
Architecture and Hardware Support for Real-time Scheduling of Packet Streams

Raj Krishnamurthy, Sudhakar Yalamanchili, Richard West, and Karsten Schwan
{ rk@cc.gatech.edu}

Critical Systems Laboratory

Georgia Institute of Technology
Atlanta, GA 30332

The Problem
1) Scheduling of packet streams in real-time

(as opposed to virtual-time) is necessary
to make classes of scheduling guarantees
and maximize link utilization.

2) Scheduling at wire-speeds for optical
multi-gigabit links and the emerging
10GEA (10 Gigabit Ethernet Alliance)
standard necessitates scheduling decisions
be guaranteed to be completed in a packet
time.

3) Architecture and implementations that can
meet cost/performance requirements
across a range of environments without
ASIC re-engineering overheads.

4) It is necessary to trade-off scheduler
throughput in packets/sec with quality of
service and scheduling granularity, e.g.,
scheduling at the packet level vs. MPEG
frame level.

Proposed Solution
 We propose to address these
problems through the use of a powerful
scheduling discipline and a flexible target
architecture that combines a commercial
microprocessor datapath with a tightly
coupled reconfigurable logic component such
as a FPGA. Such system on a chip
architectures have been announced in the
recent past and provide potential hardware
solutions for applications that demand both
flexibility and the performance that can be
achieved via hardware customization. Our
approach implements the compute intensive
scheduling decision logic within the
configurable logic component while control
and data movement is handled by the
microprocessor [2].

The scheduling discipline for which we
propose hardware solutions is Dynamic
Window-Constrained Scheduling (DWCS)
[1, 2]. DWCS is a powerful scheduling

framework that can be configured to
implement most existing scheduling
disciplines such as WFQ [3]. While DWCS
addresses the issue of provisioning QoS, the
complexity of the priority update
computations poses a challenging
implementation problem for scheduling a
large number of streams over multi-gigabit
links. For example, the ethernet frame time
on a 10 Gigabit link ranges from
approximately 0.05 microseconds (64 byte)
to 1.2 microsecond (1500 byte). This can be
substantially lower for ATM cells or SONET
frames that need to be scheduled at wire
speeds. Packet level QoS scheduling at these
link speeds poses significant implementation
challenges.
To meet the challenge we propose a
scheduler architecture comprised of a
microprocessor coupled with a field
programmable gate array (FPGA).
Scheduling logic does possess significant
amount of parallelism for which we propose
a customized FPGA solution. Such solutions
are viable as FPGA technology pushes 10
M gate designs with clock rates of up to
200MHz with relatively low reconfiguration
overheads. By carefully crafting suitable
implementations for compute intensive
scheduler components for implementation
within the FPGA, we find tractable
implementations for the fine grained, real-
time packet scheduling problem.

The Scheduler: Operation
 The central idea in any packet
scheduling discipline is to find the winner
stream among any two streams based on a set
of rules. Pairwise ordering of streams
produces an overall winner. DWCS uses
deadlines and loss-tolerances (x packets in a
y packets interval can be late/lost) to capture
the notion of priority. In DWCS packet
deadlines are used to schedule two streams. If

the deadlines are the same then, a set of rules
based on loss-tolerances is used to determine
the winner. Once a winner is computed, the
packet at the head of this stream can be
transmitted and the priorities of other streams
waiting to be serviced is adjusted based on
relative importance and whether deadlines
have been missed. This process is repeated
until all the packets waiting to be serviced are
scheduled. It is key to note that a winner
must be determined and priorities of other
streams adjusted before the next winner can
be computed (since loss-tolerance values are
adjusted at the end of each scheduler cycle).
The implication is successive scheduling
operations cannot be overlapped/pipelined.

The Scheduler: Hardware Architecture
 The hardware implementation
consists of a two basic components. The
register block holds the state of each stream
including the priority values (deadlines and
loss-tolerances) and priority update logic.
Register blocks supply priority values to a
decision block. The decision block is
organized as a set of components that execute
concurrently – a comparator for comparing
the priority values and one component for
each rule used by the scheduler in case ties
need to be broken. This decision speed is
dictated by the critical path through the most
complex component. Two register blocks
feeding a decision block is a scheduling tile
and is considered a base structure.
Preliminary performance values for a
scheduling tile are shown in Table 1 below:

Table 1: Implementation Results(Synthesis
from VHDL and Xilinx Core Library)
Architecture Implementation Number

of CLBs
Maximum
Clock

Canonical
Structure
(Two register
blocks
feeding a
decision
block)

Xilinx Virtex
V300BG432-6.
Synthesis
optimization set
at “ low” . Clock
target set at
100MHz.

7 % 64.65
MHz

Implementation results detail the area

(number of Configurable Logic Blocks) and
maximum clock period attainable by this
design. The initial results are very promising.
For four streams, a winner can be computed
in 2 clock cycles or every 30 ns with another
cycle for priority update or every 45ns(65

MHz, 15ns period). The logic utilization is
also very low, close to 10 % of a Virtex 300
part for a single tile. A number of Decision
Blocks may be placed on a Virtex part for
scheduling of multiple streams.

For scheduling a large number of
streams, we are investigating an architectural
solution based on a single stage, re-
circulating shuffle interconnection. Register
blocks are connected to a stage of two input
decision blocks via a shuffle connection. The
outputs of the decision blocks are fed back to
the inputs. The shuffle architecture for a four
stream version consists of four register base
blocks and two decision blocks. The process
takes 2 (log4) cycles to complete and
provides a priority ordered list of streams.
The highest priority stream is selected and
priorities updated accordingly by the base
register blocks. Thus for N streams, we
require N register blocks, N/2 decision
blocks and logN cycles to pick a winner. We
also require control and steering logic unit
that provides interface to memory, winner
comparator block outputs and buses to
provide stream parameter values to the
register base blocks . The logic requirements
are approximately 50% of that of a typical
comparator tree implementation. Note that
the scheduler area grows linearly in the
number of streams and scheduling decision
time delay grows logarithmically.

The scheduling tile is designed to be
flexible enough to be implement alternative
scheduling algorithms. Performance results
include area/time performance as a function
of the number of streams.
References
[1] Richard West and C. Poellabauer. Analysis of
a Window-Constrained Scheduler for Real-time
and Best-Effort Packet Streams. In Proceedings
of the 21st Real-Time Systems Symposium,
Orlando, Florida, November 2000.

[2] Raj Krishnamurthy, K. Schwan, R. West and
M. Rosu. A Network CoProcessor-Based
Approach to Scalable Media Streaming in
Servers, In Proceedings of the 29th International
Conference on Parallel Processing, Toronto,
Canada, July 2000.

[3] A. Demers, S. Keshav and S. Shenker.
Analysis and Simulation of a Fair-Queueing
Algorithm. Journal of Internernetworking
Research and Experience, pages 3-26, Oct 1990

