
efficiency in COMPOSITE. If an actual fixed-priority scheduler is used to switch between
threads which includes manipulating run-queues, taking and releasing the scheduler
lock, and parsing event structures, the overhead is increased to 0.28 microseconds.
Further, if the kernel maintains accounting information regarding thread run-times,
and passes this information to the schedulers, overhead increases to 0.40 microseconds.
The actual assembly instruction to read the time-stamp counter (rdtsc) contributes
80 cycles to the overhead, while locating and updating event structures provides the
rest. We found that enabling kernel accounting made programming user-schedulers
significantly easier. Even in this form, the thread switch latency is comparable to user-
level threading packages that do not need to invoke the kernel, as reported in previous
research [von Behren et al. 2003], and is almost a factor of two faster than in Linux.

The overhead and latency of event notifications in the form of brands and upcalls
is important when considering the execution of interrupt triggered events. Here we
measure overheads of upcalls made under different conditions. First, when an upcall
is attempted, but its priority is not greater than the current thread, or if there are
no inactive upcalls, the overhead is 0.16 microseconds. Second, when an upcall occurs
with greater priority than the current thread, the cost is 1.43 microseconds (assuming
the upcall immediately returns). This includes switching threads twice, two user →
kernel round-trips, and two protection domain switches. The time to begin executing
an upcall, which acts as a lower-bound on event dispatch latency, is 0.73 microseconds.
There is no direct comparison in Linux to upcall dispatch. Upcall dispatch certainly
imposes an overhead over Linux ISR dispatch. However, if the hardware event must
be processed by user-level, upcall cost is perhaps best compared to signal or thread
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Fig. 11. Scheduling hierarchies implemented in COMPOSITE.

switch latencies to simulate the event being passed to an application thread to process.
In both of these cases, upcall dispatch is competitive. Third, when an upcall finishes,
and there is a pending event associated with its brand, it immediately executes as a
new upcall. This operation takes .33 microseconds.

A feature of COMPOSITE is the avoidance of scheduler invocations before and after
every upcall. Calling the scheduler both before and after an upcall (that immediately
returns) is 3.92 microseconds. By comparison, avoiding scheduler invocations, using
COMPOSITE event structures, reduces the cost to 1.43 microseconds. The dispatch latency
of the upcall is 2.27 microseconds when the scheduler is invoked, whereas it reduces to
0.73 microseconds using the shared event structures. It is clear that utilizing shared
communication regions between the kernel and the schedulers yields a significant
performance improvement.

Last, we compare the cost of the synchronization mechanism introduced in Sec-
tion 2.4 against futexes. In COMPOSITE, this operation is barely the cost of two function
calls, or 26 cycles, compared to 411 cycles with futexes. An illustration of the impor-
tance of this difference is that the cost of switching threads, which includes taking
and releasing the scheduler lock, would increase in cost by 42% if futexes were used.
The additional cost would rise as more event structures are processed using atomic
instructions. As thread switch costs bound the ability of the system to realistically
allow user-level scheduling, the cost savings is significant.

3.2. Case Study: Predictable Interrupt Scheduling

In the experiments in this section, we use network packet arrivals as our source of
interrupts, and demultiplex the interrupts based on packet contents [Mogul et al.
1987]. The demultiplexing operation is performed predictably, with a fixed overhead,
by carefully choosing the packet parsing method [Pagh and Rodler 2001]. Clients send
UDP packets with a payload of one byte. This study focuses on scheduling and reacting
to interrupts, thus we use small packets to prevent interference from data copying.

To demonstrate the configurability of the COMPOSITE scheduling mechanisms, we
implement a variety of interrupt management and scheduling schemes, and contrast
their behavior. A component graph similar to that shown is Figure 1 is used throughout
our experiments. In this figure, all shaded components are implemented in the kernel.
The scheduling hierarchies under comparison are shown in Figure 11. Italic nodes in
the trees are schedulers: HW is the hardware scheduler giving priority to interrupts,
FP RR is a fixed priority round-robin scheduler, and DS is a deferrable server with
a given execution time and period. All such configurations include some execution at
interrupt time labeled the level 0 interrupt handling. This is the interrupt execution
that occurs before the upcall executes, and in our specific case involves network driver
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execution. The children below a scheduler are ordered from top to bottom, from higher
to lower priority. Additionally, dotted lines signify dependencies between execution
entities in the system. Dependencies arise when a task blocks and waiting for interrupt
data, thus making their further execution dependent on the processing of interrupts.
The timer interrupt is not depicted, but the FP RR is dependent on it. Task 3 is simply
a CPU-bound background task.

In this section, we investigate the ability of COMPOSITE to effectively and predictably
schedule using customized, user-level policies, while accurately maintaining execution
times of different threads. Additionally, we show how schedulers can be arranged in a
hierarchy to change the temporal behavior of the system. As an example application, we
demonstrate accurate thread and upcall execution by providing differentiated service
for tasks processing networking packets. In this work we do not attempt to remove
all level 0 interrupt processing (e.g., by using hardware support such as in [Druschel
and Banga 1996]), thus there will be some interference from this execution even for
high priority tasks. We leave it as future work to integrate such mechanisms into the
abstractions provided by COMPOSITE. The effectiveness of COMPOSITE’s mechanisms, then
is measured in terms of if schedulers can effectively prevent interference between its
schedulable entities (thread and upcalls).

Figure 11(a) depicts a system in which all interrupt handling is executed with the
highest priority. Ignoring ad-hoc mechanisms for deferring interrupts given overload
(such as softirqd in Linux), this hierarchy models the default Linux behavior.
Figure 11(b) depicts a system whereby the interrupts are demultiplexed into threads
of different priority depending on the priority of the normal threads that depend
on them. This ensures that high priority tasks and their interrupts will be serviced
before the lower-priority tasks and their interrupts, encouraging behavior more in
line with the fixed priority discipline. The interrupts are processed with higher
priority than the tasks, as minimizing interrupt response time is often useful (e.g.,
to compute accurate TCP round-trip-times, and to ensure that the buffers of the
networking card do not overflow, possibly dropping packets for the higher-priority
task). Figure 11(c) depicts a system whereby the processing of the interrupts is done
at highest priority, but is constrained by a deferrable server [Strosnider et al. 1995].
The use of a deferrable server allows for fixed priority schedulability analysis to be
performed, but does not differentiate between interrupts destined for different tasks.
Figure 11(d) depicts a system where interrupts for each task are assigned different
priorities (and, correspondingly, brands). Each such interrupt is handled in the context
of an upcall, scheduled as a deferrable server. These deferrable servers not only allow
system schedulability analysis to be performed, but also diminish the livelock caused
by interrupts for the corresponding tasks [Mogul and Ramakrishnan 1997].

Streams of packets are sent to a target system from two remote machines, via Gi-
gabit Ethernet. The packets arrive at the host, triggering interrupts, which execute
through the device driver, and are then handed off to the COMPOSITE system. Here, a
demultiplexing component in the kernel maps the execution to the appropriate upcall
thread. From that point on, execution of the interrupt is conducted in a networking
component in COMPOSITE, to perform packet processing. This takes 14000 cycles (a value
taken from measurements of Linux network bottom halves [Fry and West 2007]). When
this processing has completed, a notification of packet arrival is placed into a mailbox,
waking an application task if one is waiting. The tasks pull packets out of the mailbox
queues, and processes them for 30000 cycles.

Figure 12(a) depicts the system when the interrupts have the highest priority (NB:
lower numerical priority values equate to higher priority, or greater precedence). Pack-
ets arriving at a sufficient rate cause livelock on the application tasks. The behavior of
the system is not consistent or predictable across different interrupt loads. Figure 12(b)
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Fig. 12. Packets processed for two streams and two system tasks.

shows the system configured where the interrupts execute as upcalls associated with a
brand with a higher priority than the corresponding dependent task, but where upcalls
associated with Task 2 have a lower priority than Task 1 and its associated upcalls.
In this case, there is less interference between tasks as the upcall execution for Task
2 does not have as much impact on Task 1. Task 1 processes more packets at its peak
and performs useful work for longer. Regardless, as the number of received packets
increases for each stream, livelock still occurs at 100K packets per second preventing
task and system progress.

Figure 12(c) depicts a system that utilizes a deferrable server to execute all
interrupts. Here, the deferrable server is chosen to receive 7 out of 20 quanta. These
numbers are derived from the relative costs of interrupt to task processing, leading to
a situation in which the system is marginally overloaded. An analysis of a system with
real-time or QoS constraints could derive appropriate rate-limits in a comparable fash-
ion. In this graph, the interrupts for both tasks share the same deferrable server and
packet queue. Given that half of the packets in the queue are from each task, it follows
that even though the system wishes one task to have preference (Task 1), they both
process equal amounts of packets. Though there is no notion of differentiated service
based on task priorities, the system is able to avoid livelock at 250K packets per second.
To avoid livelock independent of the packets per second, hardware support is required
to decrease interrupt rate [Mogul and Ramakrishnan 1997; Druschel and Banga
1996]. Here we study if the COMPOSITE mechanisms can be used to enable component-
based schedulers to effectively control software threads and upcalls, but results still
demonstrate level 0 interrupt overheads that are not controlled by schedulers.

Figure 12(d) differentiates interrupts executing for the different tasks by their pri-
ority, and also processes the interrupts on two separate deferrable servers. This en-
ables interrupts to be handled in a fixed priority framework, in a manner that bounds
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Fig. 13. Total packets processed for Figure 12.

Fig. 14. Packets processed for two streams: Stream 1 has packets for Task 1, and Stream 2 has packets for
Task 2.

their interference rate on other tasks. Here, the high priority task consistently pro-
cesses more packets than the lower-priority task, and the deferrable servers diminish
the interference of interrupt-driven execution. The cumulative packets processed for
Task 1 and 2, and the total of both are plotted in Figure 13(c). Both approaches that
use deferrable servers to diminish interrupt interference maintain high throughput.
However, the differentiated service approach is the only one that both achieves high
throughput, and predictable packet processing (with a 5 to 2 ratio for Tasks 1 and 2).

Figure 14 further investigates the behaviors of the two approaches using deferrable
servers. Specifically, we wish to study the ability of the system to maintain predictably
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Fig. 15. Total packets processed for Figure 14.

differentiated service between the two tasks, given varying interrupt arrival rates. In
this case, Task 1 is sent a constant stream of 24100 packets per second in Figure 14(a)
and (b), and 488000 in Figure 14(d) and (e). The amount of packets per second sent
to Task 2 varies along the x-axis. The results for both receive rates demonstrate that
when all interrupts share the same deferrable server, allocation of processed packets to
tasks is mainly dependent on the ratio of packets sent to Task 1 and Task 2. Separating
interrupt processing into two different deferrable servers, on the other hand, enables
the system to differentiate service between tasks, according to QoS requirements.

Figure 15 plots the total amounts of packets processed for the tasks in the system
under the different hierarchies and constant packet receive rates. The differentiated
service approach maintains a predictable allocation of processing time to the tasks
consistent with their relative deferrable server settings. Using only a single deferrable
server and therefore ignoring the task dependencies on interrupts, yields processing
time allocations that are heavily skewed towards the task of lesser priority when it has
more packets arrivals.

4. RELATED WORK

Past research has put forth mechanisms to implement hierarchically structured
user-level schedulers [Ford and Susarla 1996; Stoess 2007]. Additionally, others have
made the argument that user-level scheduling is useful for real-time systems, and have
provided methods accommodating it in a middleware setting [Aswathanarayana et al.
2005]. None of these works attempt to remove all notions of blocking and scheduling
from the kernel. Additionally, these approaches, do not provide a mechanism for
scheduling and accounting asynchronous events (e.g., interrupts) without recourse to
costly scheduler invocations. We use this feature to achieve significantly lower event
response times required for a predictable system, essentially by capturing scheduling
semantics in event structures shared between user-space and the kernel.

The early demultiplexing of events [Tennenhouse 1989; Mogul et al. 1987], and
assigning interrupt execution to higher-level thread contexts [del Foyo et al. 2006;
Druschel and Banga 1996; Zhang and West 2006] have been studied before. We perform
predictable upcall scheduling using a hierarchy of customizable, component-based
schedulers. Each is in a separate protection domain, thus providing isolation between
components and the kernel itself. Thus, we offer a solution to the design of application-
specific service policies in a low-cost, dependable and predictable (extensible) system.

Significant effort has been made to analytically study the compositional feasibility of
constructing specific scheduling hierarchies [Shin and Lee 2003; Regehr and Stankovic
2001]. Others have investigated how to map abstract application QoS specifications
into component schedulers to provide service guarantees [Gai et al. 2001]. Both of these
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techniques are complementary to our work, and can be used to refine or verify a given
hierarchy of user-level schedulers. Hierarchical scheduling can be used to enable child
schedulers to be customized to their subsystems, while still providing temporal isolation
between them via the parent scheduler. In contrast, resource kernels [Rajkumar et al.
2001] do not focus on enabling customizable scheduling policies, but do ensure temporal
isolation between subsystems. Application-specific scheduling methods that take into
account application constraints, and alter behavior based on system dynamics [Patil
and Audsley 2005; Ruocco 2006] promise to lessen the semantic gap by offering a tighter
coupling between application and scheduler.

This article is an extended version of Parmer and West [2008].

5. CONCLUSIONS AND FUTURE WORK

This article presents the design of user-level scheduling hierarchies in the COMPOSITE

component-based system. By providing support for user-defined component services
that are separated from the kernel, untrusted or malicious software is prevented from
jeopardizing the kernel. Moreover, component services themselves may be isolated
from one another, thereby avoiding potentially adverse interactions. Collectively, this
arrangement serves to provide a system framework that is both extensible and depend-
able. These capabilities are essential for future cyber-physical systems that require
novel temporal policies, and dependability in the face of failures. However, to ensure
sufficient predictability for use in real-time domains, COMPOSITE features a series of low-
overhead mechanisms, having bounded costs that are on par or better than competing
systems such as Linux. Microbenchmarks show that COMPOSITE incurs low overhead in
its various mechanisms to communicate between and schedule component services.

We describe a novel method of branding upcall execution to higher-level thread
contexts. We also discuss the COMPOSITE approach to avoid direct scheduler invocation
while still allowing full user-level control of scheduling decisions. It is difficult to achieve
hard real-time execution on commodity hardware as there are many unpredictable and
uncontrollable sources of interference (e.g., nonmaskable System Management Mode
interrupts on x86, and shared interrupt lines). In as much as the underlying hardware
can be controlled by the system, we have shown that scheduling policy can be efficiently
and predictably implemented in components at user level. Additionally, a lightweight
technique to implement nonblocking synchronization at user level, essential for the
manipulation of scheduling queues, is also described. This is similar to futexes but does
not require atomic instructions, instead relying on “restartable atomic sequences”.

We demonstrate the effectiveness of these techniques by implementing different
scheduling hierarchies, featuring various alternative policies, and show that it is
possible to implement differentiated service guarantees. Experiments show that by
using separate deferrable servers to handle and account for interrupts, a system is
able to behave according to specific service constraints, without suffering livelock.

Future work includes porting more sophisticated scheduling policies to COMPOS-
ITE. In doing so, we wish to provide a significant library of policies which applica-
tions and systems can compose into hierarchies as they see fit. Additionally, we will
consider incorporating frameworks for more easily writing schedulers [Barreto and
Muller 2002]. Documentation, information, and code for Composite can be found at
http://www.seas.gwu.edu/ gparmer/composite.html.
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