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Abstract
Task pipelines are common in today’s embedded systems,
as data moves from source to sink in sensing-processing-
actuation task chains. A real-time task pipeline is constructed
by connecting a series of periodic tasks with data buffers. In
a time-critical system, end-to-end timing and data-transfer
properties of a task pipeline must be guaranteed. A guarantee
could be mathematically expressed by assigning constraints
to the tasks of a pipeline. However, deriving task scheduling
parameters to meet end-to-end guarantees is an NP-hard con-
straint optimization problem. Hence, a traditional constraint
solver is not a suitable runtime solution.

In this paper, we present a heuristic constraint solver al-
gorithm, CoPi, to derive the execution times and periods
of pipelined tasks that meet the end-to-end constraints and
schedulability requirements. We consider two upper bound
constraints on a task pipeline: end-to-end delay and loss-rate.
After satisfying these constraints, CoPi schedules a pipeline
as a set of asynchronous and data independent periodic tasks,
under the rate-monotonic scheduling algorithm. Simulations
show that CoPi has a comparable pipeline acceptance ratio
and significantly better runtime than open-source MINLP-
solvers. Furthermore, we use CoPi to map multiple task
pipelines to a multiprocessor system. We demonstrate that a
partitioned multiprocessor scheduling algorithm coupled with
CoPi accommodates dynamically appearing pipelines, while
attempting to minimize task migrations.

1 Introduction

Real-time, embedded and cyber-physical systems are com-
monly composed from pipelines of tasks connected by data
buffers. In automotive and avionics domains, sensor inputs
are fed through a pipeline of processing and control tasks,
which ultimately produce actuator outputs. Such time-critical
systems benefit from a real-time task pipeline model. Given
the increased use of multiprocessors in embedded systems,
there is a need to investigate the scheduling of real-time task
pipelines on such platforms.

Task pipelines, or cause-effect chains, have received in-
creased attention in recent research work [17,20,32,40,41,60],
partly because of their usage in well-known software packages
such as ROS [13, 65]. Although real-time task pipelines have
long been studied [23,49,50], the application of constraints on

a pipeline has received little attention [19]. Constraints on a
pipeline of periodic tasks ensure that end-to-end properties of
a pipeline are guaranteed. However, finding schedulable task
runtimes and periods to meet the constraints is an NP-hard
problem. Therefore, traditional solvers are unsuitable in run-
time scheduling, where tasks and pipelines may dynamically
appear in a real-time system.

This paper presents a heuristic constraint solver algorithm
for real-time task pipelines, CoPi, to derive the runtime bud-
gets and periods of individual pipelined tasks from a list of
supplied task budgets. CoPi works with two pipeline con-
straints: the worst-case end-to-end (E2E) delay and loss-rate.
The worst-case E2E delay is the maximum time interval be-
tween the time a data sample first appears at the input to the
first task of a pipeline, and the first time a corresponding out-
put is produced at the last task of the pipeline. The worst-case
E2E loss-rate is the number of input messages to the pipeline
that do not have a corresponding output with respect to the
number of input messages to a pipeline over the period of
its first task. As CoPi treats pipelined tasks as asynchronous
and independent tasks, data might be lost between two com-
municating tasks if a producer overwrites its output before a
consumer has read it. The loss-rate captures how many input
messages have no effect at the end of the output of a task
pipeline. In addition to these constraints, CoPi uses the rate-
monotonic scheduling (RMS) algorithm to schedule the tasks,
and the RMS utilization upper bound as another constraint.
RMS is chosen for its simplicity and popularity in real-time
systems.

CoPi aims to avoid unnecessary delay and message losses
in a pipeline. In previous work [22, 28], tasks are released
at offset times, or task precedence relations are created, to
mitigate the data dependency between communicating tasks.
CoPi finds the suitable task runtimes and periods so that no

Figure 1: CoPi Period Derivation: The above pipeline has an end-to-end
delay upper bound constraint of 100 time units. In the simplest case, CoPi
divides the delay by (number of tasks + 1) [assuming input is available at
arbitrary time. If input is only available at the beginning of A’s period, then
the upper bound could be tightened to 80 time units]. C and T are respectively
the runtime budget and period of a task.
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timing and data dependencies occur at runtime between the
communicating tasks.

Figure 1 shows a small example where CoPi meets the
E2E delay upper bound by assigning suitable periods to the
pipelined tasks. The example also meets the RMS utilization
bound. However, a tighter upper bound on the E2E delay
could violate the RMS utilization bound, and CoPi needs to
find a more appropriate set of task runtimes and periods. CoPi
tunes the individual task runtimes and periods so that E2E
delay and loss-rate are under their upper bounds, while the
total utilization does not cross the RMS bound.

As CoPi meets the E2E delay and loss-rate guarantees of a
pipeline, the asynchronous tasks are scheduled without any
timing or data dependencies between each other. We leverage
this feature of CoPi to map the tasks of multiple pipelines
to a multiprocessor system. Figure 2 summarizes this main
idea. We use the Worst-fit Decreasing (WFD) heuristic to
map tasks to processors and also incorporate runtime task
migration and scheduling parameter optimization strategies
to admit dynamically appearing pipelines.

As real-time systems increasingly operate in dynamic en-
vironments (e.g., to perform object detection in autonomous
driving [37]), it is likewise increasingly important to handle
task pipeline scheduling at runtime. Implementing a complete
MINLP solver is difficult and sometimes infeasible in an OS-
level scheduler. CoPi provides the basis for online practical
solutions to pipeline scheduling in real-time multiprocessor
systems.

Summary of contributions:

1. We formally present the problem of finding suitable run-
time budgets and periods of a pipeline of periodic tasks,
under two pipeline constraints (E2E delay and loss-rate),
and a utilization bound constraint.

2. We propose and analyze a heuristic constraint solver algo-
rithm, CoPi, to satisfy all the constraints.

3. We demonstrate the usefulness of CoPi by using it in a
multiprocessor scheduling algorithm, which includes run-
time task migration and pipeline scheduling optimization
mechanisms to map dynamic pipelines to processor cores.

4. We evaluate CoPi against open-source Mixed-integer Non-
linear Programming (MINLP) solvers such as GEKKO [5],
scipy [2] and pyomo [11,34] with simulated task pipelines1.
We show that CoPi performs up to an order of magnitude
better in runtime, and comparably in pipeline acceptance
ratio (i.e., ratio of the number of schedulable pipelines
by a solver to the total number of pipelines), with respect
to other solvers. We have also tested CoPi with tasksets

1The artifacts are available at https://github.com/sohamm17/pipe_
schedule

Figure 2: CoPi converts a task pipeline to a set of independent and asyn-
chronous tasks. A four-slot asynchronous buffer [62] is used between a pair
of communicating tasks. The tasks are then mapped to a multiprocessor
system.

from the WATERS 2015 workshop paper [43] and ob-
serve similar performance to when pipelines are randomly
generated. Moreover, simulation experiments for multi-
processor scheduling demonstrate CoPi’s usefulness in
maximizing processor utilization and minimizing runtime
task migrations.

The next section describes the system model. Then, Sec-
tion 3 and 4 formally define the pipeline constraints and the
problem, respectively. Section 5 describes and analyzes CoPi.
Section 6 explains the multiprocessor scheduling algorithm
using CoPi and two pipeline acceptance improvement tech-
niques. An evaluation with simulated task pipelines is pre-
sented in Section 7. Then, we explore a few possible future
implementation opportunities of CoPi in RTOS schedulers in
Section 8. Related Work is discussed in Section 9, followed
by conclusions and future work in Section 10.

2 System Model

In this section, we define the task, pipeline and scheduling
models in the system.

2.1 Task Model
All tasks are assumed to be asynchronous, which means they
do not wait or block on other tasks for a resource. Every
task has a four-slot asynchronous buffer [62] for its input,
and another for its output, and works with the most recent
available data. A task τ in the system is defined by a two-tuple
(C,T ), as follows:

• C: the worst-case runtime budget or capacity2 of a task to
read a message (or data-unit) from its input buffer, process
the data and write a message (or data-unit) to its output

2We use the terms runtime budget, execution time budget, budget and
capacity interchangeably.
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buffer. This is extensible to inputs or outputs of more than
a single data-unit in a four-slot buffer.

• T : the period and deadline of an implicit-deadline peri-
odic task. In every new period, τ works on new data, and
generates a unique output.

C is the initial runtime budget to process a single data-
unit by a pipelined task. Later, we show how our heuristic
constraint solver algorithm CoPi adjusts the final allocated
budget using C to meet the end-to-end constraints.

2.2 Pipeline Model
A pipeline P is represented by an ordered set of periodic
tasks: S = {τ1, ...,τN}. The cardinality of S is N. ∀τi,τ j ∈ S,
i < j implies that data flows from τi to τ j. Without the loss
of generality, we consider unidirectional pipelines without
cycles.

2.2.1 Overview of Pipeline Constraints

We explain the pipeline constraints formally in Section 3. We
provide a high-level overview of them below:

• E: the worst-case end-to-end latency or delay of a pipeline
i.e., the maximum time a single message takes from the
input to the output of a pipeline. The input appears at any
arbitrary time for the first task τ1 of a pipeline.

• L: the end-to-end loss-rate i.e., the number of input mes-
sages that do not have a corresponding output message, for
every input message to the pipeline, over the period of its
first task. It is expressed as a fraction or a percentage. As
the tasks work with asynchronous buffers, a certain mes-
sage might be overwritten and lost due to more than one
consecutive write by a producer task before a read by a
consumer task. L captures how many messages are lost per
input message.

2.2.2 Communication Model

A task communicates with another task with a message or
data unit. In practice, a message is either a sensor input such
as IMU data, an actuator output like steering control, or pro-
cessed data in between inputs and outputs. In the automotive
and factory automation industries, messages are also called
labels [43].

The tasks in a pipeline communicate with each other fol-
lowing an implicit communication model [33]. Therefore, a
message is read from a shared input buffer at the beginning
of a job of a task, and used throughout the task before writing
to a shared output buffer. This ensures that a single and con-
sistent copy of a message is used for a single job invocation
of a task.

Simpson’s four-slot algorithm [62] is used to exchange
data between a pair of communicating tasks via a register-
based fully asynchronous buffer. In this algorithm, two pairs
of slots are maintained separately for a reader and a writer.
The writer uses two control bits to indicate which pair and
slot are being most recently written. The reader uses another
control bit to indicate which pair it is reading. The algorithm
shows that four slots are enough for a reader and a writer to
communicate asynchronously with each other [58, 62] while
ensuring messages are exchanged as integral units.

τ1, the first task of a pipeline, is the source task. τ1 = τsrc.
τN , the last task of a pipeline, is the sink task. τN = τsink. τ1
does not wait or block for its input data because we assume
that an input is always available for τ1. It is realistic since the
source generally reads from a sensor input or digital media.
In absence of new input data, the source task sends the most
recently available data [16]. The same assumption applies for
the output of a sink task.

2.3 Scheduling Model
The system schedules all the tasks using the rate-monotonic
scheduling (RMS) algorithm [48]. We assume that each peri-
odic task τi, running in a sporadic server [64] with a processor
capacity reserve [51], will have a maximum runtime of Ci
time-units in every Ti time-units, as it is designed to be imple-
mented in an RTOS like Quest [18]. We choose RMS because
it is a low-overhead, fixed-priority scheduling algorithm that
is popular in many RTOSs [4, 10, 18].

Each task is assigned a priority by the RMS algorithm,
which is inversely proportional to its period. If two tasks
of the same pipeline have the same periods, then the pre-
ceding task in the pipeline is given higher priority. In other
words, prio(τi) > prio(τ j), if i < j and Ti = Tj. prio(τi) is
the priority of task assigned by RMS.

If a task has already finished its work for a job invocation, it
yields and does not start its next job until the next period. This
ensures that a single job invocation of a task does not over-
write its already written output in an asynchronous communi-
cation. Moreover, the fixed execution time tightly bounds a
pipeline’s end-to-end latency [32].

3 Pipeline Constraints

We consider constraints on the two pipeline parameters and
on the total task utilization. The two pipeline parameters, end-
to-end delay and loss-rate, are computed from the ordered
taskset S. We first discuss a computational analysis of the
parameters, and then present the constraints on them.

3.1 End-to-end Delay (E) Computation
The worst-case end-to-end delay of a pipeline is the maximum
time for a message to appear at τsrc and emit from τsink. It

3



Journal of Systems Research (JSys) 2022

is also known as the maximum reaction time [16, 22] in a
cause-effect chain [3, 7].

Davare et al. presented the first but conservative upper
bound on the worst-case end-to-end delay for a pipeline of
periodic tasks with arbitrary budgets and periods [19]. If
Ri is the worst-case response-time of τi, then the worst-case
end-to-end delay is the following:

E =
N

∑
i=1

(Ti +Ri) (1)

In the above equation, Ri is recursively calculated by initially
estimating to be equal to the task period Ti for each task τi [39].
As Equation 1 is a recursive equation, the time-complexity of
computing the equation depends on the wanted precision on
E. Response-time calculation for fixed-priority scheduling is
known to be NP-hard [21]. Nevertheless, a bounded computa-
tion time is preferred in a runtime task scheduling algorithm.
Therefore, Ri is replaced in the above equation with Ti. If
τi is feasibly scheduled, then Ri is less than or equal to Ti.
Therefore, a faster computable version of Equation 1 is the
following:

E = 2×
N

∑
i=1

Ti (2)

In offline or slower design-time analysis, Equation 1 is tolera-
ble. For use in runtime scheduling, Equation 2 is preferable.

Dürr et al. tightened Equation 1 by considering task priori-
ties between pairs of communicating tasks in a pipeline [20].
They use forward and backward cause-effect chains to derive
a tighter upper bound on E2E delay. After converting the
sporadic task model to the periodic task model as done in a
subsequent work [32], the worst-case E2E delay (also called
the maximum reaction time) of a pipeline considering all the
tasks are released at the critical instant [48] (initial release
offset is 0), as proved by Dürr et al., is the following:

E ≤ T1 +RN +
N−1

∑
i=1

max(Ri,Ti+1 +Ri× I) (3)

In above equation, I is the Iverson bracket. I = 1, if the
(i+1)th task has higher priority than ith task. I = 0, otherwise.

As it is done for Equation 1 and 2, the following equation
is a conservative but faster computable version of Equation 3:

E ≤ T1 +TN +
N−1

∑
i=1

max(Ti,Ti+1 +Ti× I) (4)

The asymptotic time-complexity of Equations 2 and 4 is O(N).
Equation 2 and 4 are useful in designing a runtime end-to-end
pipeline scheduling algorithm. In this paper, Equation 4 is
used for the uniprocessor pipeline scheduling. For multipro-
cessor scheduling, Davare et al.’s Equation 2 is used to avoid
dependencies on task priorities in a pipeline, as a pipelined
task could be mapped to any processor.

Figure 3: End-to-end delay example.

3.1.1 Example

Figure 3 shows an example pipeline. The end-to-end delays
are 74 and 63, respectively with Equation 2 and Equation 4,
if the tasks are scheduled with RMS. The calculation of
Equation 4 for the example is the following:

E ≤ 5+9+(max(5,10+5×0)+max(10,7+10×1)+
max(7,6+7×1)+max(6,9+6×0))

≤ 5+9+(10+(10+7)+(7+6)+9)
≤ 63

3.2 End-to-end Loss-rate (L) Computation
Data loss is an issue in systems involving sensors and actua-
tors [30, 42, 72] The end-to-end loss-rate of a pipeline is the
number of input messages that do not have a corresponding
output, per input message to a pipeline, over the period of its
first task. Suppose the total number of input messages per
period of the first task of a pipeline is I, and the number of cor-
responding output messages for I inputs is O, then loss-rate is
defined by Equation 5. If O is greater than or equal to I, then
no messages are lost, and the loss-rate is deemed 0. Loss-rate
can also be realized in terms of Feiertag et al.’s concept of
reachability [22], where it is the ratio of non-reachable mes-
sages to the total number of input messages per period of the
first task of a pipeline.

L =
I−O

I
, if O < I

= 0, if O≥ I (5)

Input and output messages are usually generated and sent
from a sensor to an actuator, associated with an I/O buffer.
However, an input may not come from an external buffer
or input device, but may simply be generated by the source
task of a pipeline. In that case, the generated messages are
considered to be the inputs to a pipeline.

To calculate the loss-rate, we assume that the pipelined
tasks are feasibly scheduled using a real-time scheduling
algorithm following the scheduling model described in Sec-
tion 2.3. For every pair of producer-consumer tasks (τp→ τc)
in a pipeline, the consumer could either oversample (Tc ≤ Tp)
or undersample (Tc > Tp) its input from its corresponding pro-
ducer. Based on the relationships between the periods of all
producer-consumer pairs starting from the source task to the
sink task, the end-to-end loss-rate of a pipeline is calculated.
The calculation is explained later in this section.
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3.2.1 Sampling Ratio

We define the sampling ratio fτp→τc of a producer-consumer
pair (τp → τc) as the number of output messages of τc per
unique input message of τp. According to the task and
scheduling model, a task generates a single message during
its runtime budget per period, and retires until its next invo-
cation. Therefore, fτp→τc is calculated from the producer’s
period divided by the consumer’s period:

fτp→τc =
Tp

Tc
(6)

Then, the loss-rate of a producer-consumer pair is (1−
fτp→τc) = (1− Tp

Tc
), if fτp→τc < 1, 0 otherwise. Examples

are given later in the section.

Oversampling In the case of an oversampling consumer
(Tp ≥ Tc), the data from the producer will be overrepresented
in the output by the consumer. For example, consider τp =
(Cp = 2,Tp = 40),τc = (Cc = 1,Tc = 10). τp runs for 2 time-
units in every 40 time-units and reads, processes, and writes a
single input message. τc does the same in 1 time-unit in every
10 time-units. Therefore, τc will emit the same output 4 times
for a unique input of τp. Hence, the sampling ratio is Tp

Tc
= 4.

Therefore, the oversampling ratio is: Oτp→τc = fτp→τc =
Tp
Tc
≥ 1. The loss-rate is 0 in this case as the sampling ratio

is more than 1. This means that no messages are lost in this
producer-consumer pair.

Undersampling The case of an undersampling consumer
(Tp < Tc) is more nuanced because data might be lost. The
data from a producer might be overwritten before a consumer
has read it, as the consumer has a larger period. For example,
consider τp = (Cp = 1,Tp = 10),τc = (Cc = 5,Tc = 40). τp
takes 1 time-unit in every 10 time-units to read, process and
finally output a message for τc. τc takes 5 time-units in every
40 time-units to read a single message from τp, process it,
and write its own single output message. Therefore, τp will
run 4 times and produce 4 unique messages in 40 time-units.
However, τc only runs once in 40 time-units and works with
only 1 of 4 messages produced by τp. Therefore, the sampling
ratio is Tp

Tc
= 1

4 . Here, the undersampling ratio: Uτp→τc =

fτp→τc =
Tp
Tc

< 1, yielding a loss-rate of (1− 1
4 ) = 3

4 or 75%.

Pipeline Sampling Ratio Let’s consider a pipeline Px =
{Sx}. Subscript x is used to distinguish a pipeline. Px has
two communicating tasks (Sx = {τ1,τ2},Nx = 2) i.e., a single
producer-consumer pair (τ1 → τ2). The sampling ratio is
fx = T1

T2
. The whole pipeline is oversampled if fx ≥ 1 and

undersampled if fx < 1.
Now, consider that Px is extended by adding a new task τnew

at the end of Px. A new pipeline Py is thus formed whose or-
dered taskset Sy is {τ1,τ2,τnew}, and length is Ny =Nx+1= 3.

Table 1: Rules to calculate the lower bound on the sampling ratio of a
resultant pipeline Py after adding a new τnew task to a pipeline Px.

Rule Px(τ1 →
...→ τNx)

τnew Lower Bound on new
Sampling Ratio ( fy)

1 Undersampled Oversampled fx
2 Undersampled Undersampled

fx×
TNx

Tnew
3 Oversampled Oversampled
4 Oversampled Undersampled

τnew could be oversampling or undersampling compared to
the last task in Px, τ2 or τNx .

We want to calculate a lower bound on the sampling ratio
to derive an upper bound on the loss-rate. We define 4 rules
to calculate a lower bound on the sampling ratio of a pipeline.
The rules are summarized in Table 1 and proved below:

Rule 1 If a pipeline Px is undersampled, adding an over-
sampling task whose period is smaller than the period of Px’s
last task τNx , does not change the lower bound of the resultant
pipeline’s sampling ratio.

Proof. Let’s take an undersampling pipeline Px. Its sam-
pling ratio is fx =

B
A . It produces B output messages for every

A input messages to a pipeline. B < A.
A new oversampling τnew task is added to Px to form

pipeline Py. Therefore, τnew’s period is less than or equal
to the period of Px’s last task τNx . Tnew ≤ TNx .

For every new input message to τnew, OτNx→τnew =( TNx
Tnew
≥ 1)

number of output messages are produced by τnew. Therefore,
for every B outputs from Px to τnew, (B×OτNx→τnew) outputs
are produced by τnew.

However, (B−A) number of messages are already lost in
the pipeline Px. The oversampling task τnew cannot recover
those messages. Therefore, (B×OτNx→τnew) messages just
represent the oversampled messages produced by task τnew.
The number of unique output messages per input message of
the pipeline remains same. Therefore, Px’s sampling ratio ( fx)
remains the lower bound of Py’s sampling ratio. �

Example Consider the example given in Figure 4. Px =
{Sx = (τ1,τ2)}. Nx = 2. Py is formed by adding τ3 to Px.
τ1’s input is given at the left most side. Each line represents a
unique message with a corresponding ID shown by the labels
1 to 4. τ1 reads one message in its single job invocation,
increases the ASCII value of the input and writes to its output
buffer. τ2 and τ3 simply read one input message at a time and
forward it through to the corresponding output buffer.

Figure 4: Example of Rule 1 of the pipeline sampling ratio calculation.
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Px’s sampling ratio fx is T1
T2

= 0.5. We see that τ2 emits
its 1st (B) and 3rd (D) input messages, although it receives
B,C,D,E as inputs. τ2 emits one out of every two input mes-
sages. Now, we add τ3 after τ2. τ3 is oversampling with
respect to τ2, exemplifying Rule 1. As τ3 runs twice as fre-
quently as τ2, it replicates one input message two times in its
output. Therefore, it emits B,B,D,D for B,D inputs coming
from τ2. However, the repetitions do not recover the lost mes-
sages A,C. Therefore, the lower bound of the sampling ratio
of the new pipeline Py remains the sampling ratio of pipeline
Px. In this case, that is 0.5.

Rule 2 If an undersampling task τnew is added at the end
of an undersampled pipeline Px, then the resultant sampling
ratio is lower bounded by the undersampling ratio of Px, fx,
multiplied by the undersampling ratio of the last task of Px
and the new task .

Proof. Let’s take the same undersampling pipeline Px from
Rule 1. fx =

B
A and B < A. An undersampling τnew task is

added to Px to form pipeline Py. Therefore, τnew’s period is
greater than the period of Px’s last task τNx . Tnew > TNx .

For every new input message to τnew, TNx
Tnew

=UτNx→τnew(<

1) outputs are produced by τnew. Therefore, for every B inputs
to τnew, only B×UτNx→τnew messages are produced. Hence,
the sampling ratio of the newly formed pipeline Py: fy =
B×UτNx→τnew

A = fx×
TNx
Tnew

. fy provides the lower bound for the
new pipeline Py. �

Example Consider the same example given in Figure 4 but
with period of τ3 = 400. In this case. τ3 emits only the 1st (B)
message. Therefore, the sampling ratio is 0.5× 200

400 = 0.25.

Rule 3 If an oversampling task τnew is added at the end of
an oversampled pipeline Px, then the resultant sampling ratio
is lower bounded by fx multiplied by the oversampling ratio
of the last task of Px and the new task.

Proof. Let’s consider an oversampling pipeline Px. fx =
B
A

and B≥ A. An oversampling task τnew is added to Px to form
pipeline Py. Tnew ≤ TNx . For every B outputs from Px to τnew,
(B×OτNx→τnew) outputs are produced by τnew.

Therefore, the sampling ratio of the newly formed pipeline

Py: fy =
B×OτNx→τnew

A = fx×
TNx
Tnew

. fy is the lower bound on
the sampling ratio of Py. �

Example Consider the example in Figure 5, which is simi-
lar to Figure 4 but with different periods. The sampling ratio
after adding τ3 at the end of Px(Sx = {τ1,τ2}) is 4. Here, 4
accurately represents the oversampling ratio.

Rule 4 If an undersampling task τnew is added to an over-
sampled pipeline Px, the resultant sampling ratio is fx multi-

Figure 5: Example of Rule 3 of the pipeline sampling ratio calculation.

plied by the undersampling ratio of Px’s last task and the new
task .

Proof. Let’s consider the same oversampling pipeline from
the above rule, Px. fx =

B
A ≥ 1. An undersampling task τnew is

added to Px to form pipeline Py. Tnew > TNx . For every B input
messages to τnew, it produces only (B×UτNx→τnew) messages,
which is less than B, as UτNx→τnew < 1. We already know that
Px produces fx output messages for every single input to it.

Therefore, the sampling ratio of the newly formed pipeline
Py: fy = fx×UτNx→τnew = fx×

TNx
Tnew

. fy also provides the lower
bound on the sampling ratio of Py. �

Example Consider the example in Figure 5 but with T3
= 200. The sampling ratio between τ2 and τ3 is 50

200 = 1
4 .

Therefore, τ3 is able to output only 1 message for every 4
input messages coming from τ2. So, it will only output B in
the example. Therefore, the lower bound on the full pipeline’s
sampling ratio is fx× 1

4 = 2× 1
4 = 1

2 . As we can see that two
messages (A,B) were input to the pipeline, but only 1 message
was output.

Following the above rules, the sampling ratio of a pipeline
could be recursively derived by calculating the sampling ratio
from the source task of a pipeline until the sink, treating the
next task in a pipeline as τnew. The first producer-consumer
pair is considered a pipeline Px. Then, a new task is added
at the end of the Px pipeline, and a new sampling ratio is
calculated. The end-to-end sampling ratio is computed by the
end of the overall pipeline, when there are no more tasks.

3.2.2 Upper Bound on Loss-rate from Sampling Ratio

The upper bound on a pipeline P’s loss-rate is expressed in
terms of its sampling ratio f as follows:

L = 0, if fP ≥ 1
≤ 1− fP, if fP < 1 (7)

3.3 Formalization of Pipeline Constraints
Equations 4 and 7 show the upper bounds of the end-to-end
delay and loss-rate of a pipeline. A task’s runtime budget C
to read, process and write 1 message is usually determined
by performing a worst-case execution time (WCET) analy-
sis [68]. A pipeline is then constructed by chaining up these
periodic tasks. End-to-end delay and loss-rate constraints are
applied on a pipeline to guarantee a certain level of quality of
service. The unknown variables here are the periods of the
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individual tasks of a pipeline, and, thus, the problem is to find
them. The constraints are summarized below:

1. E should be upper bounded by a constant EUB, mean-
ing that the worst-case end-to-end delay computed from
Equation 4 should not exceed EUB.

2. L should be upper bounded by LUB, meaning that the
loss-rate computed from Equation 7 should not exceed
LUB.

3. The total pipeline utilization should be within a constant
upper bound of UUB. This constraint comes from the
scheduling model, in our case, the RMS bound (See
Section 2.3).

Constraints 1, 2 and 3 for a pipeline are respectively for-
malized in Equations 8, 9, and 10

T1 +TN +
N−1

∑
i=1

max(Ti,Ti+1 +Ti× I)≤ EUB (8)

L≤ LUB (9)

∑
∀τi∈S

Ci

Ti
≤UUB (10)

4 Problem Statement

Given a list of budgets for a set of pipelined tasks (Ci,∀τi ∈ S)
and a set of constant upper bounds (EUB,LUB,UUB) as con-
straints, the challenge is to find suitable periods, T1,T2, . . . ,TN ,
such that the constraints are satisfied.

To be precise, Equations 8, 9 and 10 need to be satisfied to
find a set of suitable periods. This is a constraint programming
problem that is in the class of integer nonlinear programming
problems, assuming integer task periods. It is a nonlinear
programming problem because of Equation 10 where the
period is in the denominator. The problem is known to be
NP-hard [36].

4.1 Budget Adjustment

Until now, we have considered the task runtime budget to be
a constant C in the optimization problem. This requirement
could be relaxed by allowing increments of task budgets in
integer multiples of C. If a task’s budget is decreased from
the initial budget C, it would be unable to read, process and
write 1 message or data-unit, assuming that a fragment of 1
data-unit is invalid.

When a task τ’s budget is increased from C to MC (M is
an integer constant greater than 1), it means τ processes M
messages in its single job invocation. τ’s input and output
buffer sizes are also increased to pass M messages in each
slot of the four-slot buffer.

4.1.1 Additional Constraint

The constraints for the budget adjustment are the following:

Mi ≥ 1 (11)
∀τi∈S FCi = Mi×Ci (12)

FCi is the final allocated runtime budget of τi. Mi is called
a budget multiplier.

Our heuristic constraint solver algorithm, CoPi, uses the
budget adjustment mechanism to bound the other pipeline
constraints. The details are in Section 5.2.2. However, these
budget adjustment constraint equations are not supplied to
the open-source solvers, by default. Therefore, they use only
Equations 8, 9 and 10, unless otherwise specified.

4.1.2 Loss-rate Recalculation after Budget Adjustment

The sampling ratio formula is extended from Equation 6 to
accommodate the budget adjustment by CoPi:

fτp→τc =
Tp

Tc
× Mc

Mp
(13)

Mc and Mp are respectively the consumer and producer bud-
get multipliers from Equation 11. New loss-rate is calculated
from the adjusted sampling ratio.

4.2 MINLP Solvers
We have modeled the pipeline constraints in three open-source
Mixed-Integer Non-Linear Programming (MINLP) solvers,
written in Python: GEKKO [5], pyomo [11, 34] and scipy [2].
We compare their performances to our heuristic constraint
solver, CoPi, in terms of the number of accepted task pipelines
in Section 7. We have also considered GNU Linear Program-
ming Kit [29], Google-OR Tools [31] and other solvers, but
they lack integer nonlinear programming features, and the
above ones suffice for the purpose of this work.

5 Pipeline Constraint Solver Heuristic

In this section, we explain the details of our heuristic con-
straint solver algorithm for uniprocessor scheduling.

5.1 CoPi’s Objective and Approach
The primary objective of CoPi, our constraint solver heuristic
for end-to-end scheduling of a real-time task pipeline, is to
avoid unnecessary delay and data loss among the communicat-
ing tasks. Once the data-dependencies between the pipelined
tasks are handled by tuning the task parameters, all the tasks
run independent of each other without waiting for job release
and completion times [7, 17].

7
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Given the initial task budgets, the upper bounds of the
pipeline parameters (E2E delay and loss-rate) and the RMS
utilization bound, CoPi derives the task periods and new
runtime budgets. Gerber et al. also proposed a similar ap-
proach of deriving task periods, offsets and other parameters
from the end-to-end constraints, albeit on task precedence
relations [28]. We utilize the core idea of deriving suitable
budgets and periods from the end-to-end requirements, so that
the pipelined tasks could be independently executed.

For a multiprocessor system, runtime task migrations are
feasible because of CoPi’s conversion of pipelined tasks to
independent asynchronous tasks (see Figure 2). Although
process-to-core mapping and migration should also consider
cache, memory and other microarchitectural properties, these
should be handled at the system implementation level, and
included in an extended task and scheduling model.

5.2 CoPi Heuristic Algorithm
Pseudocode for CoPi is provided in Algorithm 1. It finds
the suitable periods of a pipeline of N tasks under all the
constraints (Constraint 1, 2 and 3 from Section 3.3).

CoPi takes the initial task runtime budgets (C in the model
and budgets in Algorithm 1) and the desired upper bound
on the end-to-end delay and loss-rate (EUB and LUB in the
model, and e2e_ub and lr_ub in Algorithm 1) as its inputs.
budgets are given in the same order as in the ordered taskset
S in the pipeline model. α and β are CoPi’s internal tuning
parameters that are also taken as inputs and explained later.

5.2.1 Stage 1

Lines 8–13 in Algorithm 1 show Stage 1. CoPi starts
by setting all the task periods to be the same in Line 9:
eq_period = e2e_ub

N +1 , where N is the pipeline length. By
trying to assign the same equal period to all the tasks, CoPi
tries to eliminate any loss between the pipelined tasks. Thus,
any loss-rate upper bound constraint is satisfied, as the loss-
rate is 0 for equal task periods.

To satisfy the end-to-end delay constraint, e2e_ub is di-
vided by (N +1) instead of N. As per the scheduling model
in Section 2.3, the earlier appearing task in a pipeline is given
higher priority in RMS algorithm for tasks with equal periods.
Therefore, the upper bound on end-to-end delay following
Dürr et al.’s Equation 4 is: E ≤

(
(N +1)× eq_period

)
[20].

Thus, the end-to-end delay constraint is implicitly satis-
fied by the choice of equal task periods of ( e2e_ub

N+1 ): E ≤(
(N +1)× eq_period

)
= e2e_ub.

As both the pipeline constraints are satisfied, CoPi
checks the schedulability of the task pipeline with the
RMS utilization bound constraint in Line 11. The call
to utilization_bound_test(taskset) using RMS per-
forms the following check:

(
∑

N
i=1

Ci
Ti
≤ N× (2

1
N −1)

)
.

Algorithm 1 CoPi Pipeline Constraint Solver
1: Input: budgets[N] - Budgets of N Pipelined Tasks in an ordered se-

quence from source to destination
2: Input: e2e_ub - upper bound of end-to-end delay
3: Input: lr_ub - upper bound of end-to-end loss-rate
4: Input: util_ub - upper bound on processor utilization. Used if less than

the RMS utilization bound.
5: Input: α - The multiplicative scaling factor
6: Input: β - The divisive scaling factor
7: Output: If schedulable: an ordered taskset with budgets and periods,

else: not schedulable.
8: // Stage 1

9: eq_period = e2e_ub
N +1

10: taskset = [(b,eq_period) for b in budgets]
11: if utilization_bound_test(taskset) then
12: return taskset
13: end if
14: // Stage 2
15: scaled_period = α× eq_period
16: taskset = [(b,scaled_period) for b in budgets]
17: while True do
18: one_pipe_changed = False
19: for i = 0 to N−2 do
20: producer = taskset[i]
21: consumer = taskset[i+1]
22: if producer.budget < producer.period

β
and consumer.budget×β <

consumer.period then
23: producer = (producer.budget, producer.period

β
)

24: consumer=(β× consumer.budget,consumer.period)
25: if utilization_bound_test (taskset) then
26: one_pipe_changed = True
27: if total_e2e_delay(taskset) ≤ e2e_ub and

loss_rate(taskset) ≤ lr_ub then
28: return taskset
29: end if
30: end if
31: end if
32: end for
33: if not one_pipe_changed then
34: break
35: end if
36: end while
37: // Stage 3
38: for i = N−1 to 0 do
39: cur_task = taskset[i]
40: cur_budget = cur_task.budget
41: cur_period = cur_task.period
42: init_budget = cur_task.init_budget
43: while cur_budget

β
≥ init_budget do

44: cur_budget = cur_budget
β

45: cur_period = cur_period
β

46: end while
47: taskset[i] = (cur_budget,cur_period)
48: if utilization_bound_test(taskset) and

total_e2e_delay(taskset)≤ e2e_ub and loss_rate(taskset)
≤ lr_ub then

49: return taskset
50: end if
51: end for
52: return none

For a large value of e2e_ub, Stage 1 may return a schedu-
lable pipeline, as the total utilization of the pipelined tasks
is relatively small. For smaller and tighter values of e2e_ub,
CoPi moves on to the Stage 2.
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Figure 6: Period and budget adjustment example.

5.2.2 Stage 2

Lines 14–36 in Algorithm 1 show Stage 2. In this stage,
CoPi tries adjusting the task periods to bring down the total
utilization while satisfying the end-to-end delay and loss-rate
constraints. In order to do so, in step 1, it scales up all the
task periods by a constant factor (α) to reduce the total task
utilization. However, that increases the end-to-end delay and
violates the constraint. Then in step 2, CoPi considers all
the producer-consumer pairs one by one. It scales down the
period of a producer by a constant integer factor (β) and scales
up the runtime budget of a corresponding consumer by the
same factor β, in an effort to bring down the end-to-end delay
and keep the loss-rate under constraint.

Rate-matching Heuristic Before explaining Stage 2 in Al-
gorithm 1, we explain how CoPi adjusts the budget and pe-
riods. To reiterate from Section 4.1, when CoPi changes a
task τ’s runtime budget from C to (β×C), it implies that the
task now reads, processes and writes β number of messages
or data-units in a single job invocation.

Consider an example given in Figure 6. A pipeline is shown
with S = {A,B} and their initial runtime budgets of 2 and 4,
respectively. Imagine after step 1 of stage 2, CoPi assigns
period of 80 to both the tasks. This pipeline is shown at the
top of Figure 6. The end-to-end delay of this pipeline is 240,
as calculated using Equation 4.

Then, CoPi divides the producer A’s period by β and also
multiplies the consumer B’s budget by β, with β=2. The
resultant pipeline is at the bottom of Figure 6. The end-to-
end delay is reduced to 160 from 240 time units. In the
new pipeline, B will consume 2 messages in its single job
invocation, with a runtime budget of 8. A will still produce
1 message in its runtime because its budget is unchanged.
However, A’s period is halved, so it will run twice within a
single period of B. Therefore, the capacity of the four-slot
asynchronous buffer is increased to store 2 messages from
A. In its single job invocation, B will now consume those 2

messages. Therefore, the final sampling rate of the pipeline
is still ( 40

80 ×
2
1 ) = 1.

By adjusting the budgets and periods, the end-to-end la-
tency is reduced while keeping the loss-rate to 0. Although
the total utilization increases, it is already much smaller be-
cause of scaling the period by α. This is the reason CoPi
succeeds in scheduling task pipelines under the constraints.

CoPi enforces that task runtime budgets are never de-
creased from C, as a fraction of a message is invalid. Also,
increments to budgets are only in integer multiples of C.

Explanation of Stage 2 In this stage, CoPi first multiplies
the equal period from stage 1 by a factor α (> 1) in Line 15.
α is empirically chosen from a range of values and given as
an input to CoPi. Stretching the period by an α factor helps
in lowering the pipelined tasks’ total utilization and keeps it
under the RMS utilization bound. However, it violates the
end-to-end delay constraint. So CoPi tries reducing the task
periods, while it satisfies the other constraints.

Starting from the first producer-consumer pair, the pro-
ducer’s period is divided by β (> 1) and the consumer’s bud-
get is multiplied by β, as long as the periods are greater
than the respective task budgets (Lines 19–24). This reduces
the end-to-end latency while keeping the producer-consumer
pairs rate-matched for minimal data-loss.

Moving forward, CoPi checks whether the utilization
bound test is satisfied in Line 25. If it passes that constraint,
then end-to-end delay and loss-rate constraints are checked
in Line 27. If all the constraints are satisfied, a schedulable
pipeline with new budget and period assignments to its tasks
is returned.

If a constraint is violated, the algorithm moves on to the
next pair in the pipeline and repeat the steps until it covers all
the producer-consumer pairs in the pipeline. After completing
an iteration of going through all the producer-consumer pairs
of a pipeline, CoPi again starts from the first pair for another
iteration in Line 19. If no pair could be tuned for an iteration,
tracked by the one_pipe_changed boolean variable, CoPi
moves on to stage 3.

5.2.3 Stage 3

Lines 37–51 in Algorithm 1 show Stage 3. The objective of
this stage is to further reduce the E2E delay, while keeping
the total task utilization the same and the loss-rate under its
upper bound.

In this stage, CoPi scales down the budgets and periods of
the tuned consumers of stage 2. The stage starts from the sink
or the last task of a pipeline and goes until the source task. It
divides both periods and budgets of a task by β, as long as the
budget is more than or equal to the initial budget of the task
to process a single message. In each iteration, the constraints
are checked in Line 48 and if they are satisfied, a feasible task
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pipeline is returned. Otherwise, CoPi declares the pipeline
unschedulable.

5.2.4 Discussion

CoPi runs Stage 1 only once for a pipeline, and it runs Stage
2 and 3 multiple times with different α values. In all our
experiments, we set β to an empirically chosen value of 2,
while we test Stages 2 and 3 with α in the range 1.01 to 2.
Next, we establish a lower bound on α in Equation 14 to
minimize the runtime overhead in Section 5.2.5. The steps
of incrementing α and its higher bound can also be used to
control the runtime overhead of the algorithm.

5.2.5 Lower Bound on α

The equal period derived in Stage 1 is Teq =
EUB

N +1 . Therefore,

the total task pipeline utilization is ∑
N
i=1 .

Ci
Teq

. CoPi moves

to the second stage because this total utilization is not under
the utilization bound of RMS. So, ∑

N
i=1

Ci
Teq

> B, where B =

n× (2
1
n −1).

In step 1 of Stage 2, CoPi scales the equal period by α.
Therefore, the total utilization after scaling must be less than
or equal to B. Otherwise, CoPi will not be able to adjust the
task budgets and periods in its next steps. Therefore:

N

∑
i=1

Ci

α×Teq
≤ B

N

∑
i=1

Ci

α×EUB

N +1

≤ B

N +1
α×EUB

N

∑
i=1

Ci ≤ B

N +1
B×EUB

N

∑
i=1

Ci ≤ α

N +1

N× (2
1
N −1)×EUB

N

∑
i=1

Ci ≤ α (for RMS) (14)

Equation 14 provides a starting value of α to CoPi with the
above lower bound formula.

5.3 Examples
Figure 7 shows an example iteration of CoPi where it sched-
ules a pipeline of 5 tasks. The constraints are shown at the top
left. The utilization bound is the RMS bound for 5 tasks. We
show a successful iteration where α is set to 1.329 (rounded
down to 1.32 to 2 decimal places). The pipeline parameters
are shown on the left at each stage. Their colors indicate if a
parameter constraint is satisfied at a stage (green – satisfied,

Figure 7: CoPi Example 1.

red – unsatisfied). Figure 8 shows another such example but
with 0% loss-rate constraint, or no data loss.

5.4 Execution Time Complexity of CoPi

For a pipeline of length N, stage 1 runs in O(N) time. Stage
2 iterates over the length of a pipeline multiple times, de-
pending on the constraints. Stage 2 starts with a lower total
pipeline utilization and goes up to the RMS utilization bound.
Since it divides the task periods and multiplies the budgets
by a constant β, the number of iterations in Stage 2 is some
constant. It is calculated by a function dependent on log-
arithm base α of task budgets, e2e delay upper bound and
utilization bound. As all of them are constant, stage 2 approxi-
mately takesvO(K×N) (where K is a constant, and N is the
pipeline length), because it checks all the producer-consumer
pairs in a pipeline.

Finally, Stage 3 checks all the tasks in a pipeline and runs
in O(N). Tuning each task in Stage 3 also takes a similar
logarithmic function of the task budgets and can be assumed
to be v O(J), for some constant J. Therefore, Stages 2 and 3
together take approximately O((K+J)×N), where O(K+J)
represents the hardness of the constraints.
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Figure 8: CoPi Example 2.

These stages are run for a limited range of α values. For
example, if we test all α values between 1.01 and 2 with a 0.01
step increment, Stages 2 and 3 are then run for 100 times. We
could also find a feasible schedule before that. So we assume
the total number of Stage 2 and 3 runs to be a constant I.
However, the lower bound of α has an inverse relationship
with N. Therefore, the range of α values are higher for a
larger N. So, I leans to v O(N).

CoPi overall takes O
(
I×(K+J)×N

)
, where O((K+J)×

I) is dependent on the constraints. Overall, CoPi’s complexity
is linear to quadratic with respect to a pipeline’s length. Thus,
CoPi is a good candidate as a helper heuristic to a scheduling
algorithm at runtime. Section 7.2 presents an experimental
analysis of CoPi’s runtime overhead.

6 Multiprocessor Pipeline Scheduling

In multiprocessor scheduling, we utilize CoPi’s feature of
providing a set of independent and asynchronous tasks that
are chained in a pipeline. Thus, the asynchronous tasks are
free to be mapped to any available processor. Even runtime
task migrations are possible, as there are no data, timing or
priority dependencies between tasks after CoPi has derived
the task parameters. We use Equation 2 by Davare et al. to
derive the upper bound on the worst-case end-to-end delay,
in contrast to Equation 8 used for uniprocessor scheduling,
to avoid any priority dependencies between the tasks. In this
way, a task could be mapped to any available processor as
long as the tasks complete their jobs within their periods.
Hence, CoPi uses the previous two Equations 9 and 10 from
Section 3, and Equation 15 given below in this case.

2×
N

∑
i=1
×Ti ≤ EUB (15)

This multiprocessor pipeline scheduling algorithm demon-
strates the benefits and application of the constraint solving
approach and CoPi. CoPi is coupled with a traditional and
well-known multiprocessor scheduling heuristic for this pur-
pose. Although multiprocessor scheduling is an NP-hard
problem [38], there are well-known heuristics to map a set
of tasks to a number of processors in polynomial time. We
use the worst-fit decreasing (WFD) heuristic. In the WFD
heuristic, the algorithm maintains a sorted list of pipelined
tasks based on their utilization values, and a sorted list of
the processors based on the available utilization, both in de-
creasing order. Then, it maps a task to a processor, starting
from the head of each sorted list. After CoPi provides a set
of tasks, the algorithm uses WFD to map a pipeline to the
available processors. In addition, the algorithm implements a
few other heuristics to improve the runtime acceptance ratio
of new pipelines, that are explained in Section 6.1 and 6.2.

The algorithm uses partitioned RMS scheduling for sepa-
rate processors, where each processor runs its assigned tasks.
The RMS utilization bound [48] is checked for task accep-
tance to a particular processor. The algorithm tracks each
processor’s available utilization by initially approximating it
to 0.69 – the RMS bound for infinite number of tasks.

The multiprocessor scheduling algorithm is outlined in
Algorithm 2. Auxiliary scheduling driver code externally ini-
tializes the number of processors and their utilizations. Then,
the driver calls Algorithm 2 to map a pipeline with constraints
to available processors. Algorithm 2 takes a pipeline and
its constraints as input and returns True if the pipeline is
accepted, otherwise it returns False.

Algorithm 2 works as follows: It first determines the sum
of available utilizations across all processors in Line 7. This
available utilization is fed to CoPi along with a new pipeline’s
task budgets and constraints in Line 8. CoPi either returns a
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Algorithm 2 Multiprocessor Pipeline Scheduling
1: Input: pipeline - Budgets of N Pipelined Tasks in ordered sequence from

Source to Destination
2: Input: e2e_ub - upper bound on end-to-end delay
3: Input: loss_ub - upper bound on loss-rate
4: Input: α - The multiplicative scaling factor
5: Input: β - The divisive scaling factor
6: Output: True, if a pipeline is accepted in the multiprocessor system, else:

False.
7: util_ub = get_total_util_from_all_procs()
8: q_pipeline =

Call CoPi(pipeline[budgets],e2e_ub, loss_ub,util_ub,α,β)
9: if q_pipeline is None then

10: Try reducing utilization of an already admitted pipeline
11: Then go back to Line 7.
12: Do the above for only a limited time.
13: end if
14: iter = 0
15: while iter ≤ num_core do
16: if WFD_FIT(q_pipeline) is not successful then
17: //try migration
18: Sort the processors in decreasing order of available utilization
19: for each processor p in the above sorted list do
20: Sort the mapped tasks in decreasing order of utilization as-

signed to p
21: for each task t in the above sorted list do
22: for each processor q among all processors do
23: if t’s utilization ≤ q’s available utilization and p 6= q

then
24: unmap t from p and map to q
25: break out of for loop at Line 19
26: end if
27: end for
28: end for
29: end for
30: Increment iter
31: else
32: return True
33: end if
34: end while
35: return False

pipeline with schedulable budget and period assignments, or
returns None if the pipeline was unschedulable. For a schedu-
lable pipeline, the algorithm tries mapping individual tasks
to processors. A task is able to be mapped to any available
processor, since CoPi generates independent tasks.

Then, in Line 16, the algorithm uses a WFD_FIT function for
the WFD heuristic, to map new pipelined tasks to processors.
It first determines whether all the pipelined tasks could be
mapped, by checking the individual tasks one by one, before
actually mapping the tasks to processors. Only if it could map
all the tasks in a pipeline to the available processors, are they
actually assigned to local scheduling queues.

If the WFD heuristic is not able to map all the tasks, the
algorithm tries migrating tasks from one processor to another
in Lines 17– 29. The migration strategy is described later in
Section 6.1.

Moreover, when CoPi is first called in Line 8, it may not
return a feasible schedule because of not meeting the utiliza-
tion bound. Such an infeasible schedule may occur due to
unoptimized pipelines already admitted in the system. As the
system starts with more available processor utilization, CoPi

is initially run with a higher and relaxed utilization bound con-
straint. Hence, it may have returned unoptimized pipelines
because they were already schedulable with higher utiliza-
tions. In such cases, the multiprocessor scheduling algorithm
attempts to reduce the utilization of an admitted pipeline in
Lines 10–12. The strategy is explained further in Section 6.2.

6.1 Runtime Task Migration
When the multiprocessor scheduling algorithm fails to sched-
ule a new pipeline on its available processors even after hav-
ing spare utilization, it explores the possibility of migrat-
ing already mapped tasks to make room for a new pipeline.
Lines 17– 29 show how this is done in Algorithm 2. The algo-
rithm first sorts the processors in decreasing order of available
utilization. For each processor in the sorted list, it sorts the
mapped tasks in decreasing order of task utilization. It picks
a task from this sorted list of mapped tasks, and migrates it to
the first available processor that can accommodate the task.

As soon as a task is migrated, the algorithm tries to sched-
ule the new pipeline using the WFD heuristic. We do this to
minimize the number of total task migrations in the system,
because migrations have practical runtime overhead. For a
new pipeline, the algorithm only tries migrating M tasks at
most, where M is the number of total processors. Thus, we
limit the number of migration attempts per new pipeline to
bound the time to find a schedulable mapping.

In summary, we employ task migration to admit more
pipelines at runtime by creating larger utilization holes in
processors. However, task migration should be carefully
administered and minimized as it is associated with non-
negligible overhead and potential disruptions for admitted
pipelines. Nevertheless, predictable migration [47] enables
admission of new pipelines in a multiprocessor system. Our
evaluation results in Section 7.4 demonstrates the benefit of
migrations in terms of the number of dynamically accepted
pipelines.

6.2 Runtime Pipeline Optimization (RPO)
We provide another enhancement for multiprocessor schedul-
ing by attempting to reduce the total utilization of an al-
ready admitted pipeline. When CoPi fails to schedule a new
pipeline, Algorithm 2 picks an already admitted pipeline and
calls CoPi with a tighter utilization bound. For our experi-
ments, Algorithm 2 asks CoPi to reduce a pipeline’s current
utilization by 5% at a time. If CoPi is able to find new task
budgets and periods for the admitted pipeline with the new
utilization bound constraint, the algorithm unmaps all the
tasks of the pipeline from corresponding processors. It then
remaps tasks with new parameters following the WFD heuris-
tic. This strategy reduces the total processor utilization at
runtime and also makes room for a new pipeline. Our eval-
uation shows that this strategy yields a higher number of
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pipeline admissions. However, the RPO implementation in a
working system should ensure that the task unmapping and
reassignment are done at a safe timing point. If a task τi
is running, then the scheduler may wait Ti time before new
runtime and budget can be applied. Therefore, the scheduler
needs to wait (∑N

i=1 Ti) time units in the worst-case. An RPO
implementation in an RTOS needs to be aware of such delays.
The full analysis and implementation details of RPO are out
of scope of the paper and left for future work. In this paper,
we show the benefits of RPO in admitting new pipelines at
runtime with simulated experiments in Section 7.4.

7 Evaluation

We evaluate CoPi and the multiprocessor scheduling algo-
rithm on top of it by running simulated experiments 3. We
first generate individual task utilizations using the standard
UUnifast algorithm [8]. Then, we generate the task budgets
by multiplying the utilization with a random value chosen
from uniform distribution between 100 and 1000. These
values are used as the initial task runtime budgets, C in the
model. The constraint solvers, including CoPi, use the task
budgets to solve the E2E delay, loss-rate and utilization bound
constraints.

Before going into the analysis of evaluation results, we
explain several parameters related to the E2E delay, to stan-
dardize its relationship to the task budgets. These parameters
are used throughout this section.

1. Latency Budget Gap (LBG): This is the ratio of a sup-
plied upper bound on the E2E latency (EUB) and the sum-
mation of all the task budgets in a pipeline P.

Latency Budget Gap: LBG =
EUB

N

∑
i=1

Ci

(16)

LBG depicts the gap, or surplus time, beyond the sum of
task budgets to the E2E delay. As noted in Equation 2
and 4, the periods contribute to the E2E delay. Therefore,
LBG intuitively depicts the hardness of the E2E delay
constraint.

For different pipelines, the task budgets are different.
Therefore, their end-to-end delay upper bounds (EUB) are
also expected to be different. This makes it difficult to
compare how a solver performs for different pipelines
with different task budgets for the end-to-end delay con-
straint. LBG standardizes the relationship between the task
budgets and EUB. Thus, performance against randomly
generated task pipelines are compared for different solvers
with different values of LBGs.
3The artifacts of the experiments are available at https://github.com/

sohamm17/pipe_schedule

A higher LBG means that the upper bound on the E2E
delay is greater, and the E2E delay constraint is more
relaxed. Finding a schedulable pipeline is more probable
with a higher LBG, because of the potential for a greater
number of possible task constraint solutions. Conversely, a
smaller LBG means a tighter E2E delay constraint, as the
gap between EUB and the sum of task budgets is reduced.

2. Normalized LBG (NLBG): This is the ratio of the LBG
and the length of a pipeline. NLBG normalizes LBG with
respect to the pipeline length.

Normalized LBG: NLBG =
LBG

N
(17)

We can only compare the pipelines of same length with
LBG. With NLBG, pipelines of different lengths are com-
pared (e.g., Figure 11). A higher NLBG, as with LBG, also
increases the probability of finding a schedulable pipeline,
and vice-versa.

The loss-rate is already expressed in terms of percentage,
so we do not need any other standardized parameter for it.

We run all the experiments with Python 3.6 on an 64-bit
Linux (Ubuntu 16.04) machine featuring a Core i5-4210 pro-
cessor. For every experiment, we report the average value
against 1000 randomly generated task pipelines. We choose
β = 2 in all cases, whereas α is iterated starting from 2 and
then decreasing in steps of 0.01.

7.1 Uniprocessor Acceptance Ratio
7.1.1 Only End-to-end Delay Constraint

The first experiment compares the pipeline acceptance ratios
(ARs) of open-source constraint solvers to CoPi’s AR, only
under the end-to-end delay constraint. Figure 9a shows the
percentage of pipelines with 10 tasks that are schedulable
for a uniprocessor RMS utilization bound against increasing
LBG. LBG is varied from an acceptance ratio of 0% to 100%
for most solvers.

The GEKKO Optimization Suite [5] with its APOPT
solver [1] dominates other modeling packages and CoPi. Al-
though pyomo [11,34] uses a well-known IPOPT method [67]
for MINLP problems, its implementation of the Disjunction
properties are still in development [54]. Hence, its acceptance
ratio is worse, but the performance improves with higher
LBG values. scipy is a more generalized mathematical and
optimization Python package, from which we use the trust-
constr [12, 46] constraint minimization approach. As it is
a local minimizer, its solution is dependent on the initial
suggested value. Because of limitation in its current imple-
mentation [61], it performs poorly for the same initial value
that is provided to GEKKO and pyomo.

CoPi’s AR is worse than GEKKO’s, but better than other
solvers. It reaches 100% AR at LBG = 16 when GEKKO
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Figure 9: Uniprocessor pipeline acceptance ratios (N = 10).

also reaches near 100% AR. Its performance is similar for
smaller (≤ 12) and larger (≥ 15) LBG values. This experi-
ment shows that CoPi performs comparably with respect to
the other MINLP solvers. The performance of the MINLP
solvers may well be further improved with more iterations,
commercial solvers and perhaps better modeling techniques,
but MINLP solvers are not suitable for runtime scheduling
because of their slow execution time performances. We show
this in Section 7.2.

7.1.2 Combined E2E Delay and Loss-rate Constraints

We now focus on the performance of GEKKO and CoPi, as
the other solvers do not perform as good as these two. For the
next set of experiments, we apply both E2E delay and loss-
rate constraints to task pipelines. Apart from running GEKKO
with the existing constraints, we also run it with the Budget
Adjustment Constraint (BAC) (described in Section 4.1) to
investigate whether it is able to utilize a rate-matching domain
knowledge. AR is plotted in Figure 9b for increasing loss-rate
upper bounds against a fixed LBG = 15 and N = 10.

The graph shows that CoPi performs comparably to
GEKKO. As the upper bound on the loss-rate increases, AR
also improves for both the solvers. GEKKO (with BAC)
performs worst because BAC adds more variables to the
solver. It exhausts the number of iterations with more vari-
ables. GEKKO performs much better without BAC, although
is not able to exploit a rate-matching heuristic like CoPi does.

7.2 Solver Runtime Overhead

In the above experiments, we show that CoPi and GEKKO
perform similarly against the E2E delay, loss-rate and RMS
utilization bound constraints. In the next experiments, we
investigate the execution times of both solvers, to examine
their capabilities in runtime scheduling of task pipelines.

Figure 10a plots the runtime of CoPi and GEKKO for
schedulable pipelines against an increasing LBG for pipeline
length of 10. We only plot for LBG = [13, 15] because the
acceptance ratio is significant in this range for both GEKKO
and CoPi. It shows that the runtime is comparable for both
the solvers for a stricter LBG. As LBG increases, the E2E
delay constraint is more relaxed. In these cases, CoPi is able
to find a schedulable pipeline more quickly than GEKKO is
capable of doing. For LBG = 15, GEKKO takes on average
almost 5 times more than CoPi.

Figure 10b plots the execution times for unschedulable
pipelines. It shows that even for an unschedulable pipeline,
GEKKO keeps searching for feasible task parameters for a
longer time before retiring, whereas CoPi responds at least
2-3 times faster.

Figure 10c shows runtime overhead of CoPi and GEKKO
with respect to increasing pipeline length. As explained in
Section 5.4 for CoPi, its runtime increases with increasing
length of a pipeline (against a fixed NLBG = 1.5). The rela-
tionship between runtime and pipeline length is nearly linear.
GEKKO’s runtimes for both schedulable and unschedulable
pipelines are greater than CoPi’s runtimes for all pipeline
lengths. More importantly, GEKKO’s runtimes grow faster
with pipeline length than CoPi’s do.

In the next experiment, we evaluate the effect of E2E delay
and loss-rate constraints on the runtime overhead for GEKKO
and CoPi. Table 2 summarizes the result of each experiment
with a pipeline length of 10 and two constraints (LBG = 15
fixed , LUB varied). CoPi always has lower runtime over-
head compared to GEKKO. The performance of GEKKO
degrades significantly after adding both the constraints for
failed pipelines from 327ms to as much as 2237ms, whereas
CoPi takes similar time to fail to schedule a pipeline. The
reason is that CoPi checks the loss-rate constraint every time
where the E2E delay constraint and utilization bound are
checked. Hence, the failing time does not increase. However,
the runtimes for schedulable pipelines do increase for CoPi
after adding the loss-rate constraint on top of E2E delay, be-
cause it discards all the results where loss-rate is greater than
the given upper bound.

Table 2: Runtime overhead for both pipeline constraints (N = 10).

Constraints Accepted (ms) Failed (ms)
GEKKO CoPi GEKKO CoPi

E2E Delay (LBG = 15) 61 12 327 128
E2E + Loss-rate (LUB ≤ 0%) 205 104 966 130
E2E + Loss-rate (LUB ≤ 25%) 191 105 1437 132
E2E + Loss-rate (LUB ≤ 50%) 187 102 1801 135
E2E + Loss-rate (LUB ≤ 75%) 200 107 2237 131
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Figure 10: Runtime overhead under an end-to-end delay constraint.
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Figure 11: NLBG against different pipeline lengths.

7.3 Performance Insights of CoPi

In this section, we delve into more details about CoPi’s per-
formance and its optimization techniques.

7.3.1 Pipeline Length and NLBG

Figure 11 shows CoPi’s AR with increasing NLBG for dif-
ferent pipeline lengths only under the E2E delay constraint.
After certain NLBGs, the acceptance ratio jumps to 100% for
all pipeline lengths because: 1) assigning fixed and equal pe-
riods of EUB

N+1 meets the E2E delay constraint requirement, and
2) as individual task utilizations reduce with greater periods,
the utilization bound constraint is also satisfied.

The NLBG value, after which most pipelines are schedu-
lable, is dependent on the pipeline length. For example, Fig-
ure 11 shows that all pipelines are schedulable for pipeline
lengths of 20 for NLBG≥ 1.5. However, for pipeline lengths
of 5, all pipelines are schedulable for NLBG ≥ 1.7. This
threshold NLBG is higher for shorter pipelines because there
are fewer available pipelined tasks to tune. CoPi gets fewer
opportunities to distribute the periods from the E2E delay,
before the utilization bound constraint is violated.

7.3.2 Effectiveness of Stage 2 and 3

With smaller and stricter NLBG, it is harder to find a schedula-
ble pipeline. Table 3a shows the AR of CoPi’s Stages 2 and 3

with varying pipeline length and strict NLBG values. Together
with Figure 11, this demonstrates that CoPi’s Stages 2 and
3 are able to find more feasible pipelines for stricter NLBGs
for any pipeline length. For example, CoPi’s Stages 2–3 AR
is 31.8% for NLBG = 1.6 and N = 5, whereas CoPi’s overall
AR is also 31.8% for the same pipeline length and NLBG
(see Figure 11). This shows that Stages 2 and 3 contributed to
all the pipeline acceptances for these constraints. Moreover,
CoPi’s optimizations are more useful for longer pipelines be-
cause Stages 2 and 3 are able to tune more tasks in a pipeline
to satisfy the constraints. It can be seen that Stages 2 and 3
schedule as many as 49% of pipelines (N = 15,NLBG = 1.6)
in Table 3a.

7.3.3 Utilization Bound

CoPi checks the Liu-Layland RMS utilization bound to de-
termine whether a pipeline is schedulable on a uniprocessor.
However, the RMS utilization could be relaxed to 1 if all the
tasks are harmonic [44]. Exploiting this RMS scheduling
property, Table 3b shows that CoPi is able to schedule more
tasks, even with very strict NLBGs.

Table 3: CoPi’s performance insights.
(a) Stage 2 and 3 acceptance
ratio under tight NLBG.

Pipeline
Length

NLBG AR
(%)

3

1.3 0.8
1.4 2.2
1.5 7.4
1.6 11.1

5

1.3 2.1
1.4 6.5
1.5 22
1.6 31.8

10

1.3 2.5
1.4 6.7
1.5 7.2
1.6 35.5

15

1.3 1.1
1.4 1.7
1.5 4.8
1.6 49

(b) Acceptance ratio improvement with
larger utilization bound for harmonic
tasksets (N = 10).

NLBG RMS Utiliza-
tion Bound

AR (%)

1.1 ≤ n× (2
1
n −1) 0

≤ 1 20.4

1.2 ≤ n× (2
1
n −1) 0.3

≤ 1 67.6

1.4 ≤ n× (2
1
n −1) 3.3

≤ 1 98.7

1.5 ≤ n× (2
1
n −1) 35

≤ 1 100

1.6 ≤ n× (2
1
n −1) 100

≤ 1 100
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Figure 12: Number of iterations in CoPi against α iteration strategies.

7.3.4 Other Variations

In this set of experiments, we compare two strategies of iterat-
ing over α within a fixed range: incrementing and decrement-
ing. We investigate which one reduces the number of CoPi
optimization loop iterations of Stages 2 and 3 combined. For
α’s increment, we start from the value derived by Equation 14
and increase until α = 2 to limit the number of iterations. For
decrement, we start from a higher α value (2 in the experi-
ment) and decrease until 1.01, or the point when scaling up
periods by α does not meet the utilization bound test.

Figure 12 shows the number of iterations for schedulable
pipelines of length 10. As NLBG increases from 1.3 to 1.5,
incrementing α takes a smaller numbers of iterations to find
feasible period assignments. Decrementing α is thus not
preferable. Both of these techniques have similar acceptance
ratio.

7.4 Multiprocessor Performance
In this section, we investigate the performance of our mul-
tiprocessor scheduling algorithm coupled with CoPi. We
measure the number of pipeline acceptances for dynamically
appearing pipelines in a simulated environment that models a
runtime scheduling scenario.

We experiment with 2, 4 and 8 processors. We feed 50,
100, and 200 pipelines respectively to the 2, 4, and 8 proces-
sors. For each of these experiments, pipelines are fed one
after another to simulate dynamic arrivals. After every 5, 10
and 20 pipelines respectively for 2, 4 and 8 processors, all
the pipelines are unmapped from the processors to simulate
ephemeral pipelines. We also vary the pipeline length.

Figure 13 shows the number of accepted pipelines for dif-
ferent pipeline lengths and number of processors. Here, WFD
stands for the worst-fit decreasing heuristic, mig is runtime
task migration (described in Section 6.1), RPO is runtime
pipeline optimization (described in Section 6.2). We show the
performance for WFD without migration and RPO, WFD with
only RPO (+RPO only) and migration (+mig only), and with
both of them together (+both). This experiment reveals that
combining WFD with runtime optimizations accommodates
more dynamic pipeline arrivals.

(WFD+RPO only) has limited ability to accept more

pipelines in a number of cases ((N=3 and 10, M=2), (N=3
and 10, M=4), (N=all, M=8), where M is number of proces-
sors). Due to the limitations of the WFD heuristic, RPO alone
cannot help significantly in accommodating more pipelines,
unless already admitted tasks create utilization holes for new
pipelines after optimization. Nevertheless, applying both run-
time strategies together (+both) results in more pipeline ad-
missions for all processor combinations and pipeline lengths.
After task migrations create larger available processor utiliza-
tions, RPO helps to accommodate more pipelines.

In Figure 13a, both migration and RPO are not able to ac-
commodate more pipelines for N = 10 using 2 processors. As
the pipeline length is longer, the algorithm cannot accommo-
date all the tasks of a single pipeline using just 2 processors.
Hence, the number of pipeline admissions does not improve.

7.4.1 Processor Utilization

Table 4 tabulates the normalized (per processor) utilization
at the end of the experiment for varying pipeline lengths. It
shows that RPO indeed decreases the processor utilization on
average. However, it does not adjust the available utilization
holes in processors for new tasks. Adding migration with
RPO improves the per processor utilization in addition to
admitting more pipelines.

The single-CPU RMS utilization bound is 69%, when the
number of tasks tends to infinity. The rest of the CPU is
usually given to lower-priority background tasks. Our multi-
processor algorithm actually keeps the processor utilization
to a respectably high level, as displayed in Table 4.

7.4.2 Task Migrations

Table 5 shows the average number of task migrations which
resulted in the successful scheduling of new pipelines. The
number of migrations increases with more processors, as the
algorithm limits the number of migrations per new candidate
pipeline to the number of available processors. Overall, this
experiment shows that only a few migrations are needed to
accommodate new pipelines in the system, and the average
numbers of migrations are much smaller than their limits.

Table 4: Multiprocessor utilization.
Pipeline
Length

Strategy Normalized Utilization Per
Processor (%)

3

WFD 51.2
+ RPO only 50.5
+ migration only 54.8
+ both 54.2

5

WFD 54.9
+ RPO only 55
+ migration only 60.8
+ both 62.46

10

WFD 61.6
+ RPO only 60.8
+ migration only 65
+ both 64.4
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Figure 13: Number of accepted (schedulable) pipelines in multiprocessors.
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Figure 14: Experiments with dataset from the WATERS 2015 workshop paper [43].

Table 5: Task Migrations.
Processors Strategies Average Migrations

2 WFD + migration only 0.1
WFD + migration + RPO 0.13

4 WFD + migration only 0.67
WFD + migration + RPO 0.67

8 WFD + migration only 2.7
WFD + migration + RPO 3.17

7.5 Experiments with an Industry Bench-
mark

We have tested CoPi with a benchmark from the WATERS
2015 workshop paper [43], provided by Bosch, for uniproces-
sor scheduling. We calculate the worst-case execution time of
a task by multiplying a random average case execution time
(ACET) with a random WCET factor. The random ACET and
WCET factor are chosen from the task distribution provided
in Table III of the paper. We consider pipeline lengths from 3
to 15 because each runnable entity from the dataset might be
re-implemented as a pipelined task.

Figure 14 summarizes the result of this experiment. Fig-
ure 14a shows the acceptance ratio among 1000 randomly
generated tasksets for each case. The graph is similar to Fig-
ure 11, but focuses on NLBG between 1.4 to 1.7 for more
fine-grained data points. Figure 14b captures the average E2E
delay for schedulable pipelines in ms, where each runnable’s
WCET is in µs granularity. Figure 14c shows a CDF of
the worst-case execution times for 3 tasks pipelines. Other

pipeline lengths have similar CDF. In Figure 14b, the E2E
delays for smaller pipelines are under 10ms which is usually
expected in automotive industries. The E2E delays for longer
pipelines go up to 30 ms depending on the NLBG. As longer
pipelines might be utilized for comparatively lower frequency
workloads, slightly longer E2E delays are tolerable.

8 Discussion on Implementation

In this section, we discuss some future implementation oppor-
tunities of CoPi. Most RTOSs, including FreeRTOS [25] and
Quest [18], support RMS and other static priority preemptive
uniprocessor scheduling algorithms. As these RTOSs are in-
creasingly adopted in sophisticated automotive and industrial
domains [26, 63], guaranteeing task pipelines will be one of
the crucial features to support. These applications are highly
dynamic in nature, with task pipelines that arrive and termi-
nate at runtime [30,37]. The uniprocessor pipeline scheduling
algorithm with CoPi can be integrated in these OSes. Since it
is difficult to implement a complete MINLP solver in an OS
scheduler, the usage of heuristics like CoPi is appealing. By
integrating CoPi, operating systems will be able to provide
end-to-end guarantees in task pipeline scheduling.

Moreover, micro-ROS [52], a lighter implementation of
ROS [57], is now supported on a few RTOSs such as FreeR-
TOS [24] and QNX [56]. As ROS tasks and services are
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already modeled as asynchronous tasks communicating over
a publisher-subscriber model, a ROS task pipeline is similar
to that described in this paper. Therefore, CoPi’s implemen-
tation in an RTOS will be useful in providing end-to-end
guarantees in ROS cause-effect chains. CoPi’s benefit to
multiprocessor scheduling is also applicable to RTOSs that
provide SMP support [18, 27, 55]. Nevertheless, further stud-
ies are needed before support for real-time ROS task pipelines
is implemented in practical SMP systems [13, 65].

9 Related Work

Many past researchers have studied scheduling algorithms for
tasks with data dependencies. Some have proposed using a
DAG to express task-level data dependencies and precedence
constraints as part of multicore scheduling [15, 35, 45, 59, 66,
69, 71]. Our work focuses on the use of end-to-end service
constraints to establish scheduling parameters for pipelined
tasks executing on uni- and multiprocessor platforms.

Gerber et al. presented a generic framework that shows how
constraint programming helps in guaranteeing end-to-end
constraints in a task graph [28]. Davare et al. presented an end-
to-end timing analysis of task pipelines and provided an upper
bound on the end-to-end latency [19]. This work is closely
related to our work, as it also proposes the problem of finding
task periods as an optimization problem under constraints,
which is solved by geometric programming. However, the
work does not consider loss-rate as a constraint and instead
focuses on latency. In this work, we introduce loss-rate as
one of the constraints and refine the optimization problem to
find suitable task periods and budgets. We use an improved
end-to-end latency analysis by Dürr et al. [20], along with
the latest open-source MINLP solvers [5, 11] for comparison.
These were unavailable at the time of Davare et al.’s work.

There are other research studies that explore the end-to-end
timing analysis of task chains [6, 32, 40, 41] in practical sce-
narios such as in drones [16], and in ROS [13, 65]. Proposed
scheduling algorithms based on these approaches rely on job
release times [7, 17].

For multiprocessors, Liu and Anderson have analyzed a
global scheduling algorithm for pipelined periodic tasks [49,
50]. Nevertheless, they do not consider end-to-end constraints.
Finally, period selection is a widely studied problem in real-
time systems [9, 14, 53, 70], even though it is not targeted
specifically at real-time task pipelines.

10 Conclusions and Future Work

This paper explores the real-time task pipeline model and
presents a non-linear optimization problem to find suitable
task budgets and periods under a pipeline’s end-to-end con-
straints and utilization bound. We propose CoPi, a heuristic
constraint solver algorithm, which tunes task periods and bud-

gets to minimize a pipeline’s loss-rate and end-to-end delay.
It essentially converts pipelined real-time tasks into indepen-
dent periodic tasks. We explain CoPi with examples, and
evaluate its performance with simulations. Evaluation results
show that CoPi performs favorably in terms of task pipeline
acceptance ratio, compared to open-source MINLP solvers
like GEKKO [5]. CoPi has an order of magnitude better
runtime than GEKKO. Therefore, CoPi is better suited to
OS-level scheduling, where implementing a relatively slow
MINLP solver into a runtime system is problematic. We also
demonstrate the benefits of CoPi in multiprocessor scheduling
for dynamically arriving pipelines with fewer task migrations
and more pipeline admissions.

In future work, we will explore other constraints such as
throughput, for general task graphs combining multiple inputs
and outputs. We have plans to deploy CoPi in a multicore
operating system. Application frameworks such as ROS [57]
and micro-ROS [52] can take advantage of CoPi’s support for
multiprocessor scheduling, to parameterize and predictably
schedule a pipeline of periodic tasks. Finally, a programming
model for task pipelines is also being studied, in the context
of modeling environments such as MATLAB/Simulink.
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