
8
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Modern chip-level multiprocessors (CMPs) typically contain multiple proces-
sor cores sharing a common last-level cache, memory interconnects, and other

1Xiao Zhang was formerly at VMware Inc. for this work.
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hardware resources. Workloads running on separate cores compete for these
resources, often resulting in highly variable performance. Unfortunately, com-
modity processors manage shared hardware resources in a manner that is
opaque to higher-level schedulers responsible for multiplexing these resources
across workloads with varying demands and importance. As a result, it is
extremely challenging to optimize for efficient resource utilization or enforce
quality-of-service policies.

Effective cache management requires accurate measurement of per-thread
cache occupancies and their impact on performance, often summarized by
utility functions such as miss-ratio curves (MRCs). We introduce an efficient
online technique for generating MRCs and other cache utility curves, requir-
ing only performance counters available on commodity processors. Building
on these monitoring and inference techniques, we also introduce novel meth-
ods to improve the fairness and efficiency of CMP scheduling decisions. Vtime
compensation adjusts a thread’s scheduling priority to account for cache and
memory system interference from co-runners, and cache divvying estimates
the performance impact of co-runner placements. We demonstrate the effec-
tiveness of our monitoring and scheduling techniques with quantitative exper-
iments, including both simulation results and a prototype implementation in
the VMware ESX Server hypervisor.

8.1 Introduction

Advances in processor architecture have led to a proliferation of multi-core
processors, commonly referred to as chip-level multiprocessors (CMPs). Com-
modity client and server platforms contain one or more CMPs, with each
CMP consisting of multiple processor cores sharing a common last-level cache,
memory interconnects, and other hardware resources (AMD 2009; Intel Cor-
poration 2009). Workloads running on separate cores compete for these shared
resources, often resulting in highly variable or unpredictable performance (Fe-
dorova, Seltzer, and Smith 2006; Kim, Chandra, and Solihin 2004).

Operating systems and hypervisors are designed to multiplex hardware re-
sources across multiple workloads with varying demands and importance. Un-
fortunately, commodity CMPs typically manage shared hardware resources,
such as cache space and memory bandwidth, in a manner that is opaque to
the software responsible for higher-level resource management. Without ad-
equate visibility and control over performance-critical hardware resources, it
is extremely difficult to optimize for efficient resource utilization or enforce
quality-of-service policies.

Many hardware approaches have been proposed to address this problem,
introducing low-level architectural mechanisms to support cache occupancy
monitoring and/or the ability to partition cache space among multiple work-
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loads (Albonesi 1999; Chang and Sohi 2007; Dybdahl, Stenström, and Natvig
2006; Iyer 2004; Kim, Chandra, and Solihin 2004; Liu, Sivasubramaniam, and
Kandemir 2004; Rafique, Lim, and Thottethodi 2006; Ranganathan, Adve,
and Jouppi 2000; Srikantaiah, Kandemir, and Irwin 2008; Suh, Rudolph, and
Devadas 2004). To further understand the impact of shared caches on work-
load performance, methods have also been devised to construct cache utility
functions, such as miss-ratio curves (MRCs), which capture miss ratios at dif-
ferent cache occupancies (Berg, Zeffer, and Hagersten 2006; Qureshi and Patt
2006; Suh, Devadas, and Rudolph 2001; Suh, Rudolph, and Devadas 2004;
Tam et al. 2009). However, existing techniques for generating MRCs either
require custom hardware support, or incur non-trivial software overheads.

Constructing cache utility curves is an important step toward effective
cache management. To utilize caches more efficiently and provide differen-
tial quality of service for workloads, higher-level resource management poli-
cies are needed to leverage them. For example, schedulers can exploit cache
performance information to make better co-runner placement decisions (Ca-
landrino and Anderson 2008; Suh, Devadas, and Rudolph 2001; Tam, Azimi,
and Stumm 2007), improving cache efficiency or fairness. Unfortunately, strict
quality-of-service enforcement generally requires hardware support. While
software-based page coloring techniques have been used to provide isolation
(Cho and Jin 2006; Liedtke, Härtig, and Hohmuth 1997; Lin et al. 2008),
such hard partitioning is inflexible and generally prevents efficient cache uti-
lization. Moreover, without special hardware support (Sherwood, Calder, and
Emer 1999), dynamically recoloring a page is expensive, requiring updates to
page mappings and a full page copy, making this approach unattractive for
dynamic workload mixes in general-purpose systems.

We offer an alternative for cache-aware fair and efficient scheduling in a
system called CAFÉ . Unlike most previous approaches, CAFÉ requires no
special hardware support, using only basic performance counters found on
virtually all modern processors, including commodity x86 CMPs (AMD 2007;
Intel Corporation 2009). Several new cache modeling and inference methods
are introduced for accurate cache performance monitoring. Building on this
basic monitoring capability, we also introduce new techniques for improving
the fairness and efficiency of CMP scheduling decisions.

CAFÉ efficiently computes accurate per-workload cache occupancy esti-
mates from per-core cache miss counts. Occupancy estimates are leveraged to
support inexpensive construction of general cache utility curves. For example,
miss-ratio and miss-rate curves can be generated by incorporating additional
performance counter values for instructions retired and elapsed cycles, avoid-
ing the need for special hardware or memory address traces.

We leverage CAFÉ’s cache monitoring infrastructure to perform proper
charging for resource consumption, accounting for dynamic interference be-
tween co-running workloads within a CMP. A new vtime compensation tech-
nique is introduced to compensate a workload for interference from co-runners.
We also present CAFÉ’s cache divvying policy for predicting approximate
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cache allocations during co-runner execution. Using estimated cache utility
curves, we are able to determine good co-runner placements to maximize ag-
gregate throughput.

The next section presents our cache occupancy estimation approach, in-
cluding a detailed description of its mathematical basis, together with simu-
lation results demonstrating its effectiveness. Section 8.3 builds on this foun-
dation, explaining our method for online construction of cache utility curves.
Using a prototype implementation in the VMware ESX Server hypervisor,
we examine its accuracy by comparing CAFÉ’s dynamically generated MRCs
with MRCs for the same workloads collected via static page coloring. Sec-
tion 8.4 introduces our cache-aware scheduling policies: vtime compensation
for cache-fair scheduling, and our cache-divvying strategy for estimating the
performance impact of co-runner placements. Quantitative experiments in the
context of ESX Server show that these schemes are able to improve fairness
and efficiency. Related work is examined in Section 8.5. Finally, we summarize
our conclusions and highlight opportunities for future work in Section 8.6.

8.2 Cache Occupancy Estimation

In this section, we present our approach for estimating cache occupancy. We
begin with a formal explanation of our basic model, which requires only cache
miss counts for each co-running thread. We then examine the effects of pseudo-
LRU2 set-associativity as implemented in modern processors and extend our
model to additionally incorporate cache hit counts to improve accuracy for
such configurations.

We demonstrate the effectiveness of our cache occupancy estimation tech-
niques with a series of experiments in which Standard Performance Evalua-
tion Corporation (SPEC) benchmarks execute concurrently on multiple cores.
Since real processors do not expose the contents of hardware caches to soft-
ware,3 we measure accuracy using the Intel CMPSched$im simulator (Moses
et al. 2009) to compare the results of our model with actual cache occupancies
in several different configurations.

For the purposes of our model, we consider a shared last-level cache that
may be direct-mapped or n-way set associative. Our objective is to determine
the current amount of cache space occupied by some thread, τ , at time t,
given contention for cache lines by multiple threads running on all the cores
that share that cache. At time t, thread τ may be descheduled, or it may be
actively executing on one core while other threads are active on the remaining
cores.

2Least Recently Used.
3Current processor families do not allow software to inspect cache tags, although the

MIPS R4000 (Heinrich 1994) did provide a cache instruction with this capability.
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8.2.1 Basic Cache Model

Since hardware caches reveal very little information to software, in order to
derive quantitative information about their state, we must rely on inference
techniques using features such as hardware performance counters. Virtually all
modern processors provide performance counters through which information
about various system events can be determined, such as instructions retired,
cache misses, cache accesses, and cycle times for execution sequences. Using
two events, namely, the local and global last-level cache misses, we estimate
the number of cache lines, E, occupied by thread τ at time t. By global cache
misses, we mean the cumulative number of such events across all cores that
share the same last-level cache.

We assume that the shared cache is accessed uniformly at random. Results
show this to be a reasonable assumption, given the unbiased nature of memory
allocation, and the desire for all cache lines to be used effectively across mul-
tiple workloads and execution phases. Observe that for n-way set-associative
caches, a cache set is selected by using a subset of bits in a memory address,
and then a victim cache block within the set is typically chosen using an
LRU-like algorithm. Our own observations suggest that n-way set-associative
caches in modern multicore processors have some element of randomness to
their line replacement policies within sets. In many cases, these policies use
some form of binary decision tree as well as a degree of random selection to
reduce the bitwise logic when approximating algorithms such as LRU. It is
reasonable to assume that randomness will have a greater effect as the number
of ways in cache sets is increased in future processors.

In this work, we also assume each cache line is allocated to a single thread
at any point in time. Furthermore, we do not consider the effects of data
sharing across threads, although this is an important topic for future work.

Cache occupancy is effectively dictated by the number of misses experi-
enced by a thread because cache lines are allocated in response to such misses.
Essentially, the current execution phase of a thread τi influences its cache in-
vestment, because any of its lines that it no longer accesses may be evicted by
conflicting accesses to the same cache index by other threads. Evicted lines no
longer relevant to the current execution phase of τi will not incur subsequent
misses that would cause them to return to the cache. Hence, the cache occu-
pancy of a thread is a function of its misses experienced over some interval of
time. For subsequent discussion, we introduce the following notation:

• Let C represent the number of cache lines in a shared cache, accessed
uniformly at random.

• Let ml represent the number of misses experienced by the local thread, τl,
under observation over some sampling interval. This term also represents
the number of cache lines allocated due to misses.

• Let mo represent the aggregate number of misses by every thread other
than τl on all cores of a CMP that cause cache lines to be allocated in
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response to such misses. We use the notation τo to represent the aggregate
behavior of all other threads, treating it as if it were a single thread.

Theorem 8.1 Consider a cache of size C lines, with E cache lines belonging
to τl and C−E cache lines belonging to τo at some time, t. If, in some interval,
δt, there are ml misses corresponding to τl and mo misses corresponding to
τo, then the expected occupancy of τl at time t + δt is approximately E′ =
E + (1− E

C ) ·ml − E
C ·mo.

Proof 8.1 First, at time t, it is assumed that τl and τo are sufficiently
memory-intensive, and have executed for enough time, to collectively popu-
late the entire cache. Now, considering any single cache line, i, at time t+ δt
we have

Pr{i belongs to τl} =
Pr{i belongs to τl | i belonged to τl} · Pr{i belonged to τl} +
Pr{i belongs to τl | i belonged to τo} · Pr{i belonged to τo}

This follows from the prior probabilities, at time t:

Pr{i belonged to τl} =
E

C
(8.1)

Pr{i belonged to τo} = 1− E

C
(8.2)

Additionally, after ml +mo misses, the probability that τl replaces line i, pre-
viously occupied by τo, is one minus the probability that τl does not replace τo
after ml +mo misses. More formally,

Pr{τl replaces τo on line i} = 1−
[
1− ml

C(ml +mo)

](ml+mo)
(8.3)

In (8.3), ml/[C(ml+mo)] represents the probability that a miss by τl will result
in an arbitrary line, i, being populated by contents for τl. We know that the
probability of a particular line being replaced by a single miss is 1/C, and the
ratio ml/(ml +mo) corresponds to the probability of that miss being caused by
one of τl’s accesses. Note that here we make no assumptions about the order of
interleaved memory accesses made by two or more co-running threads. Instead,
the ratio ml/(ml + mo) is based on the probability that, among all possible
interleaved misses from τl and τo, τl will have the last miss associated with a
given cache line.

It follows from (8.3) that the probability of τo replacing τl on line i at the
end of ml +mo misses is

Pr{τo replaces τl on line i} = 1−
[
1− mo

C(ml +mo)

](ml+mo)
(8.4)
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Therefore,

Pr{i belongs to τl | i belonged to τl} = 1− Pr{τo replaces τl on line i}

=

[
1− mo

C(ml +mo)

](ml+mo)
(8.5)

Pr{i belongs to τl | i belonged to τo} = Pr{τl replaces τo on line i}

= 1−
[
1− ml

C(ml +mo)

](ml+mo)
(8.6)

From (8.1), (8.2), (8.5), and (8.6), we have

Pr{i belongs to τl} =
E

C
·
[
1− mo

C(ml +mo)

](ml+mo)
+

(
1− E

C

)
·
[

1−
[
1− ml

C(ml +mo)

](ml+mo)]
(8.7)

Ignoring the effects of quadratic and higher-degree terms, the first-degree linear
approximation of (8.7) becomes

Pr{i belongs to τl} =
E

C
· (1−mo/C) +

(
1− E

C

)
ml/C (8.8)

This is a reasonable approximation given that 1/C is small. Consequently, the
expected number of cache lines, E′, belonging to τl at time t+ δt is

E′ = E(1−mo/C) +

(
1− E

C

)
ml = E +

(
1− E

C

)
·ml −

E

C
·mo (8.9)

This follows from (8.8) by considering the state of each of the C cache lines
as independent of all others.

Observe that the recurrence relation in (8.9) captures the changes in cache
occupancy for some thread over a given interval of time, with known

local and global misses. The terms [1−mo/(C(ml +mo))]
(ml+mo) and

[1−ml/(C(ml +mo))]
(ml+mo) in (8.7) approximate to e−mo/C and e−ml/C ,

respectively. Thus, for situations where ml +mo >> 1, (8.9) becomes

E′ = Ee−mo/C + C(1− E/C)(1− e−ml/C) (8.10)

Equation (8.10) is significant in that it shows that the cache occupancy of
a thread (here, τl) mimics the charge on an electrical capacitor. Given some
initial occupancy, E, a growth rate proportional to (1 − e−ml/C) applies to
lines currently unoccupied by τl. Similarly, the rate of reduction in occupancy
(i.e., the equivalent discharge rate in a capacitor) is proportional to e−mo/C .



228 Multicore Technology: Architecture, Reconfiguration, and Modeling

The linear model in (8.9) is practical for online occupancy estimation, since
it consists of an inexpensive computation that requires only the ability to
measure per-core and per-CMP cache misses, which is provided by most mod-
ern processor architectures. For example, in the Intel Core architecture (Intel
Corporation 2009) used for our experiments in Section 8.3, the performance
counter event L2 LINES IN represents lines allocated in the L2 cache, in re-
sponse to both on-demand and prefetch misses. A mask can be used to specify
whether to count misses on a single core or on both cores sharing the cache.

8.2.2 Extended Cache Model for LRU Replacement Policies

So far, our analysis has assumed that each line of the cache is equally likely
to be accessed. Over the lifetime of a large set of threads, this is a reason-
able assumption. However, commodity CMP configurations feature n-way set-
associative caches, and lines within sets are not usually replaced randomly.
Rather, victim lines are typically selected using some approximation to a least
recently used (LRU) replacement policy. We modified (8.9) to additionally in-
corporate cache hit information, modeling the reduced replacement probabil-
ity due to LRU effects when lines are reused. Equation (8.9) can be rewritten
as

E′ = E(1−mopl) + (C − E)mlpo (8.11)

where pl is the probability that a miss falls on a line belonging to τl, and
po is the probability that a miss falls on a line belonging to τo. Since (8.9)
does not model LRU effects, each line is equally likely to be replaced and
pl = po = 1/C. In order to model LRU effects, we calculate

rl = (hl +ml)/E (8.12)

ro = (ho +mo)/(C − E) (8.13)

to quantify the frequency of reuse of the cache lines of τl and τo, respectively.
hl and ho represent the number of cache hits experienced by τl and τo, respec-
tively, in the measurement interval. As with miss counts, these hit counts can
be obtained using hardware performance counters available on most modern
processors.

When the cache replacement policy is an LRU variant, ro and rl approxi-
mate the frequency of reuse of the cache lines belonging to τ0 and τ1, respec-
tively, since we are unable to precisely know which line is the most recently
accessed. Since the probability that a miss evicts a line belonging to a thread
is inversely proportional to its reuse frequency, we assume the following rela-
tionship:

po/pl = rl/ro (8.14)

Furthermore, since a miss must fall on some line in the cache with certainty:

plE + po(C − E) = 1 (8.15)
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Solving (8.14) and (8.15), we obtain:

po = rl/[roE + rl(C − E)] (8.16)

pl = ro/[roE + rl(C − E)] (8.17)

The values of po and pl obtained from (8.16) and (8.17) can be substituted in
(8.11) to obtain the hit-adjusted occupancy estimation model which handles
LRU cache replacement effects.

8.2.3 Experiments

We evaluated the cache estimation models on Intel’s CMPSched$im simula-
tor (Moses et al. 2009), which supports binary execution and co-scheduling of
multiple workloads. This enabled us to measure the accuracy of our cache oc-
cupancy models by comparing the estimated occupancy values with the actual
values returned by the simulator. The ability to control scheduling allowed us
to perform experiments in both under-committed and over-committed scenar-
ios.

By default, the Intel simulator implements a CMP architecture using a
pseudo-LRU policy used in modern processors, although it is also configurable
to simulate random and other replacement policies. We configured the sim-
ulator to use a 3 GHz clock frequency, with private per-core 32 KB 4-way
set-associative L1 caches, and a shared 4 MB 16-way set-associative L2 cache.
All caches used a 64-byte line size. The number of hardware cores and software
threads was varied across different experiments to test the effectiveness of our
occupancy estimation models under diverse conditions.

During simulation, the per-core and per-CMP performance counters mea-
suring L2 misses and hits were sampled once per millisecond, after which
the occupancy estimates were updated for each software thread. Since cache
occupancies exhibit rapid changes at this time scale, we averaged occupan-
cies over 100 millisecond intervals. We plot one value per second for both
the estimated and actual occupancy values, in order to display results more
clearly over longer time scales. We refer to the miss-based occupancy esti-
mation technique using the basic cache model presented in Section 8.2.1 as
method Estimate-M. The extended cache model presented in Section 8.2.2
that also incorporates hit information to better model associativity is referred
to as method Estimate-MH.

Our first experiment tests the effectiveness of the basic Estimate-M method
in a dual-core configuration where a 16-way set-associative L2 cache is config-
ured to use a simple random cache line replacement policy instead of pseudo-
LRU. Figure 8.1 plots the estimated and actual cache occupancies over time
when the two cores were running mcf and omnetpp from the SPEC CPU2006
benchmark suite. The estimated occupancy for each benchmark tracks its ac-
tual occupancy very closely, which is expected since the random replacement
policy is consistent with our assumption of random cache access.
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FIGURE 8.1
Accuracy of basic Estimate-M method on a dual-core system with random
line replacement policy

Our next experiment evaluates the same workload with the default pseudo-
LRU line replacement policy which is used by actual processor hardware. Fig-
ure 8.2(a) and (b) plot the estimated and actual cache occupancies over time,
for mcf and omnetpp, respectively, using both the basic Estimate-M and
extended Estimate-MH methods. Figure 8.2(c) and (d) present the absolute
error between the actual and estimated values. The workloads in this exper-
iment were selected to highlight the difference in accuracy between the two
estimation methods, which generally agreed more closely for other workload
pairings. In this case, the Estimate-M method is considerably less accurate,
often showing a substantial discrepancy relative to the actual occupancies,
especially during the interval between 8 and 18 seconds. On the other hand,
the hit-adjusted Estimate-MH method, designed to better reflect LRU effects,
is much more accurate and tracks the actual occupancies fairly closely.

The remaining experiments focus on the more accurate Estimate-MH
method with various sets of co-running workloads. Figure 8.3 presents the
results of two separate experiments with different co-running SPEC CPU2006
benchmarks with a dual-core configuration. Figure 8.3(a) and (b) show mcf
running with gcc on the two cores; omnetpp and perlbmk are co-runners
in Figure 8.3(c) and (d). The estimated occupancies match the actual values
very closely.

Figure 8.4 shows the cache occupancy over time for four different co-
running benchmarks from the SPEC CPU2006 suite in a quad-core configura-
tion. Although not shown, we also conducted similar experiments with other
benchmarks from the SPEC CPU2000 and 2006 suites, achieving similar lev-
els of accuracy between estimated and actual values. As with the dual-core
results, experiments on a quad-core platform are of similar precision.

We also evaluated the effectiveness of occupancy estimation in an over-
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FIGURE 8.2
Occupancy and estimation error for the Estimate-M and Estimate-MH meth-
ods

committed system, in which many software threads are time-multiplexed onto
a smaller number of hardware cores. In such a scenario, some threads will be
descheduled at various points in time, waiting in a scheduler run queue to be
dispatched onto a processor core. In our experiments, we used a 100 millisec-
ond scheduling time quantum, with a simple round-robin scheduling policy
selecting threads from a global run queue.

Figures 8.5 and 8.6 show plots of the actual and estimated occupancies over
time for an over-committed quad-core system. Together, the two figures show
ten software threads running various benchmarks from the SPEC CPU2000
and CPU2006 suites.4 In the corresponding experiment, the ten threads are
scheduled to run on the four cores sharing the L2 cache. The accuracy of
occupancy estimation remains high, despite the time-sliced scheduling.

In order to look at the estimation accuracy over shorter time intervals,
Figure 8.7 zooms in to examine the first three seconds of execution for the mcf
and equake00 workloads from Figure 8.5(a) and (c), respectively. The actual

4Benchmarks with names ending in 00 are from SPEC CPU2000, while all others are
from CPU2006.
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FIGURE 8.3
Two pairs of co-runners in dual-core systems: mcf versus gcc, and omnetpp
versus perlbmk

and estimated occupancies are plotted every 100 ms. Estimated occupancy
tracks actual occupancy very closely, even during periods when a thread is de-
scheduled and its occupancy falls to zero. Although these fine-grained results
are reported for only two of the ten workloads from Figures 8.5 and 8.6, we
observed similar behavior for the remaining benchmarks.

8.3 Cache Utility Curves

Central to CAFÉ’s resource management framework for fair and efficient
scheduling is an understanding of workload-specific cache utility curves. These
curves are presented with cache occupancy as the independent variable on the
x-axis, and a dependent performance metric on the y-axis, such as the number
of cache misses per reference, instruction, or cycle at different occupancies. In
this section we explain our technique for lightweight online construction of
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FIGURE 8.4
Cache occupancy over time for four co-runners in a quad-core system

cache utility curves, yielding information about the effect of cache size on
expected performance for running workloads. We then present experimental
MRC results for a series of benchmarks, using a prototype CAFÉ implemen-
tation, and compare them to MRCs collected for the same workloads using
static page coloring.

All experiments were conducted on a Dell PowerEdge SC1430 host, con-
figured with two 2.0 GHz Intel Xeon E5535 processors and 4 GB RAM. Each
quad-core Xeon processor actually consists of two separate dual-core CMPs
in a single physical package. The two cores in each CMP share a common
4 MB L2 cache. We implemented our CAFÉ prototype in the VMware ESX
Server 4.0 hypervisor (VMware, Inc. 2009). Each benchmark application was
deployed in a separate virtual machine, configured with a single CPU and
256 MB RAM, running an unmodified Red Hat Enterprise Linux 5 guest OS
(Linux 2.6.18-8.e15 kernel).

8.3.1 Curve Types

Most work in this area has focused on per-thread miss-ratio curves that plot
cache misses per memory reference at different cache occupancies (Berg, Zeffer,
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FIGURE 8.5
Occupancy estimation for an over-committed quad-core system (Part 1)

and Hagersten 2006; Qureshi and Patt 2006; Suh, Devadas, and Rudolph 2001;
Suh, Rudolph, and Devadas 2004; Tam et al. 2009). Another type of miss-ratio
curve plots cache misses per instruction retired at different cache occupancies.
We refer to miss-ratio curves in units of misses per kilo-reference as MPKR
curves and to those in units of misses per kilo-instruction as MPKI curves.

It is also possible to construct miss-rate curves, defined in terms of misses
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FIGURE 8.6
Occupancy estimation for an over-committed quad-core system (Part 2)

 0

 1

 2

 3

 4

 0  1  2  3

O
c
c
u
p
a
n
c
y
 (

M
B

)

Time (sec)

Actual
Estimate-MH

(a) mcf

 0

 1

 2

 3

 4

 0  1  2  3

O
c
c
u
p
a
n
c
y
 (

M
B

)

Time (sec)

Actual
Estimate-MH

(b) equake00

FIGURE 8.7
Fine-grained occupancy estimation in an over-committed quad-core system
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per kilo-cycle. Such MPKC curves are attractive for use with cache-aware
scheduling policies, such as those presented in Section 8.4, since they indi-
cate the number of misses expected over a real-time interval for a workload
with a given cache occupancy. However, a problem with MPKC curves is
that they are sensitive to contention for memory bandwidth from co-running
workloads. Under high contention, workloads start experiencing more mem-
ory stalls, throttling back their instruction issue rate, thereby decreasing their
cache misses per unit time. Consequently, a cache utility function based on
miss rates is dependent on dynamic memory bandwidth contention from co-
running workloads. In contrast, MPKR and MPKI curves measure cache met-
rics that are intrinsic to a workload, independent of co-runners and timing
details.

Figure 8.8 illustrates the problem of MPKC sensitivity to memory band-
width contention using the SPEC2000 mcf workload. Miss-rate curves for mcf
were collected using page coloring, but with different levels of memory read
bandwidth contention generated by a micro-benchmark running on a differ-
ent CMP sharing the same memory bus, but not the same cache. For a given
cache occupancy value, the miss rates are higher when there is less memory
bandwidth contention, resulting in variable miss-rate curves.

One can also generate CPKI curves, which measure the impact of cache
size on the cycles per kilo-instruction efficiency of a workload. The CPKI
metric has the advantage of directly showing the impact of cache size on a
workload’s performance, reflecting the effects of instruction-level parallelism
that help tolerate cache miss latency. However, like MPKC curves, CPKI
curves suffer from the problem of co-runner variability due to contention for
memory bandwidth or other shared hardware resources.

Since MPKI and MPKR curves do not vary based on memory contention
caused by co-runners, they are good candidates for determining a workload’s
intrinsic cache behavior. In some cases, however, it is also useful to infer the
impact on workload performance due to the combined effects of cache and
memory bandwidth contention. Therefore CAFÉ generates both MPKI and
CPKI curves and utilizes them to guide its higher-level scheduling policies.

8.3.2 Curve Generation

We implemented CAFÉ’s online cache-utility curve generation in ESX Server.
Utilizing the occupancy estimation method described in Section 8.2, curve
generation consists of two components at different time scales: fine-grained
occupancy updates and coarse-grained curve construction.

8.3.2.1 Occupancy Updates

Each core updates the cache occupancy estimate for its currently running
thread every two milliseconds, using the linear occupancy model in (8.9). A
high-precision timer callback reads hardware performance counters to obtain
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the number of cache misses for both the local core and the whole CMP since
the last update. In addition to this periodic update, occupancy estimates
are also updated whenever a thread is rescheduled, based on the number of
intervening cache misses since it last ran.

Our current implementation tracks cache occupancy in discrete units equal
to one-eighth of the total cache size. We construct discrete curves to bound
the space and time complexity of their generation, while providing sufficient
accuracy to be useful in cache-aware CPU scheduling enhancements. During
each cache occupancy update for a thread, several performance metrics are as-
sociated with its current occupancy level, including accumulated cache misses,
instructions retired, and elapsed CPU cycles. Since occupancy updates are in-
voked very frequently, we tuned the timer callback carefully and measured its
cost as approximately 320 cycles on our experimental platform.

8.3.2.2 Generating Miss-Ratio Curves

Miss-ratio curves are generated after a configurable time period, typically
several seconds spanning thousands of fine-grained occupancy updates. For
each discrete occupancy point, an MPKI value is computed by dividing the
accumulated cache misses by the accumulated retired instructions at that
occupancy.

MPKI values are expected to be monotonically decreasing with increasing
cache occupancy; i.e., more cache leads to fewer misses per instruction. CAFÉ
enforces this monotonicity property explicitly by adjusting MPKI values. Pref-
erence is given to those occupancy points which have the most updates, since
we have more confidence in the performance metrics corresponding to these
points. Starting with the most-updated occupancy point with MPKI value m,
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any lower MPKI values to its left or higher MPKI values to its right are set
to m.

Interestingly, monotonicity violations are good indicators of phase changes
in workload behavior, although CAFÉ does not yet exploit such hints. We in-
strumented our MRC generation code, including monotonicity enforcement,
and found that it takes approximately 2850 cycles to execute on our experi-
mental platform. The overheads for occupancy estimation and MRC construc-
tion are sufficiently low that they can remain enabled at all times.

8.3.2.3 Generating Other Curves

The basic CAFÉ framework is extremely flexible. By recording appropriate
statistics with each discrete occupancy point, a variety of different cache per-
formance curves can be constructed. By default, CAFÉ collects cache misses,
instructions retired, and elapsed cycles, enabling generation of MPKI, MPKC,
and CPKI curves.

We could not experiment with generating MPKR curves, due to limitations
of our experimental platform. The Intel Core architecture provides only two
programmable counters, which were used to obtain core and whole-CMP cache
misses, respectively. MPKI, MPKC, and CPKI curves can be generated by
CAFÉ, since retired instructions and elapsed cycles are available as additional
fixed hardware counters.

8.3.2.4 Obtaining Full Curves

A key challenge with CAFÉ’s approach is obtaining performance metrics at
all discrete occupancy points. In the steady state, a group of threads co-
running on a shared cache achieve equilibrium occupancies. As a result, the
cache performance curve for each thread has performance metrics concentrated
around its equilibrium occupancy, leading to inaccuracies in the full cache
performance curves.

In addition to passive monitoring, we have explored ways to actively per-
turb the execution of co-running threads to alter their relative cache occupan-
cies temporarily. For example, varying the group of co-runners scheduled with
a thread typically causes it to visit a wider range of occupancy points. An
alternative approach is to dynamically throttle the execution of some cores,
allowing threads on other cores to increase their occupancies. CAFÉ cannot
use frequency and voltage scaling to throttle cores, since in commodity CMPs,
all cores must operate at the same frequency (Naveh et al. 2006). However,
we did have some success with duty-cycle modulation techniques (Intel Cor-
poration 2009; Zhang, Dwarkadas, and Shen 2009) to slow down specific cores
dynamically.

For thermal management, Intel processors allow system code to specify a
multiplier (in discrete units of 12.5%) specifying the fraction of regular cy-
cles during which a core should be halted. When a core is slowed down, its
co-runners get an opportunity to increase their cache occupancy, while the oc-
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cupancy of the thread running on the throttled core is decreased. To limit any
potential performance impact, we enable duty-cycle modulation during less
than 2% of execution time. Experiments with SPEC CPU2000 benchmarks
did not reveal any observable performance impact due to cache performance
curve generation with duty-cycle modulation.

8.3.3 Experiments

We evaluated CAFÉ’s cache curve construction techniques using our ESX
Server implementation. We first collected the miss-ratio curves for vari-
ous SPEC CPU2000 benchmarks (mcf, swim, twolf, equake, gzip, and
perlbmk), by running them to completion with access to an increasing num-
ber of page colors in each successive run. We then ran all six benchmarks
together on a single CMP of the Dell system, with CAFÉ generating the
miss-ratio curves, configured to construct the curves at benchmark comple-
tion time.

Figure 8.9 compares the miss-ratio curves of the benchmarks obtained
by CAFÉ with those obtained by page coloring. In most cases, the MRC
shapes and absolute MPKI values match reasonably well. However, in Fig-
ure 8.9(a), the MRC generated by CAFÉ for mcf is flat at lower occupancy
points, differing significantly from the page-coloring results. Even with duty-
cycle modulation there is insufficient interference from co-runners to push mcf
into lower occupancy points. Since there are no updates for these points, the
miss-ratio values for higher occupancy points are used as the best estimate
due to monotonocity enforcement.

To analyze this further, Figure 8.10 shows separate MRCs generated by
CAFÉ for mcf with different co-runners, swim and gzip. The MRC generated
when mcf is running with gzip is flat because mcf only has updates at the
highest occupancy point. The miss ratio of mcf at the highest occupancy
point is a factor of sixty more than the miss ratio of gzip, which renders
duty-cycle modulation ineffective, since it can throttle a core by at most a
factor of eight. In contrast, the MRC generated with co-runner swim matches
the MRC obtained by page coloring closely.

8.3.4 Discussion

Our online technique for MRC construction builds upon our cache occupancy
estimation model. While the MRCs generated for a working system in Sec-
tion 8.3.3 are encouraging, there remain several open issues. By using only
commodity hardware features, our MRCs may not always yield data points
across the full spectrum of cache occupancies. Duty cycle modulation ad-
dresses this problem to some degree, but some sensitivity to co-runner selec-
tion may still remain. Although an MPKI curve is intrinsic to a workload,
and does not vary based on contention from co-runners, the workload may be
prevented from visiting certain occupancy levels due to co-runner interference,
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as observed in Figure 8.10. In practice, it may be necessary to vary co-runners
selectively during some execution intervals, in order to allow a workload to
reach high cache occupancies, or alternatively, to force a workload into low
occupancy states, depending on the memory demands of the co-runners.

While the experiments in Section 8.3.3 compare offline MRCs with our
online approach, they are produced at the time of benchmark completion. This
introduces some potential differences between the online and offline curves,
since online we plot MPKI values based on the time during workload execution
at which a given occupancy is reached. We are currently investigating MRCs
at different time granularities. Early investigations yield curves that remain
stable for an execution phase, but which fluctuate while changing phases. We
intend to study how MRCs can be used to identify phase changes as part of
future work.

8.4 Cache-Aware Scheduling

In this section, we present higher-level scheduling policies that leverage
CAFÉ’s low-level methods for estimating cache occupancies and generating
cache utility curves. We first examine the issue of fairness in CMPs, and
present a new vtime compensation technique for improving CMP fairness in
proportional-share schedulers. Next, we show how to use cache utility func-
tions for estimating the impact of co-runner placements via a novel cache
divvying approach. The scheduler considers new co-runner placements peri-
odically, in order to maximize aggregate throughput. Unless otherwise stated,
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all scheduling experiments in this section were conducted using the same sys-
tem configuration as in Section 8.3.

8.4.1 Fair Scheduling

Operating systems and hypervisors are designed to multiplex hardware re-
sources across multiple workloads with varying demands and importance.
Administrators and users influence resource allocation policies by specifying
settings such as priorities, reservations, or proportional-share weights. Such
controls are commonly used to provide differential quality of service, or to
enforce guaranteed service rates.

When all workloads are assigned equal allocations, fairness implies that
each workload should receive equal service. More generally, a scheduler is
considered fair if it accurately delivers resources to each workload consistent
with specified allocation parameters.

Fair scheduling requires accurate accounting of resource consumption, al-
though few systems implement this properly (Zhang and West 2006). For
example, if a hardware interrupt occurs in the context of one workload, but
performs work on behalf of a different workload, then the interrupt process-
ing cost must be subtracted from the interrupted context and added to the
workload that benefited. The VMware ESX Server scheduler (VMware, Inc.
2009), used for our experiments, implements proper accounting for interrupts,
bottom halves, and other system processing; we extended this with cache-miss
accounting for CAFÉ.

8.4.1.1 Proportional-Share Scheduling

In this work, we focus on proportional-share scheduling. Resource allocations
are specified by numeric shares (or, equivalently, weights), which are assigned
to threads that consume processor resources.5 A thread is entitled to consume
resources proportional to its share allocation, which specifies its importance
relative to other threads.

Most proportional-share scheduling algorithms (Bennett and Zhang 1996;
Parekh 1992; Stoica et al. 1996; Waldspurger and Weihl 1995; Zhang and
Keshav 1991; Goyal, Vin, and Cheng 1996) use a notion of virtual time to
represent per-thread progress. Each thread τi has an associated virtual time
vi, which advances at a rate that is directly proportional to its resource con-
sumption qi, and inversely proportional to its share allocation wi:

v′i = vi + qi/wi (8.18)

The scheduler chooses the thread with the minimum virtual time to execute
next. For example, consider threads τi and τj with share allocations wi = 2

5Although we use the term thread to be concrete, the same proportional-share framework
can accommodate other abstractions of resource consumers, such as processes, applications,
or VMs.
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and wj = 1. Thread τi is entitled to execute twice as quickly as τj ; this 2:1 ratio
is implemented by advancing vi at half the rate of vj for the same execution
quantum q.

Some proportional-share schedulers differ significantly in their treatment
of virtual time for threads blocked waiting on I/O or synchronization objects.
For example, some algorithms partially credit a thread for time when it was
blocked, while others do not. Here, we focus on CPU-bound threads, so these
differences are not important; time spent blocking will be addressed in future
work.

8.4.1.2 Fair Scheduling for CMPs

How should fairness be defined in the context of a CMP, where multiple pro-
cessor cores may share last-level cache space, memory bandwidth, and other
hardware resources? Accounting based solely on the amount of real time a
thread has executed is clearly inadequate, since the amount of useful com-
putation performed by a thread varies significantly with resource contention
from co-runners.

One option is to define cache-fair as equal sharing of CMP cache space
among co-running threads (Fedorova, Seltzer, and Smith 2006). However, this
definition does not reflect the marginal utility of additional cache space, which
typically differs across threads. For efficiency, we want to allocate more cache
space to those threads which can utilize it most productively. Moreover, this
definition of cache-fair does not facilitate our goal of proportional-share fair-
ness, where different threads may be entitled to unequal amounts of shared
resources.

We instead assume that a thread is entitled to consume all shared CMP
resources while it is executing, including the entire last-level cache, in the
absence of competition from co-running threads. At runtime, we dynamically
estimate the actual performance degradation experienced by a thread due to
co-runner interference and compensate it appropriately. Since most threads
are negatively impacted to some degree by co-runners, this means that most
threads will receive at least some compensation.

To quantify fairness, we first define the weighted slowdown for each thread
to be the ratio of its actual execution time (in the presence of co-running
threads) to its ideal execution time when running alone without co-runners,
scaled by the thread’s relative share allocation. The relative share allocation
is, itself, the ratio of the local thread’s weight to total weights of all competing
threads. We then use the coefficient of variation of these per-thread weighted
slowdowns as an unfairness metric; with perfect fairness, all weighted slow-
downs are identical.

8.4.1.3 Virtual-Time Compensation

In a proportional-share scheduler, a convenient way to compensate threads
for co-runner interference is to adjust the virtual time update in (8.18). In
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particular, when a thread τi is charged for consuming its timeslice, we reduce
its consumption qi to account for the time it was stalled due to contention
for shared resources. We call this virtual-time adjustment technique vtime
compensation.6 We present two different vtime compensation methods – an
initial approach that compensates for conflict misses and an improved method
that compensates for negative impacts on cycles per instruction (CPI).

Compensating for Conflict Misses

Our initial attempt at vtime compensation was designed to compensate a
thread for conflict misses that it incurred while executing with co-runners and
while on a ready queue waiting to be dispatched. We first estimate the cache
occupancy that a thread τi would achieve without interference from other
threads. Starting with (8.9), this reduces to

Ei,NI = Ei +

(
1− Ei

C

)
mi (8.19)

where Ei,NI represents the expected occupancy of thread τi with no interfer-
ence from other threads.

We then use the miss-rate curve for τi to obtain two values: M(Ei), the
miss rate at Ei, and M(Ei,NI), the miss rate at Ei,NI , according to (8.9) and
(8.19), respectively. Given our monotonicity enforcement for miss-rate curves,
it must be the case that M(Ei) ≥M(Ei,NI).

Taking the difference between these two miss rates over τi’s most recent
timeslice, qi, provides a measure of the conflict misses experienced by the
thread. In practice, the latency of a cache miss is not constant, depending on
several factors, including prefetching and contention for memory bandwidth.
However, if we assume the average latency of a single last-level cache (LLC)
miss is L, then we can approximate the stall cycles due to conflict misses,
denoted by Si, as

Si = (M(Ei)−M(Ei,NI)) · L (8.20)

Given this measure of the conflict stall cycles experienced by a thread, we
modify the virtual time update from (8.18) accordingly:

v′i = vi + (qi − Si)/wi (8.21)

In (8.21), the updated virtual timestamp, v′i factors in the amount of time
τi stalls during its use of a CPU due to conflict misses with other threads. The
number of conflict misses considers both the time during which τi executes and
the time it waits for the CPU, since during this time its cache state may be
evicted by other threads. This method of virtual time compensation attempts

6Similar compensation approaches could be used in proportional-share schedulers that
are not based on virtual time. For example, in probabilistic lottery scheduling (Waldspurger
and Weihl 1994), the concept of ‘compensation tickets’ introduced to support non-uniform
quanta could be extended to reflect co-runner interference.
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to benefit those threads that are affected by cache interference by reducing
their effective resource consumption, which increases their scheduling priority.

Unfortunately, this approach requires miss-rate curves, which, as explained
in Section 8.3, are difficult to derive accurately in the presence of co-runners
competing for limited memory bandwidth. A related problem is modeling the
average cache miss latency L, which may vary due to contention for memory
bandwidth.

Compensating for Increased CPI

To address these issues, we revised our vtime compensation strategy to simply
determine the actual cycles per instruction, CPIactual, at the current occu-
pancy, as well as the ideal cycles per instruction CPIideal if the thread were
to experience no resource contention from other threads. We obtain CPIideal
from the value at full occupancy in the CPKI curve. This is more robust
than simply measuring the minimum observed CPI value, because the CPKI
curve captures the average value over an interval, reducing sensitivity to phase
transitions. Hence, our revised virtual time adjustment for τi becomes

v′i = vi +
CPIideal
CPIactual

· qi/wi (8.22)

This approach effectively replaces the use of miss-ratio curves with cache
performance curves that provide CPI values at different cache occupancies
(i.e., CPKI instead of MPKI). As a result, it reflects contention for all shared
CMP resources, including memory interconnect bandwidth. Thus, compen-
sating for negative impacts on CPI is simpler and more accurate than com-
pensating only for cache conflict misses.

8.4.1.4 Vtime Compensation Experiments

We implemented vtime compensation in the VMware ESX Server hypervi-
sor. ESX Server implements a proportional-share scheduler that employs a
virtual-time algorithm similar to those described in Section 8.4.1.1. Our ex-
periments ran two instances each of four different SPEC2000 benchmark ap-
plications: mcf, swim, twolf, and equake. In this case, we restricted all
software threads to run on one package of the Dell PowerEdge machine, as
described in Section 8.3. This meant that four cores were overcommitted with
eight threads that were scheduled by the ESX Server hypervisor. The hyper-
visor was responsible for the assignment of threads to cores.

In Figure 8.11(a), all benchmark instances had equal share allocations,
while in Figure 8.11(b), a 2:1 share ratio was specified for the two instances of
each application. To evaluate the efficacy of vtime compensation, we measured
per-application weighted slowdown, as defined in Section 8.4.1.2. The overall
slowdown was calculated as the arithmetic mean of the weighted slowdowns of
all the applications. Although CAFÉ only slightly reduces the average slow-
down, it significantly reduces the variation in slowdowns experienced by all



246 Multicore Technology: Architecture, Reconfiguration, and Modeling

Default CAFE

2x

4x

6x

8x

S
lo

w
d

o
w

n

 

 

(a) Equal shares

mcf−0

mcf−1

swim−0

swim−1

twolf−0

twolf−1

equake−0

equake−1

average

Default CAFE

2x

4x

6x

8x

10x

12x

W
e

ig
h

te
d

 S
lo

w
d

o
w

n

 

 

(b) 2:1 shares

mcf−0

mcf−1

swim−0

swim−1

twolf−0

twolf−1

equake−0

equake−1

average

Equal share 2:1 share ratio
0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

U
n
fa

ir
n
e
s
s
(c

o
e
ff
ic

ie
n
t 
o
f 
v
a
ri
a
ti
o
n
)

 

 

(c) Scheduling Unfairness

Default

CAFE

(a) Equal shares

Default CAFE

2x

4x

6x

8x
S

lo
w

d
o

w
n

 

 

(a) Equal shares

mcf−0

mcf−1

swim−0

swim−1

twolf−0

twolf−1

equake−0

equake−1

average

Default CAFE

2x

4x

6x

8x

10x

12x

W
e

ig
h

te
d

 S
lo

w
d

o
w

n

 

 

(b) 2:1 shares

mcf−0

mcf−1

swim−0

swim−1

twolf−0

twolf−1

equake−0

equake−1

average

Equal share 2:1 share ratio
0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

U
n
fa

ir
n
e
s
s
(c

o
e
ff
ic

ie
n
t 
o
f 
v
a
ri
a
ti
o
n
)

 

 

(c) Scheduling Unfairness

Default

CAFE

(b) 2:1 shares

Default CAFE

2x

4x

6x

8x

S
lo

w
d
o
w

n

 

 

(a) Equal shares

mcf−0

mcf−1

swim−0

swim−1

twolf−0

twolf−1

equake−0

equake−1

average

Default CAFE

2x

4x

6x

8x

10x

12x

W
e
ig

h
te

d
 S

lo
w

d
o
w

n

 

 

(b) 2:1 shares

mcf−0

mcf−1

swim−0

swim−1

twolf−0

twolf−1

equake−0

equake−1

average

Equal share 2:1 share ratio
0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

U
n

fa
ir
n

e
s
s
 (c

o
e

ff
ic

ie
n

t 
o

f 
v
a

ri
a

ti
o

n
)

 

 

(c) Scheduling Unfairness

Default

CAFE

(c) Scheduling unfairness

FIGURE 8.11
Vtime compensation

workloads. For both Figures 8.11(a) and (b), the slowdown experienced by
mcf is much less when using CAFÉ compared to the default ESX Server
scheduler.

Figure 8.11(c) plots the unfairness measured for the equal-share and 2:1-
share ratio experiments. The unfairness metric is the coefficient of variation of
the per-application weighted slowdowns, and vtime compensation improves it
by approximately 50%. Overall, vtime compensation provides a slight increase
in performance while reducing unfairness significantly.

8.4.2 Efficient Scheduling

Now we describe how CAFÉ’s cache monitoring infrastructure can be lever-
aged to improve the performance of co-running workloads. We start by in-
troducing the concept of cache pressure, which represents how aggressively a
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thread competes for additional cache space. We then present a cache divvying
algorithm, based on cache pressure, for approximating the steady-state cache
occupancies of co-running threads. Using cache divvying to determine the
performance impact of various co-runner placements, we demonstrate simple
scheduler modifications for selecting good co-runner placements to maximize
aggregate system throughput.

8.4.2.1 Cache Pressure

To understand cache pressure, recall that CAFÉ estimates the cache occu-
pancy for a single thread using (8.9), which defines a recurrence relation be-
tween its previous and current occupancies. Since (1−E/C) ·ml specifies the
increase in occupancy, we define the cache pressure Pi exerted by thread τi as

Pi = (1− Ei/C) ·M(Ei) (8.23)

where C is the total number of cache lines in the shared cache, and M(Ei)
is the miss rate of τi at its current occupancy, Ei. In short, cache pressure
reflects how aggressively a thread tends to increase its cache occupancy.

A key insight is that at equilibrium occupancies, the cache pressures ex-
erted by co-running threads are either equal or zero. If the cache pressures
are not equal, then the thread with the highest cache pressure increases its
cache occupancy. We have observed that in most cases, co-running threads do
not converge at equilibrium occupancies, but instead cycle through a series of
occupancies with oscillating cache pressures.

Calculating a thread’s cache pressure requires M(Ei), which is obtained
from its miss-rate curve. As explained earlier, since miss-rate curves are sen-
sitive to contention for memory bandwidth and other dynamic interference,
we instead construct miss-ratio curves, despite our desire to examine time-
varying behavior. To translate MRCs that track MPKI values into misses per
cycle, we normalize each point on the discrete curve by the ideal CPI for the
corresponding thread. While this is not completely accurate, it nonetheless
provides a practical way to generate approximate miss-rate curves that are
not sensitive to interference from co-runners.

8.4.2.2 Cache Divvying

Using the insight above that cache pressures of co-running threads should
match at equilibrium occupancies, we are able to estimate their average oc-
cupancies, enabling us to predict how the cache will be divided among them.
Our cache divvying technique does not control how cache lines are actually
allocated to threads, but rather serves to predict how cache lines would be
allocated given their current occupancy and working-set demands. It also cap-
tures the average occupancies of co-running threads that cycle through a series
of occupancy values at equilibrium.

Algorithm 8.1 summarizes the cache divvying strategy, assuming the cache
is initially empty. In reality, each thread, τi, will have a potentially non-zero
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Algorithm 8.1: Cache Divvying

// initialize surplus cache lines S
S = C;
foreach τi do

Ei = 0; // initial occupancy
end
repeat

// reset max pressure
Pmax = 0; foreach τi do

// pressure at current occupancy
Pi = (1− Ei/C) ·M(Ei);
if Pi > Pmax then

// record thread with max pressure
Pmax = Pi;
max = i;

end

end
// greedily assume chunk of size B
// allocated to thread with max pressure
Emax = Emax +B;
S = S −B;

until S = 0 or ∀Pi = 0;

current occupancy, Ei. The algorithm compares the pressures of each thread at
their initial occupancies, by using miss-rate information obtained from MRC
data. The thread with the highest pressure is assumed to be granted a chunk
of cache. The allocatable chunk size, B, is configurable, but serves to limit
the number of iterations of the algorithm required to predict steady-state
occupancies for the competing threads. In practice we have found that setting
B to one-eighth or one-sixteenth of the total cache size works well with our
MRCs, which are also quantized using discrete cache occupancy values.

During each iteration, the thread with the highest pressure increases its hy-
pothetical cache occupancy. This in turn affects its current miss rate, M(Ei),
and hence its current pressure, Pi, for its new occupancy. As the pressure from
a thread subsides, its competition for additional cache lines diminishes. When
the entire cache is divvied, or when all pressures reach zero, the algorithm
terminates, yielding a prediction of cache occupancies for each co-runner.

Figure 8.12 shows Algorithm 8.1 used with our simulator for a dual-core
system as described in Section 8.2.2. Cache divvying is used to predict the
occupancies for six pairs of co-runners, separated by vertical dashed lines
in the figure. In each case, the chunk size, B, is set to one-sixteenth of the
cache size (i.e., 256 KB). Each co-runner generates 10 million interleaved cache
references from a Valgrind trace. While this is insufficient to lead to full cache
occupancy in all cases, results show that predicted and actual occupancies are
almost always within one chunk size of the actual occupancy. This suggests



CAFÉ: Cache-Aware Fair and Efficient Scheduling for CMPs 249

0

0.5

1

1.5

2

2.5

3

3.5

gc
c 

cr
af

ty
gc

c 
m

cf
gc

c 

pe
rlb

m
k

cr
af

ty
 

m
cf

cr
af

ty
 

pe
rlb

m
k

m
cf
 

pe
rlb

m
k

Pairwise co-runners

C
a

c
h

e
 o

c
c
u

p
a

n
c
y
 (

M
B

)

Actual

Predicted

FIGURE 8.12
Cache divvying occupancy prediction

cache divvying is an accurate method of determining cache shares among co-
runners. We are investigating its accuracy on architectures with higher core
counts.

8.4.2.3 Co-Runner Selection

Cache divvying provides the ability to predict the equilibrium occupancies
achieved by workloads co-running on a shared cache. This information can be
used in CPU scheduling decisions to enhance overall system throughput.

We extended the VMware ESX Server scheduler with a simple heuris-
tic. A user-level thread periodically snapshots the miss-ratio curves generated
by CAFÉ and evaluates various co-runner pairings using cache divvying to
predict their associated equilibrium occupancies. Based on a workload’s es-
timated occupancy, we predict its miss ratio by consulting the workload’s
miss-ratio curve. We employ a simple approximation to convert the predicted
miss ratio into a time-based miss rate, multiplying the workload’s miss ratio
by 1/CPIideal, its instructions-per-cycle metric at full occupancy. The pairing
which achieves the smallest aggregate conflict miss rate is chosen and commu-
nicated to the scheduler, which migrates threads to implement the improved
placements.

The conflict miss rate is the miss rate in excess of what a thread experiences
at full cache occupancy. By selecting pairings which reduce aggregate conflict
misses, CAFÉ tries to improve performance as well as fairness. While we have
demonstrated one practical heuristic incorporating cache divvying predictions,
many other scheduler optimizations could benefit from this information.
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8.4.2.4 Co-Runner Selection Experiments

To evaluate our implementation of the co-runner placement heuristic in the
ESX Server scheduler, we used the SPEC2000 benchmarks mcf, swim, gzip,
and perlbmk, each running on a separate core. To focus on the effectiveness
of CAFÉ at finding good co-runner placements, we restricted the workloads
to execute on a single package containing two dual-core CMPs, each with its
own last-level cache.

As before, we use the average of the per-application slowdowns as the
metric for overall efficiency and their coefficient of variation as the metric
for unfairness. At the start of the experiment, the co-runner pairings were
manually selected to be the pairing that was determined to result in the worst
overall performance (mcf paired with swim and perlbmk paired with gzip).

Note that in Figure 8.13, the ‘Worst overall placement’ column for each
separate workload shows the slowdown of that benchmark when running in
the worst overall configuration. As can be seen, some benchmarks do not
suffer as much as others in this worst-case configuration, but mcf was the one
that incurred significant slowdown. Notwithstanding, the rightmost ‘Overall’
column shows that when mcf experiences its worst slowdown that is when we
have the worst overall slowdown across all workloads.

As Figure 8.13 shows, CAFÉ was able to achieve performance close to
the best overall placement by adjusting the workload assignments to better
cores. CAFÉ co-runner placement reduces unfairness by 24% and improves
performance by 5% compared to the average of all placements. Compared to
the worst overall placement, CAFÉ reduces unfairness by 64% and improves
performance by 16%.
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8.5 Related Work

The focus of this chapter encompasses several areas of related work, from
shared-cache resource management to co-scheduling of threads on parallel or
multi-core architectures. In the area of shared-cache resource management,
there is a significant literature on cache partitioning, using either hardware
or software techniques (Albonesi 1999; Chang and Sohi 2007; Dybdahl, Sten-
ström, and Natvig 2006; Iyer 2004; Kim, Chandra, and Solihin 2004; Liu,
Sivasubramaniam, and Kandemir 2004; Rafique, Lim, and Thottethodi 2006;
Ranganathan, Adve, and Jouppi 2000; Srikantaiah, Kandemir, and Irwin 2008;
Suh, Rudolph, and Devadas 2004). This has been prompted by the observa-
tion that multiple workloads sharing a cache may experience interference in
the form of conflict misses and memory bus bandwidth contention, resulting in
significant performance degradation. For example, Kim, Chandra, and Solihin
(2004) showed significant variation in execution times of SPEC benchmarks,
depending on co-runners competing for shared resources.

Cache partitioning has the potential to eliminate conflict misses and im-
prove fairness or overall performance. While hardware-based approaches are
typically faster and more efficient than those implemented by software, they
are not commonly available on current processors (Suh, Devadas, and Rudolph
2001; Suh, Rudolph, and Devadas 2004). Software techniques such as those
based on page coloring require careful coordination with the memory man-
agement subsystem of the underlying OS or hypervisor and are generally too
expensive for workloads with dynamically varying memory demands (Cho and
Jin 2006; Liedtke, Härtig, and Hohmuth 1997; Lin et al. 2008).

A significant challenge with cache partitioning is deriving the optimal al-
location size for a workload. One way to tackle this problem is to construct
cache utility functions, or performance curves, that associate workload ben-
efits (e.g., in terms of miss ratios, miss rates, or CPI) with different cache
sizes. In particular, methods to construct miss-ratio curves (MRCs) have been
proposed that capture workload performance impacts at different cache oc-
cupancies, but either require special hardware (Qureshi and Patt 2006; Suh,
Devadas, and Rudolph 2001; Suh, Rudolph, and Devadas 2004) or incur high
overhead (Berg, Zeffer, and Hagersten 2006; Tam et al. 2009).

The Mattson Stack Algorithm (Mattson et al. 1970) can derive MRCs
by maintaining an LRU-ordered stack of memory addresses. RapidMRC uses
this algorithm as the basis for its online MRC construction (Tam et al. 2009).
This requires hardware support in the form of a Sampled Data Address Reg-
ister (SDAR) in the IBM POWER5 performance monitoring unit to obtain
a stream of memory addresses that match a pre-specified selection criterion.
The total cost of online MRC construction is several hundred milliseconds,
with more than 80 ms of workload stall time due to the high overhead of trace
collection. This overhead is mitigated by triggering MRC construction only
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when phase transitions are detected, based on changes in the overall cache
miss rate. However, since changes in cache miss rates can be triggered by
cache contention caused by co-runners and not necessarily phase changes; the
phase transition detection in RapidMRC does not seem robust in overcom-
mitted environments.

In contrast, we deploy an online method to construct MRCs and other
cache-performance curves efficiently, requiring only commonly available per-
formance counters. Due to the low overhead of our cache-performance curve
construction, it can remain enabled at all times, providing up-to-date informa-
tion pertaining to the most recent phase. As a result, CAFÉ does not require
an offline reference point to account for vertical shifts in the online curves
due to phase transitions and is also robust in the presence of cache contention
from co-runners. We do, however, suffer from the problem of obtaining enough
occupancy data points to construct full curves. Using duty-cycle modulation
to temporarily reduce the rate of memory access by competing workloads is
one technique that has the potential to alleviate this problem.

Other researchers have inferred cache usage and utility of different cache
sizes. In CacheScouts (Zhao et al. 2007), for example, hardware support for
monitoring IDs and set sampling are used to associate cache lines with dif-
ferent workloads, enabling cache occupancy measurements. However, the use
of special IDs differs from our occupancy estimation approach, which only re-
quires currently available performance monitoring events common to modern
CMPs.

Given cache utility curves, we attempt to perform fair and efficient schedul-
ing of workloads on multiple cores. Fedorova, Seltzer, and Smith (2006) devised
a cache-fair thread scheduler that redistributes CPU time to threads to ac-
count for unequal cache sharing. This work assumes that different workloads
competing for shared resources should receive equal cache shares to be fair,
regardless of different memory demands from workloads. A two-phase pro-
cedure is employed, first computing the fair cache miss rate of each thread,
followed by adjustments to CPU allocations. Computing fair cache miss rates
requires sampling a subset of co-runners followed by a linear regression and
is potentially expensive. In contrast, we derive a workload’s current and fair
CPI values inexpensively and then perform vtime compensation to improve
fairness.

8.6 Conclusions and Future Work

This chapter introduces several novel techniques for chip-level multiprocessor
resource management. In particular, we focus on the management of shared
last-level caches and their impact on fair and efficient scheduling of workloads.
Toward this end, our first contribution is the online estimation of cache oc-
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cupancies for different threads, using only performance counters commonly
available on commodity processors. Simulation results verify the accuracy of
our mathematical model for cache occupancy estimation.

Building on occupancy estimation, we demonstrate how to dynamically
generate cache performance curves, such as MRCs, that capture the utility
of cache space on workload performance. Empirical results using the VMware
ESX Server hypervisor show that we are able to construct per-thread MRCs
online with low overhead, in the presence of interference from co-runners.
We show how duty cycle modulation can be used to help a thread increase
its cache occupancy by reducing interference from co-runners. This approach
facilitates obtaining a wide range of occupancy data points for MRCs.

Our fast online MRC construction technique is used as part of a cache
divvying heuristic to predict the average occupancies of a set of co-running
workloads. Simulation results show this to be an effective method of using
MRCs to estimate the expected occupancies if two or more workloads were
to co-execute and compete for cache space. Cache divvying forms the basis
of our co-runner selection strategy, which partitions threads across separate
CMPs. By carefully partitioning threads, we avoid potentially bad groupings
of co-runners that could negatively impact the shared last-level cache on the
same CMP. Experiments show that for a group of SPEC CPU workloads, we
are able to reduce slowdown by as much as 5% in the average case and 16%
in the best case.

Finally, we attempt to improve fairness by compensating a workload for
the resource conflicts it experiences when co-running with other workloads.
Our vtime compensation technique accounts for the time a thread is stalled
contending for resources, including the stall cycles caused by last-level cache
conflict misses and memory bus access. Estimates of performance degradation
experienced by a thread due to co-runner interference are calculated online.
Results show as much as 50% improvement in fairness using vtime compen-
sation.

While we have presented several new online techniques for CMP resource
management, a variety of interesting research opportunities remain. We are ex-
ploring various approaches for improving CAFÉ’s ability to generate accurate
cache performance curves at all occupancy points. We continue to investigate
new scheduling heuristics that leverage our cache monitoring capabilities, and
we are examining applications of vtime compensation to other problems, such
as NUMA locality management. We also plan to extend our modeling tech-
niques to address the impact of threads that block waiting for events such
as I/O completion, and to incorporate the effects of data sharing and con-
structive interference between threads. Finally, we are actively exploring ways
to extend and integrate our software techniques with future hardware, such
as architectural support for cache quality of service (QoS) monitoring and
enforcement, and large-scale CMPs containing tens to hundreds of cores.
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