
Muhammad Yasir Qadri and Stephen J. Sangwine (editors)

Multicore Technology:

Architecture, Reconfiguration

and Modeling

2

Contributors

Richard West

Department of Computer Science
Boston University

Boston, MA 02215, USA

Puneet Zaroo

VMware, Inc.
Palo Alto, CA, USA

Carl A. Waldspurger

Work done while at VMware, Inc.,
Palo Alto, CA, USA

Xiao Zhang

Google, Inc.
Mountain View, CA, USA

Work done while at VMware

i

ii

List of Figures

1.1 Accuracy of basic Estimate-M method on dual-core system with ran-

dom line replacement policy. 9

1.2 Occupancy and estimation error for the Estimate-M and Estimate-

MH methods. 9

1.3 Two pairs of co-runners in dual-core systems: mcf vs. gcc, and

omnetpp vs. perlbmk. 10

1.4 Cache occupancy over time for four co-runners in a quad-core sys-

tem. 11

1.5 Occupancy estimation for an over-committed quad-core system (Part

1). 12

1.6 Occupancy estimation for an over-committed quad-core system (Part

2). 13

1.7 Fine-grained occupancy estimation in over-committed quad-core

system. 13

1.8 Effect of memory bandwidth contention on the MPKC miss-rate

curve for the SPEC CPU2000 mcf workload. 15

1.9 Miss-ratio curves (MRCs) for various SPEC CPU workloads, ob-

tained online by CAFÉ versus offline by page-coloring. 18

1.10 MRC for mcf with different co-runners. 18

1.11 Vtime compensation. 23

1.12 Cache divvying occupancy prediction. 26

1.13 Co-runner placement. 27

iii

iv

Contents

1 CAFÉ: Cache-Aware Fair and Efficient Scheduling for CMPs 1

Richard West, Puneet Zaroo, Carl A. Waldspurger, and Xiao Zhang

1.1 Introduction . 2

1.2 Cache Occupancy Estimation . 3

1.2.1 Basic Cache Model . 4

1.2.2 Extended Cache Model for LRU Replacement Policies . . . 7

1.2.3 Experiments . 8

1.3 Cache Utility Curves . 14

1.3.1 Curve Types . 14

1.3.2 Curve Generation . 15

1.3.2.1 Occupancy Updates 16

1.3.2.2 Generating Miss-Ratio Curves 16

1.3.2.3 Generating Other Curves 16

1.3.2.4 Obtaining Full Curves 17

1.3.3 Experiments . 17

1.3.4 Discussion . 19

1.4 Cache-Aware Scheduling . 19

1.4.1 Fair Scheduling . 20

1.4.1.1 Proportional-Share Scheduling 20

1.4.1.2 Fair Scheduling for CMPs 21

1.4.1.3 Virtual-Time Compensation 21

1.4.1.4 Vtime Compensation Experiments 23

1.4.2 Efficient Scheduling . 24

1.4.2.1 Cache Pressure 24

1.4.2.2 Cache Divvying 25

1.4.2.3 Co-Runner Selection 26

1.4.2.4 Co-Runner Selection Experiments 27

1.5 Related Work . 28

1.6 Conclusions and Future Work . 29

Bibliography 31

v

vi

List of Abbreviations

CAFÉ Cache-Aware Fair and Efficient Scheduling

CMP Chip-level Multiprocessor

CPI Cycles Per Instruction

CPKI Cycles Per Kilo-Instruction

CPU Central Processing Unit

GB Gigabytes

GHz Gigahertz

I/O Input/Output

KB Kilobytes

LLC Last-Level Cache

Ln nth-Level Cache

LRU Least-Recently Used

MB Megabytes

MPKC Misses Per Kilo-Cycle

MPKI Misses Per Kilo-Instruction

MPKR Misses Per Kilo-Reference

MRC Miss-Ratio Curve

NUMA Non-Uniform Memory Access

OS Operating System

QoS Quality of Service

RAM Random Access Memory

SDAR Sampled Data Address Register

SPEC Standard Performance Evaluation Corporation

Vtime Virtual Time

vii

viii

1

CAFÉ: Cache-Aware Fair and Efficient
Scheduling for CMPs

Richard West

Department of Computer Science, Boston University, Boston, MA, USA

Puneet Zaroo

VMware Inc., Palo Alto, CA, USA

Carl A. Waldspurger

Formerly at VMware Inc., Palo Alto, CA, USA

Xiao Zhang

Google, Inc., Mountain View, CA, USA

Formerly at VMware for this work

CONTENTS

Modern chip-level multiprocessors (CMPs) typically contain multiple processor

cores sharing a common last-level cache, memory interconnects, and other hard-

ware resources. Workloads running on separate cores compete for these resources,

often resulting in highly-variable performance. Unfortunately, commodity proces-

sors manage shared hardware resources in a manner that is opaque to higher-level

schedulers responsible for multiplexing these resources across workloads with vary-

ing demands and importance. As a result, it is extremely challenging to optimize for

efficient resource utilization or enforce quality-of-service policies.

Effective cache management requires accurate measurement of per-thread cache

occupancies and their impact on performance, often summarized by utility functions

such as miss-ratio curves (MRCs). We introduce an efficient online technique for

generating MRCs and other cache utility curves, requiring only performance coun-

ters available on commodity processors. Building on these monitoring and inference

techniques, we also introduce novel methods to improve the fairness and efficiency of

CMP scheduling decisions. Vtime compensation adjusts a thread’s scheduling prior-

ity to account for cache and memory system interference from co-runners, and cache

divvying estimates the performance impact of co-runner placements. We demonstrate

the effectiveness of our monitoring and scheduling techniques with quantitative ex-

1

2 Multicore Technology: Architecture, Reconfiguration and Modeling

periments, including both simulation results and a prototype implementation in the

VMware ESX Server hypervisor.

1.1 Introduction

Advancements in processor architecture have led to a proliferation of multi-core pro-

cessors, commonly referred to as chip-level multiprocessors (CMPs). Commodity

client and server platforms contain one or more CMPs, with each CMP consisting of

multiple processor cores sharing a common last-level cache, memory interconnects,

and other hardware resources [2, 14]. Workloads running on separate cores compete

for these shared resources, often resulting in highly-variable or unpredictable perfor-

mance [10, 16].

Operating systems and hypervisors are designed to multiplex hardware resources

across multiple workloads with varying demands and importance. Unfortunately,

commodity CMPs typically manage shared hardware resources, such as cache space

and memory bandwidth, in a manner that is opaque to the software responsible

for higher-level resource management. Without adequate visibility and control over

performance-critical hardware resources, it is extremely difficult to optimize for ef-

ficient resource utilization or enforce quality-of-service policies.

Many hardware approaches have been proposed to address this problem, intro-

ducing low-level architectural mechanisms to support cache occupancy monitoring

and/or the ability to partition cache space among multiple workloads [3, 7, 9, 15, 16,

19, 25, 26, 28, 30]. To further understand the impact of shared caches on workload

performance, methods have also been devised to construct cache utility functions,

such as miss-ratio curves (MRCs), which capture miss ratios at different cache occu-

pancies [5, 24, 31, 30, 32]. However, existing techniques for generating MRCs either

require custom hardware support, or incur non-trivial software overheads.

Constructing cache utility curves is an important step toward effective cache man-

agement. To utilize caches more efficiently and provide differential quality of ser-

vice for workloads, higher-level resource management policies are needed to lever-

age them. For example, schedulers can exploit cache performance information to

make better co-runner placement decisions [6, 31, 33], improving cache efficiency

or fairness. Unfortunately, strict quality-of-service enforcement generally requires

hardware support. While software-based page coloring techniques have been used to

provide isolation [8, 17, 18], such hard partitioning is inflexible, and generally pre-

vents efficient cache utilization. Moreover, without special hardware support [27],

dynamically recoloring a page is expensive, requiring updates to page mappings and

a full page copy, making this approach unattractive for dynamic workload mixes in

general-purpose systems.

We offer an alternative for cache-aware fair and efficient scheduling in a system

called CAFÉ. Unlike most previous approaches, CAFÉ requires no special hardware

support, using only basic performance counters found on virtually all modern proces-

CAFÉ: Cache-Aware Fair and Efficient Scheduling for CMPs 3

sors, including commodity x86 CMPs [1, 13]. Several new cache modeling and infer-

ence methods are introduced for accurate cache performance monitoring. Building

on this basic monitoring capability, we also introduce new techniques for improving

the fairness and efficiency of CMP scheduling decisions.

CAFÉ efficiently computes accurate per-workload cache occupancy estimates

from per-core cache miss counts. Occupancy estimates are leveraged to support in-

expensive construction of general cache utility curves. For example, miss-ratio and

miss-rate curves can be generated by incorporating additional performance counter

values for instructions retired and elapsed cycles, avoiding the need for special hard-

ware or memory address traces.

We leverage CAFÉ’s cache monitoring infrastructure to perform proper charging

for resource consumption, accounting for dynamic interference between co-running

workloads within a CMP. A new vtime compensation technique is introduced to com-

pensate a workload for interference from co-runners. We also present CAFÉ’s cache

divvying policy for predicting approximate cache allocations during co-runner exe-

cution. Using estimated cache utility curves, we are able to determine good co-runner

placements to maximize aggregate throughput.

The next section presents our cache occupancy estimation approach, including

a detailed description of its mathematical basis, together with simulation results

demonstrating its effectiveness. Section 1.3 builds on this foundation, explaining our

method for online construction of cache utility curves. Using a prototype implemen-

tation in the VMware ESX Server hypervisor, we examine its accuracy by comparing

CAFÉ’s dynamically-generated MRCs with MRCs for the same workloads collected

via static page-coloring. Section 1.4 introduces our cache-aware scheduling poli-

cies: vtime compensation for cache-fair scheduling, and our cache-divvying strategy

for estimating the performance impact of co-runner placements. Quantitative exper-

iments in the context of ESX Server show that these schemes are able to improve

fairness and efficiency. Related work is examined in Section 1.5. Finally, we summa-

rize our conclusions and highlight opportunities for future work in Section 1.6.

1.2 Cache Occupancy Estimation

In this section, we present our approach for estimating cache occupancy. We be-

gin with a formal explanation of our basic model, which requires only cache miss

counts for each co-running thread. We then examine the effects of pseudo-LRU set-

associativity as implemented in modern processors, and extend our model to addi-

tionally incorporate cache hit counts to improve accuracy for such configurations.

We demonstrate the effectiveness of our cache occupancy estimation techniques

with a series of experiments in which SPEC benchmarks execute concurrently on

multiple cores. Since real processors do not expose the contents of hardware caches

4 Multicore Technology: Architecture, Reconfiguration and Modeling

to software1, we measure accuracy using the Intel CMPSched$im simulator [21] to

compare the results of our model with actual cache occupancies in several different

configurations.

For the purposes of our model, we consider a shared last-level cache that may

be direct-mapped or n-way set associative. Our objective is to determine the current

amount of cache space occupied by some thread, τ , at time t, given contention for

cache lines by multiple threads running on all the cores that share that cache. At time

t, thread τ may be descheduled, or it may be actively executing on one core while

other threads are active on the remaining cores.

1.2.1 Basic Cache Model

Since hardware caches reveal very little information to software, in order to derive

quantitative information about their state, we must rely on inference techniques us-

ing features such as hardware performance counters. Virtually all modern proces-

sors provide performance counters through which information about various system

events can be determined, such as instructions retired, cache misses, cache accesses

and cycle times for execution sequences. Using two events, namely the local and

global last-level cache misses, we estimate the number of cache lines, E, occupied

by thread τ at time t. By global cache misses, we mean the cumulative number of

such events across all cores that share the same last-level cache.

We assume that the shared cache is accessed uniformly at random. Results show

this to be a reasonable assumption, given the unbiased nature of memory allocation,

and the desire for all cache lines to be used effectively across multiple workloads

and execution phases. Observe that for n-way set-associative caches, a cache set is

selected by using a subset of bits in a memory address, and then a victim cache block

within the set is typically chosen using an LRU-like algorithm. Our own observations

suggest that n-way set associative caches in modern multicore processors have some

element of randomness to their line replacement policies within sets. In many cases,

these policies use some form of binary decision tree as well as a degree of random

selection to reduce the bitwise logic when approximating algorithms such as LRU. It

is reasonable to assume that randomness will have a greater effect as the number of

ways in cache sets is increased in future processors.

In this work, we also assume each cache line is allocated to a single thread at

any point in time. Furthermore, we do not consider the effects of data sharing across

threads, although this is an important topic for future work.

Cache occupancy is effectively dictated by the number of misses experienced by

a thread because cache lines are allocated in response to such misses. Essentially, the

current execution phase of a thread τi influences its cache investment, because any of

its lines that it no longer accesses may be evicted by conflicting accesses to the same

cache index by other threads. Evicted lines no longer relevant to the current execution

phase of τi will not incur subsequent misses that would cause them to return to the

1Current processor families do not allow software to inspect cache tags, although the MIPS R4000

[12] did provide a cache instruction with this capability.

CAFÉ: Cache-Aware Fair and Efficient Scheduling for CMPs 5

cache. Hence, the cache occupancy of a thread is a function of its misses experienced

over some interval of time. For subsequent discussion, we introduce the following

notation:

• Let C represent the number of cache lines in a shared cache, accessed uniformly

at random.

• Let ml represent the number of misses experienced by the local thread, τl, under

observation over some sampling interval. This term also represents the number

of cache lines allocated due to misses.

• Let mo represent the aggregate number of misses by every thread other than τl,
on all cores of a CMP that cause cache lines to be allocated in response to such

misses. We use the notation τo to represent the aggregate behavior of all other

threads, treating it as if it were a single thread.

Theorem. Consider a cache of size C lines, with E cache lines belonging to τl and

C − E cache lines belonging to τo at some time, t. If, in some interval, δt, there are

ml misses corresponding to τl and mo misses corresponding to τo, then the expected

occupancy of τl at time t+ δt is approximately: E′ = E + (1− E
C)·ml −

E
C ·mo

Proof. First, at time t, it is assumed that τl and τo are sufficiently memory-intensive,

and have executed for enough time, to collectively populate the entire cache. Now,

considering any single cache line, i, at time t+ δt we have:

Pr{i belongs to τl} =
Pr{i belongs to τl | i belonged to τl}·Pr{i belonged to τl} +
Pr{i belongs to τl | i belonged to τo}·Pr{i belonged to τo}

This follows from the prior probabilities, at time t:

Pr{i belonged to τl} =
E

C
(1.1)

Pr{i belonged to τo} = 1−
E

C
(1.2)

Additionally, after ml +mo misses, the probability that τl replaces line i, previously

occupied by τo, is one minus the probability that τl does not replace τo after ml+mo

misses. More formally,

Pr{τl replaces τo on line i} = (1.3)

1− [1−
ml

C(ml +mo)
](ml+mo)

In Equation 1.3, ml

C(ml+mo)
represents the probability that a miss by τl will result in

an arbitrary line, i, being populated by contents for τl. We know that the probability

of a particular line being replaced by a single miss is 1/C, and the ratio ml

ml+mo

corresponds to the probability of that miss being caused by one of τl’s accesses. Note

that here we make no assumptions about the order of interleaved memory accesses

made by two or more co-running threads. Instead, the ratio ml

ml+mo

is based on the

probability that, amongst all possible interleaved misses from τl and τo, τl will have

the last miss associated with a given cache line.

6 Multicore Technology: Architecture, Reconfiguration and Modeling

It follows from Equation 1.3 that the probability of τo replacing τl on line i at the

end of ml +mo misses is:

Pr{τo replaces τl on line i} = (1.4)

1− [1−
mo

C(ml +mo)
](ml+mo)

Therefore,

Pr{i belongs to τl | i belonged to τl} = (1.5)

1− Pr{τo replaces τl on line i} =

[1−
mo

C(ml +mo)
](ml+mo)

Pr{i belongs to τl | i belonged to τo} = (1.6)

Pr{τl replaces τo on line i} =

1− [1−
ml

C(ml +mo)
](ml+mo)

From Equations 1.1, 1.2, 1.5 and 1.6, we have:

Pr{i belongs to τl} =
E

C
·[1−

mo

C(ml +mo)
](ml+mo) + (1.7)

(1−
E

C
)·[1− [1−

ml

C(ml +mo)
](ml+mo)]

Ignoring the effects of quadratic and higher-degree terms, the first-degree linear ap-

proximation of Equation 1.7 becomes:

Pr{i belongs to τl} = (1.8)

E/C(1−mo/C) + (1− E/C)ml/C

This is a reasonable approximation given that 1/C is small. Consequently, the ex-

pected number of cache lines, E′, belonging to τl at time t+ δt is:

E′ = E(1−mo/C) + (1− E/C)ml = (1.9)

E + (1−
E

C
)·ml −

E

C
·mo

This follows from Equation 1.8 by considering the state of each of the C cache lines

as independent of all others.

Observe that the recurrence relation in Equation 1.9 captures the changes in cache

occupancy for some thread over a given interval of time, with known local and

global misses. The terms [1 − mo

C(ml+mo)
](ml+mo) and [1 − ml

C(ml+mo)
](ml+mo) in

Equation 1.7, approximate to e−mo/C and e−ml/C , respectively. Thus, for situations

where ml +mo >> 1, Equation 1.9 becomes

E′ = Ee−mo/C + C(1− E/C)(1− e−ml/C) (1.10)

CAFÉ: Cache-Aware Fair and Efficient Scheduling for CMPs 7

Equation 1.10 is significant in that it shows the cache occupancy of a thread (here,

τl) mimics the charge on an electrical capacitor. Given some initial occupancy, E, a

growth rate proportional to (1 − e−ml/C) applies to lines currently unoccupied by

τl. Similarly, the rate of reduction in occupancy (i.e., the equivalent discharge rate in

a capacitor) is proportional to e−mo/C .

The linear model in Equation 1.9 is practical for online occupancy estimation,

since it consists of an inexpensive computation that requires only the ability to mea-

sure per-core and per-CMP cache misses, which is provided by most modern proces-

sor architectures. For example, in the Intel Core architecture [13] used for our ex-

periments in Section 1.3, the performance counter event L2 LINES IN represents

lines allocated in the L2 cache, in response to both on-demand and prefetch misses.

A mask can be used to specify whether to count misses on a single core or on both

cores sharing the cache.

1.2.2 Extended Cache Model for LRU Replacement Policies

So far, our analysis has assumed that each line of the cache is equally likely to be

accessed. Over the lifetime of a large set of threads, this is a reasonable assumption.

However, commodity CMP configurations feature n-way set associative caches, and

lines within sets are not usually replaced randomly. Rather, victim lines are typically

selected using some approximation to a least recently used (LRU) replacement pol-

icy. We modified Equation 1.9 and to additionally incorporate cache hit information,

modeling the reduced replacement probability due to LRU effects when lines are

reused. Equation 1.9 can be rewritten as

E′ = E(1−mopl) + (C − E)mlpo (1.11)

where pl is the probability that a miss falls on a line belonging to τl, and po is the

probability that a miss falls on a line belonging to τo. Since Equation 1.9 does not

model LRU effects, each line is equally likely to be replaced and pl = po = 1/C. In

order to model LRU effects, we calculate

rl = (hl +ml)/E (1.12)

ro = (ho +mo)/(C − E) (1.13)

to quantify the frequency of reuse of the cache lines of τl and τo, respectively. hl and

ho represent the number of cache hits experienced by τl and τo, respectively, in the

measurement interval. As with miss counts, these hit counts can be obtained using

hardware performance counters available on most modern processors.

When the cache replacement policy is an LRU variant, ro and rl approximate

the frequency of reuse of the cache lines belonging to τ0 and τ1, respectively, since

we are unable to precisely know which line is the most recently accessed. Since the

probability that a miss evicts a line belonging to a thread is inversely proportional to

its reuse frequency, we assume the following relationship:

po/pl = rl/ro (1.14)

8 Multicore Technology: Architecture, Reconfiguration and Modeling

Furthermore, since a miss must fall on some line in the cache with probability 1:

plE + po(C − E) = 1 (1.15)

Solving Equations 1.14 and 1.15, we obtain:

po = rl/[roE + rl(C − E)] (1.16)

pl = ro/[roE + rl(C − E)] (1.17)

The values of po and pl obtained from Equations 1.16 and 1.17 can be substituted in

Equation 1.11 to obtain the hit-adjusted occupancy estimation model which handles

LRU cache replacement effects.

1.2.3 Experiments

We evaluated the cache estimation models on Intel’s CMPSched$im simulator [21],

which supports binary execution and co-scheduling of multiple workloads. This en-

abled us to measure the accuracy of our cache occupancy models by comparing

the estimated occupancy values with the actual values returned by the simulator.

The ability to control scheduling allowed us to perform experiments in both under-

committed and over-committed scenarios.

By default, the Intel simulator implements a CMP architecture using a pseudo-

LRU policy used in modern processors, although it is also configurable to simulate

random and other replacement policies. We configured the simulator to use a 3 GHz

clock frequency, with private per-core 32 KB 4-way set-associative L1 caches, and a

shared 4 MB 16-way set-associative L2 cache. All caches used a 64-byte line size.

The number of hardware cores and software threads was varied across different ex-

periments to test the effectiveness of our occupancy estimation models under diverse

conditions.

During simulation, the per-core and per-CMP performance counters measuring

L2 misses and hits were sampled once per millisecond, after which the occupancy

estimates were updated for each software thread. Since cache occupancies exhibit

rapid changes at this time scale, we averaged occupancies over 100 millisecond in-

tervals. We plot one value per second for both the estimated and actual occupancy

values, in order to display results more clearly over longer time scales. We refer to

the miss-based occupancy estimation technique using the basic cache model pre-

sented in Section 1.2.1 as method Estimate-M. The extended cache model presented

in Section 1.2.2 that also incorporates hit information to better model associativity is

referred to as method Estimate-MH.

Our first experiment tests the effectiveness of the basic Estimate-M method in a

dual-core configuration where a 16-way set-associative L2 cache is configured to use

a simple random cache line replacement policy instead of pseudo-LRU. Figure 1.1

plots the estimated and actual cache occupancies over time when the two cores were

running mcf and omnetpp from the SPEC CPU2006 benchmark suite. The esti-

mated occupancy for each benchmark tracks its actual occupancy very closely, which

CAFÉ: Cache-Aware Fair and Efficient Scheduling for CMPs 9

 0

 1

 2

 3

 4

 0 10 20 30 40 50

O
cc

up
an

cy
 (

M
B

)

Time (sec)

mcf

omnetpp

Actual
Estimate-M

FIGURE 1.1

Accuracy of basic Estimate-M method on dual-core system with random line re-

placement policy.

 1

 2

 3

 4

 0 10 20 30 40 50

O
cc

up
an

cy
 (

M
B

)

Time (sec)

Actual
Estimate-M

Estimate-MH

(a) mcf occupancy

 0

 1

 2

 3

 4

 0 10 20 30 40 50

O
cc

up
an

cy
 (

M
B

)

Time (sec)

Actual
Estimate-M

Estimate-MH

(b) omnetpp occupancy

 0

 1

 2

 3

 4

 0 10 20 30 40 50

E
rr

or
 (

M
B

)

Time (sec)

Estimate-M
Estimate-MH

(c) Error for mcf

 0

 1

 2

 3

 4

 0 10 20 30 40 50

E
rr

or
 (

M
B

)

Time (sec)

Estimate-M
Estimate-MH

(d) Error for omnetpp

FIGURE 1.2

Occupancy and estimation error for the Estimate-M and Estimate-MH methods.

10 Multicore Technology: Architecture, Reconfiguration and Modeling

is expected since the random replacement policy is consistent with our assumption

of random cache access.

Our next experiment evaluates the same workload with the default pseudo-LRU

line replacement policy which is used by actual processor hardware. Figures 1.2(a)

and 1.2(b) plot the estimated and actual cache occupancies over time, for mcf and

omnetpp respectively, using both the basic Estimate-M and extended Estimate-MH

methods. Figures 1.2(c) and 1.2(d) present the absolute error between the actual and

estimated values. The workloads in this experiment were selected to highlight the

difference in accuracy between the two estimation methods, which generally agreed

more closely for other workload pairings. In this case, the Estimate-M method is

considerably less accurate, often showing a substantial discrepancy relative to the

actual occupancies, especially during the interval between 8 and 18 seconds. On the

other hand, the hit-adjusted Estimate-MH method, designed to better reflect LRU

effects, is much more accurate, and tracks the actual occupancies fairly closely.

 1

 2

 3

 4

 0 4 8 12

O
cc

up
an

cy
 (

M
B

)

Time (sec)

Actual
Estimate-MH

(a) mcf

 0

 1

 2

 3

 4

 0 4 8 12

O
cc

up
an

cy
 (

M
B

)

Time (sec)

Actual
Estimate-MH

(b) gcc

 0

 1

 2

 3

 4

 0 10 20 30 40

O
cc

up
an

cy
 (

M
B

)

Time (sec)

Actual
Estimate-MH

(c) omnetpp

 0

 1

 2

 3

 4

 0 10 20 30 40

O
cc

up
an

cy
 (

M
B

)

Time (sec)

Actual
Estimate-MH

(d) perlbmk

FIGURE 1.3

Two pairs of co-runners in dual-core systems: mcf vs. gcc, and omnetpp vs.

perlbmk.

The remaining experiments focus on the more accurate Estimate-MH method

with various sets of co-running workloads. Figure 1.3 presents the results of two

separate experiments with different co-running SPEC CPU2006 benchmarks with a

dual-core configuration. Figures 1.3(a) and 1.3(b) show mcf running with gcc on

CAFÉ: Cache-Aware Fair and Efficient Scheduling for CMPs 11

the two cores; omnetpp and perlbmk are co-runners in Figures 1.3(c) and 1.3(d).

The estimated occupancies match the actual values very closely.

 0

 1

 2

 3

 4

 0 4 8 12 16

O
cc

up
an

cy
 (

M
B

)

Time (sec)

Actual
Estimate-MH

(a) mcf

 0

 1

 2

 3

 4

 0 4 8 12 16

O
cc

up
an

cy
 (

M
B

)

Time (sec)

Actual
Estimate-MH

(b) perlbmk

 0

 1

 2

 3

 4

 0 4 8 12 16

O
cc

up
an

cy
 (

M
B

)

Time (sec)

Actual
Estimate-MH

(c) omnetpp

 0

 1

 2

 3

 4

 0 4 8 12 16

O
cc

up
an

cy
 (

M
B

)

Time (sec)

Actual
Estimate-MH

(d) gcc

FIGURE 1.4

Cache occupancy over time for four co-runners in a quad-core system.

Figure 1.4 shows the cache occupancy over time for four different co-running

benchmarks from the SPEC CPU2006 suite in a quad-core configuration. Although

not shown, we also conducted similar experiments with other benchmarks from the

SPEC CPU2000 and 2006 suites, achieving similar levels of accuracy between esti-

mated and actual values. As with the dual-core results, experiments on a quad-core

platform are of similar precision.

We also evaluated the effectiveness of occupancy estimation in an over-

committed system, in which many software threads are time-multiplexed onto a

smaller number of hardware cores. In such a scenario, some threads will be desched-

uled at various points in time, waiting in a scheduler run queue to be dispatched

onto a processor core. In our experiments, we used a 100 millisecond scheduling

time quantum, with a simple round-robin scheduling policy selecting threads from a

global run queue.

Figures 1.5 and 1.6 show plots of the actual and estimated occupancies over time

for an over-committed quad-core system. Together, the two figures show ten soft-

ware threads running various benchmarks from the SPEC CPU2000 and CPU2006

12 Multicore Technology: Architecture, Reconfiguration and Modeling

 0

 1

 2

 3

 4

 0 10 20 30

O
cc

up
an

cy
 (

M
B

)

Time (sec)

Actual
Estimate-MH

(a) mcf

 0

 1

 2

 3

 4

 0 10 20 30

O
cc

up
an

cy
 (

M
B

)

Time (sec)

Actual
Estimate-MH

(b) hmmer

 0

 1

 2

 3

 4

 0 10 20 30

O
cc

up
an

cy
 (

M
B

)

Time (sec)

Actual
Estimate-MH

(c) equake00

 0

 1

 2

 3

 4

 0 10 20 30

O
cc

up
an

cy
 (

M
B

)

Time (sec)

Actual
Estimate-MH

(d) parser00

 0

 1

 2

 3

 4

 0 10 20 30

O
cc

up
an

cy
 (

M
B

)

Time (sec)

Actual
Estimate-MH

(e) xalancbmk

 0

 1

 2

 3

 4

 0 10 20 30

O
cc

up
an

cy
 (

M
B

)

Time (sec)

Actual
Estimate-MH

(f) twolf00

FIGURE 1.5

Occupancy estimation for an over-committed quad-core system (Part 1).

suites 2. In the corresponding experiment, the ten threads are scheduled to run on the

four cores sharing the L2 cache. The accuracy of occupancy estimation remains high,

despite the time-sliced scheduling.

In order to look at the estimation accuracy over shorter time intervals, Figure 1.7

zooms in to examine the first three seconds of execution for the mcf and equake00

workloads from Figures 1.5(a) and 1.5(c), respectively. The actual and estimated

occupancies are plotted every 100 milliseconds. Estimated occupancy tracks actual

2Benchmarks with names ending in 00 are from SPEC CPU2000, while all others are from CPU2006.

CAFÉ: Cache-Aware Fair and Efficient Scheduling for CMPs 13

 0

 1

 2

 3

 4

 0 10 20 30

O
cc

up
an

cy
 (

M
B

)

Time (sec)

Actual
Estimate-MH

(a) art00

 0

 1

 2

 3

 4

 0 10 20 30

O
cc

up
an

cy
 (

M
B

)

Time (sec)

Actual
Estimate-MH

(b) wupwise00

 0

 1

 2

 3

 4

 0 10 20 30

O
cc

up
an

cy
 (

M
B

)

Time (sec)

Actual
Estimate-MH

(c) perlbmk

 0

 1

 2

 3

 4

 0 10 20 30

O
cc

up
an

cy
 (

M
B

)

Time (sec)

Actual
Estimate-MH

(d) omnetpp

FIGURE 1.6

Occupancy estimation for an over-committed quad-core system (Part 2).

 0

 1

 2

 3

 4

 0 1 2 3

O
cc

up
an

cy
 (

M
B

)

Time (sec)

Actual
Estimate-MH

(a) mcf

 0

 1

 2

 3

 4

 0 1 2 3

O
cc

up
an

cy
 (

M
B

)

Time (sec)

Actual
Estimate-MH

(b) equake00

FIGURE 1.7

Fine-grained occupancy estimation in over-committed quad-core system.

occupancy very closely, even during periods when a thread is de-scheduled and its

occupancy falls to zero. Although these fine-grained results are reported for only two

of the ten workloads from Figures 1.5 and 1.6, we observed similar behavior for the

remaining benchmarks.

14 Multicore Technology: Architecture, Reconfiguration and Modeling

1.3 Cache Utility Curves

Central to CAFÉ’s resource management framework for fair and efficient schedul-

ing is an understanding of workload-specific cache utility curves. These curves are

presented with cache occupancy as the independent variable on the x-axis, and a de-

pendent performance metric on the y-axis, such as the number of cache misses per

reference, instruction, or cycle at different occupancies. In this section we explain

our technique for lightweight online construction of cache utility curves, yielding in-

formation about the effect of cache size on expected performance for running work-

loads. We then present experimental MRC results for a series of benchmarks, using a

prototype CAFÉ implementation, and compare them to MRCs collected for the same

workloads using static page coloring.

All experiments were conducted on a Dell PowerEdge SC1430 host, configured

with two 2.0 GHz Intel Xeon E5535 processors and 4GB RAM. Each quad-core

Xeon processor actually consists of two separate dual-core CMPs in a single physi-

cal package. The two cores in each CMP share a common 4MB L2 cache. We imple-

mented our CAFÉ prototype in the VMware ESX Server 4.0 hypervisor [34]. Each

benchmark application was deployed in a separate virtual machine, configured with

a single CPU and 256MB RAM, running an unmodified Red Hat Enterprise Linux 5

guest OS (Linux 2.6.18-8.e15 kernel).

1.3.1 Curve Types

Most work in this area has focused on per-thread miss-ratio curves that plot cache

misses per memory reference at different cache occupancies [5, 24, 31, 30, 32]. An-

other type of miss-ratio curve plots cache misses per instruction retired at different

cache occupancies. We refer to miss-ratio curves in units of misses per kilo-reference

as MPKR curves, and to those in units of misses per kilo-instruction as MPKI curves.

It is also possible to construct miss-rate curves, defined in terms of misses per

kilo-cycle. Such MPKC curves are attractive for use with cache-aware scheduling

policies, such as those presented in Section 1.4, since they indicate the number of

misses expected over a real-time interval for a workload with a given cache occu-

pancy. However, a problem with MPKC curves is that they are sensitive to con-

tention for memory bandwidth from co-running workloads. Under high contention,

workloads start experiencing more memory stalls, throttling back their instruction is-

sue rate, thereby decreasing their cache misses per unit time. Consequently, a cache

utility function based on miss rates is dependent on dynamic memory bandwidth con-

tention from co-running workloads. In contrast, MPKR and MPKI curves measure

cache metrics that are intrinsic to a workload, independent of co-runners and timing

details.

Figure 1.8 illustrates the problem of MPKC sensitivity to memory bandwidth

contention using the SPEC2000 mcf workload. Miss-rate curves for mcf were col-

lected using page coloring, but with different levels of memory read bandwidth con-

CAFÉ: Cache-Aware Fair and Efficient Scheduling for CMPs 15

tention generated by a micro-benchmark running on a different CMP sharing the

same memory bus, but not the same cache. For a given cache occupancy value, the

miss rates are higher when there is less memory bandwidth contention, resulting in

variable miss-rate curves.

One can also generate CPKI curves, which measure the impact of cache size

on the cycles per kilo-instruction efficiency of a workload. The CPKI metric has the

advantage of directly showing the impact of cache size on a workload’s performance,

reflecting the effects of instruction-level parallelism that help tolerate cache miss

latency. However, like MPKC curves, CPKI curves suffer from the problem of co-

runner variability due to contention for memory bandwidth or other shared hardware

resources.

Since MPKI and MPKR curves do not vary based on memory contention caused

by co-runners, they are good candidates for determining a workload’s intrinsic cache

behavior. In some cases, however, it is also useful to infer the impact on workload

performance due to the combined effects of cache and memory bandwidth con-

tention. Therefore CAFÉ generates both MPKI and CPKI curves and utilizes them

to guide its higher-level scheduling policies.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

1 2 3 4

M
PK

C

Cache Occupancy (MB)

Available bandwidth
100 %

75%
65%
45%

FIGURE 1.8

Effect of memory bandwidth contention on the MPKC miss-rate curve for the SPEC

CPU2000 mcf workload.

1.3.2 Curve Generation

We implemented CAFÉ’s online cache-utility curve generation in ESX Server. Uti-

lizing the occupancy estimation method described in Section 1.2, curve generation

consists of two components at different time scales: fine-grained occupancy updates,

and coarse-grained curve construction.

16 Multicore Technology: Architecture, Reconfiguration and Modeling

1.3.2.1 Occupancy Updates

Each core updates the cache occupancy estimate for its currently-running thread ev-

ery two milliseconds, using the linear occupancy model in Equation 1.9. A high-

precision timer callback reads hardware performance counters to obtain the number

of cache misses for both the local core and the whole CMP since the last update. In

addition to this periodic update, occupancy estimates are also updated whenever a

thread is rescheduled, based on the number of intervening cache misses since it last

ran.

Our current implementation tracks cache occupancy in discrete units equal to

one-eighth of the total cache size. We construct discrete curves to bound the space

and time complexity of their generation, while providing sufficient accuracy to be

useful in cache-aware CPU scheduling enhancements. During each cache occupancy

update for a thread, several performance metrics are associated with its current oc-

cupancy level, including accumulated cache misses, instructions retired, and elapsed

CPU cycles. Since occupancy updates are invoked very frequently, we tuned the

timer callback carefully, and measured its cost as approximately 320 cycles on our

experimental platform.

1.3.2.2 Generating Miss-Ratio Curves

Miss-ratio curves are generated after a configurable time period, typically several

seconds spanning thousands of fine-grained occupancy updates. For each discrete

occupancy point, an MPKI value is computed by dividing the accumulated cache

misses by the accumulated retired instructions at that occupancy.

MPKI values are expected to be monotonically decreasing with increasing cache

occupancy; i.e., more cache leads to fewer misses per instruction. CAFÉ enforces this

monotonicity property explicitly by adjusting MPKI values. Preference is given to

those occupancy points which have the most updates, since we have more confidence

in the performance metrics corresponding to these points. Starting with the most-

updated occupancy point with MPKI value m, any lower MPKI values to its left or

higher MPKI values to its right are set to m.

Interestingly, monotonicity violations are good indicators of phase changes in

workload behavior, although CAFÉ does not yet exploit such hints. We instrumented

our MRC generation code, including monotonicity enforcement, and found that it

takes approximately 2850 cycles to execute on our experimental platform. The over-

heads for occupancy estimation and MRC construction are sufficiently low that they

can remain enabled at all times.

1.3.2.3 Generating Other Curves

The basic CAFÉ framework is extremely flexible. By recording appropriate statistics

with each discrete occupancy point, a variety of different cache performance curves

can be constructed. By default, CAFÉ collects cache misses, instructions retired, and

elapsed cycles, enabling generation of MPKI, MPKC, and CPKI curves.

We could not experiment with generating MPKR curves, due to limitations of our

CAFÉ: Cache-Aware Fair and Efficient Scheduling for CMPs 17

experimental platform. The Intel Core architecture provides only two programmable

counters, which were used to obtain core and whole-CMP cache misses respectively.

MPKI, MPKC, and CPKI curves can be generated by CAFÉ, since retired instruc-

tions and elapsed cycles are available as additional fixed hardware counters.

1.3.2.4 Obtaining Full Curves

A key challenge with CAFÉ’s approach is obtaining performance metrics at all dis-

crete occupancy points. In the steady state, a group of threads co-running on a shared

cache achieve equilibrium occupancies. As a result, the cache performance curve for

each thread has performance metrics concentrated around its equilibrium occupancy,

leading to inaccuracies in the full cache performance curves.

In addition to passive monitoring, we have explored ways to actively perturb the

execution of co-running threads to alter their relative cache occupancies temporar-

ily. For example, varying the group of co-runners scheduled with a thread typically

causes it to visit a wider range of occupancy points. An alternative approach is to dy-

namically throttle the execution of some cores, allowing threads on other cores to in-

crease their occupancies. CAFÉ cannot use frequency and voltage scaling to throttle

cores, since in commodity CMPs, all cores must operate at the same frequency [22].

However, we did have some success with duty-cycle modulation techniques [13, 38]

to slow down specific cores dynamically.

For thermal management, Intel processors allow system code to specify a mul-

tiplier (in discrete units of 12.5%) specifying the fraction of regular cycles during

which a core should be halted. When a core is slowed down, its co-runners get an

opportunity to increase their cache occupancy, while the occupancy of the thread run-

ning on the throttled core is decreased. To limit any potential performance impact,

we enable duty-cycle modulation during less than 2% of execution time. Experiments

with SPEC CPU2000 benchmarks did not reveal any observable performance impact

due to cache performance curve generation with duty-cycle modulation.

1.3.3 Experiments

We evaluated CAFÉ’s cache curve construction techniques using our ESX Server

implementation. We first collected the miss-ratio curves for various SPEC CPU2000

benchmarks (mcf, swim, twolf, equake, gzip and perlbmk), by running them

to completion with access to an increasing number of page colors in each successive

run. We then ran all six benchmarks together on a single CMP of the Dell system,

with CAFÉ generating the miss-ratio curves, configured to construct the curves at

benchmark completion time.

Figure 1.9 compares the miss-ratio curves of the benchmarks obtained by CAFÉ

with those obtained by page coloring. In most cases, the MRC shapes and absolute

MPKI values match reasonably well. However, in Figure 1.9(a), the MRC generated

by CAFÉ for mcf is flat at lower occupancy points, differing significantly from the

page-coloring results. Even with duty-cycle modulation there is insufficient interfer-

ence from co-runners to push mcf into lower occupancy points. Since there are no

18 Multicore Technology: Architecture, Reconfiguration and Modeling

0 0.5 1 1.5 2 2.5 3 3.5 4
0

20

40

60

80

100

120

M
P

K
I

Cache Occupancy (MB)

(a) mcf

CAFE
Page Color

0 0.5 1 1.5 2 2.5 3 3.5 4
0

5

10

15

20

25

30

M
P

K
I

Cache Occupancy (MB)

(b) swim

CAFE
Page Color

0 0.5 1 1.5 2 2.5 3 3.5 4
0

5

10

15

20

M
P

K
I

Cache Occupancy (MB)

(c) twolf

CAFE
Page Color

0 0.5 1 1.5 2 2.5 3 3.5 4
0

5

10

15

20

25

30

M
P

K
I

Cache Occupancy (MB)

(d) equake

CAFE
Page Color

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

M
P

K
I

Cache Occupancy (MB)

(e) gzip

CAFE
Page Color

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

M
P

K
I

Cache Occupancy (MB)

(f) perlbmk

CAFE
Page Color

FIGURE 1.9

Miss-ratio curves (MRCs) for various SPEC CPU workloads, obtained online by

CAFÉ versus offline by page-coloring.

updates for these points, the miss-ratio values for higher occupancy points are used

as the best estimate due to monotonocity enforcement.

 0

 20

 40

 60

 80

 100

 120

1 2 3 4

M
PK

I

Cache Occupancy (MB)

Page Color
CAFE + swim
CAFE + gzip

FIGURE 1.10

MRC for mcf with different co-runners.

To analyze this further, Figure 1.10 shows separate MRCs generated by CAFÉ

for mcf with different co-runners, swim and gzip. The MRC generated when mcf

is running with gzip is flat because mcf only has updates at the highest occupancy

point. The miss ratio of mcf at the highest occupancy point is a factor of sixty more

CAFÉ: Cache-Aware Fair and Efficient Scheduling for CMPs 19

than the miss ratio of gzip, which renders duty-cycle modulation ineffective, since

it can throttle a core by at most a factor of eight. In contrast, the MRC generated with

co-runner swim matches the MRC obtained by page-coloring closely.

1.3.4 Discussion

Our online technique for MRC construction builds upon our cache occupancy esti-

mation model. While the MRCs generated for a working system in Section 1.3.3 are

encouraging, there remain several open issues. By using only commodity hardware

features, our MRCs may not always yield data points across the full spectrum of

cache occupancies. Duty cycle modulation addresses this problem to some degree,

but some sensitivity to co-runner selection may still remain. Although an MPKI curve

is intrinsic to a workload, and does not vary based on contention from co-runners,

the workload may be prevented from visiting certain occupancy levels due to co-

runner interference, as observed in Figure 1.10. In practice, it may be necessary to

vary co-runners selectively during some execution intervals, in order to allow a work-

load to reach high cache occupancies, or alternatively, to force a workload into low

occupancy states, depending on the memory demands of the co-runners.

While the experiments in Section 1.3.3 compare offline MRCs with our online

approach, they are produced at the time of benchmark completion. This introduces

some potential differences between the online and offline curves, since online we

plot MPKI values based on the time during workload execution at which a given

occupancy is reached. We are currently investigating MRCs at different time granu-

larities. Early investigations yield curves that remain stable for an execution phase,

but which fluctuate while changing phases. We intend to study how MRCs can be

used to identify phase changes as part of future work.

1.4 Cache-Aware Scheduling

In this section, we present higher-level scheduling policies that leverage CAFÉ’s low-

level methods for estimating cache occupancies and generating cache utility curves.

We first examine the issue of fairness in CMPs, and present a new vtime compensa-

tion technique for improving CMP fairness in proportional-share schedulers. Next,

we show how to use cache utility functions for estimating the impact of co-runner

placements via a novel cache divvying approach. The scheduler considers new co-

runner placements periodically, in order to maximize aggregate throughput. Unless

otherwise stated, all scheduling experiments in this section were conducted using the

same system configuration as in Section 1.3.

20 Multicore Technology: Architecture, Reconfiguration and Modeling

1.4.1 Fair Scheduling

Operating systems and hypervisors are designed to multiplex hardware resources

across multiple workloads with varying demands and importance. Administrators

and users influence resource allocation policies by specifying settings such as prior-

ities, reservations, or proportional-share weights. Such controls are commonly used

to provide differential quality of service, or to enforce guaranteed service rates.

When all workloads are assigned equal allocations, fairness implies that each

workload should receive equal service. More generally, a scheduler is considered

fair if it accurately delivers resources to each workload consistent with specified

allocation parameters.

Fair scheduling requires accurate accounting of resource consumption, although

few systems implement this properly [39]. For example, if a hardware interrupt oc-

curs in the context of one workload, but performs work on behalf of a different work-

load, then the interrupt processing cost must be subtracted from the interrupted con-

text, and added to the workload that benefited. The VMware ESX Server scheduler

[34], used for our experiments, implements proper accounting for interrupts, bottom

halves, and other system processing; we extended this with cache-miss accounting

for CAFÉ.

1.4.1.1 Proportional-Share Scheduling

In this work, we focus on proportional-share scheduling. Resource allocations are

specified by numeric shares (or, equivalently, weights), which are assigned to threads

that consume processor resources.3 A thread is entitled to consume resources propor-

tional to its share allocation, which specifies its importance relative to other threads.

Most proportional-share scheduling algorithms [4, 23, 29, 36, 37, 11] use a notion

of virtual time to represent per-thread progress. Each thread τi has an associated

virtual time vi, which advances at a rate that is directly proportional to its resource

consumption qi, and inversely proportional to its share allocation wi:

v′i = vi + qi/wi (1.18)

The scheduler chooses the thread with the minimum virtual time to execute next.

For example, consider threads τi and τj with share allocations wi = 2 and wj = 1.

Thread τi is entitled to execute twice as quickly as τj ; this 2 : 1 ratio is implemented

by advancing vi at half the rate of vj for the same execution quantum q.

Some proportional-share schedulers differ significantly in their treatment of vir-

tual time for threads blocked waiting on I/O or synchronization objects. For example,

some algorithms partially credit a thread for time when it was blocked, while others

do not. Here, we focus on CPU-bound threads, so these differences are not important;

time spent blocking will be addressed in future work.

3Although we use the term thread to be concrete, the same proportional-share framework can accom-

modate other abstractions of resource consumers, such as processes, applications, or VMs.

CAFÉ: Cache-Aware Fair and Efficient Scheduling for CMPs 21

1.4.1.2 Fair Scheduling for CMPs

How should fairness be defined in the context of a CMP, where multiple processor

cores may share last-level cache space, memory bandwidth, and other hardware re-

sources? Accounting based solely on the amount of real-time a thread has executed

is clearly inadequate, since the amount of useful computation performed by a thread

varies significantly with resource contention from co-runners.

One option is to define cache-fair as equal sharing of CMP cache space among

co-running threads [10]. However, this definition does not reflect the marginal util-

ity of additional cache space, which typically differs across threads. For efficiency,

we want to allocate more cache space to those threads which can utilize it most

productively. Moreover, this definition of cache-fair does not facilitate our goal

of proportional-share fairness, where different threads may be entitled to unequal

amounts of shared resources.

We instead assume that a thread is entitled to consume all shared CMP resources

while it is executing, including the entire last-level cache, in the absence of com-

petition from co-running threads. At runtime, we dynamically estimate the actual

performance degradation experienced by a thread due to co-runner interference, and

compensate it appropriately. Since most threads are negatively impacted to some

degree by co-runners, this means that most threads will receive at least some com-

pensation.

To quantify fairness, we first define the weighted slowdown for each thread to be

the ratio of its actual execution time (in the presence of co-running threads) to its

ideal execution time when running alone without co-runners, scaled by the thread’s

relative share allocation. The relative share allocation is, itself, the ratio of the local

thread’s weight to total weights of all competing threads. We then use the coefficient

of variation of these per-thread weighted slowdowns as an unfairness metric; with

perfect fairness, all weighted slowdowns are identical.

1.4.1.3 Virtual-Time Compensation

In a proportional-share scheduler, a convenient way to compensate threads for co-

runner interference is to adjust the virtual time update in Equation 1.18. In particular,

when a thread τi is charged for consuming its timeslice, we reduce its consumption qi
to account for the time it was stalled due to contention for shared resources. We call

this virtual-time adjustment technique vtime compensation.4 We present two differ-

ent vtime compensation methods – an initial approach that compensates for conflict

misses, and an improved method that compensates for negative impacts on cycles per

instruction (CPI).

4Similar compensation approaches could be used in proportional-share schedulers that aren’t based on

virtual time. For example, in probabilistic lottery scheduling [35], the concept of “compensation tickets”

introduced to support non-uniform quanta could be extended to reflect co-runner interference.

22 Multicore Technology: Architecture, Reconfiguration and Modeling

Compensating for Conflict Misses

Our initial attempt at vtime compensation was designed to compensate a thread for

conflict misses that it incurred while executing with co-runners, and while on a ready

queue waiting to be dispatched. We first estimate the cache occupancy that a thread

τi would achieve without interference from other threads. Starting with Equation 1.9,

this reduces to:

Ei,NI = Ei + (1−
Ei

C
)mi (1.19)

where Ei,NI represents the expected occupancy of thread τi with no interference

from other threads.

We then use the miss-rate curve for τi to obtain two values: M(Ei) – the miss

rate at Ei, and M(Ei,NI) – the miss rate at Ei,NI , according to Equations 1.9 and

1.19, respectively. Given our monotonicity enforcement for miss-rate curves, it must

be the case that M(Ei)≥M(Ei,NI).
Taking the difference between these two miss rates over τi’s most recent times-

lice, qi, provides a measure of the conflict misses experienced by the thread. In prac-

tice, the latency of a cache miss is not constant, depending on several factors, includ-

ing prefetching and contention for memory bandwidth. However, if we assume the

average latency of a single LLC miss is L, then we can approximate the stall cycles

due to conflict misses, denoted by Si, as:

Si = (M(Ei)−M(Ei,NI))·L (1.20)

Given this measure of the conflict stall cycles experienced by a thread, we modify

the virtual time update from Equation 1.18 accordingly:

v′i = vi + (qi − Si)/wi (1.21)

In Equation 1.21, the updated virtual timestamp, v′i factors in the amount of time

τi stalls during its use of a CPU due to conflict misses with other threads. The num-

ber of conflict misses considers both the time during which τi executes and the time

it waits for the CPU, since during this time its cache state may be evicted by other

threads. This method of virtual time compensation attempts to benefit those threads

that are affected by cache interference by reducing their effective resource consump-

tion, which increases their scheduling priority.

Unfortunately, this approach requires miss-rate curves, which, as explained in

Section 1.3, are difficult to derive accurately in the presence of co-runners competing

for limited memory bandwidth. A related problem is modeling the average cache

miss latency L, which may vary due to contention for memory bandwidth.

Compensating for Increased CPI

To address these issues, we revised our vtime compensation strategy to simply de-

termine the actual cycles per instruction, CPIactual, at the current occupancy, as

well as the ideal cycles per instruction CPIideal, if the thread were to experience no

resource contention from other threads. We obtain CPIideal from the value at full

CAFÉ: Cache-Aware Fair and Efficient Scheduling for CMPs 23

occupancy in the CPKI curve. This is more robust than simply measuring the mini-

mum observed CPI value, because the CPKI curve captures the average value over

an interval, reducing sensitivity to phase transitions. Hence, our revised virtual time

adjustment for τi becomes:

v′i = vi +
CPIideal
CPIactual

·qi/wi (1.22)

This approach effectively replaces the use of miss-ratio curves with cache per-

formance curves that provide CPI values at different cache occupancies (i.e., CPKI

instead of MPKI). As a result, it reflects contention for all shared CMP resources,

including memory interconnect bandwidth. Thus, compensating for negative im-

pacts on CPI is simpler and more accurate than compensating only for cache conflict

misses.

1.4.1.4 Vtime Compensation Experiments

We implemented vtime compensation in the VMware ESX Server hypervisor. ESX

Server implements a proportional-share scheduler that employs a virtual-time algo-

rithm similar to those described in Section 1.4.1.1. Our experiments ran two instances

each of four different SPEC2000 benchmark applications: mcf, swim, twolf and

equake. In this case, we restricted all software threads to run on one package of the

Dell PowerEdge machine as described in Section 1.3. This meant that four cores were

overcommitted with eight threads that were scheduled by the ESX Server hypervisor.

The hypervisor was responsible for the assignment of threads to cores.

Default CAFE

2x

4x

6x

8x

S
lo

w
do

w
n

(a) Equal shares

mcf−0
mcf−1
swim−0
swim−1
twolf−0
twolf−1
equake−0
equake−1
average

Default CAFE

2x

4x

6x

8x

10x

12x

W
ei

gh
te

d
S

lo
w

do
w

n

(b) 2:1 shares

mcf−0
mcf−1
swim−0
swim−1
twolf−0
twolf−1
equake−0
equake−1
average

Equal share 2:1 share ratio
0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

U
nf

ai
rn

es
s(

co
ef

fic
ie

nt
 o

f v
ar

ia
tio

n)

(c) Scheduling Unfairness

Default
CAFE

FIGURE 1.11

Vtime compensation.

In Figure 1.11(a), all benchmark instances had equal share allocations, while in

Figure 1.11(b), a 2 : 1 share ratio was specified for the two instances of each appli-

cation. To evaluate the efficacy of vtime compensation, we measured per-application

weighted slowdown, as defined in Section 1.4.1.2. The overall slowdown was cal-

culated as the arithmetic mean of the weighted slowdowns of all the applications.

Although CAFÉ only slightly reduces the average slowdown it significantly reduces

the variation in slowdowns experienced by all workloads. For both Figures 1.11(a)

24 Multicore Technology: Architecture, Reconfiguration and Modeling

and (b), the slowdown experienced by mcf is much less when using CAFÉ compared

to the default ESX Server scheduler.

Figure 1.11(c) plots the unfairness measured for the equal-share and 2 : 1 share-

ratio experiments. The unfairness metric is the coefficient of variation of the per-

application weighted slowdowns, and vtime compensation improves it by approxi-

mately 50%. Overall, vtime compensation provides a slight increase in performance

while reducing unfairness significantly.

1.4.2 Efficient Scheduling

Now we describe how CAFÉ’s cache monitoring infrastructure can be leveraged

to improve the performance of co-running workloads. We start by introducing the

concept of cache pressure, which represents how aggressively a thread competes

for additional cache space. We then present a cache divvying algorithm, based on

cache pressure, for approximating the steady-state cache occupancies of co-running

threads. Using cache divvying to determine the performance impact of various co-

runner placements, we demonstrate simple scheduler modifications for selecting

good co-runner placements to maximize aggregate system throughput.

1.4.2.1 Cache Pressure

To understand cache pressure, recall that CAFÉ estimates the cache occupancy for a

single thread using Equation 1.9, which defines a recurrence relation between its pre-

vious and current occupancies. Since (1− E
C)·ml specifies the increase in occupancy,

we define the cache pressure Pi exerted by thread τi as:

Pi = (1− Ei/C)·M(Ei) (1.23)

where C is the total number of cache lines in the shared cache, and M(Ei) is the

miss rate of τi at its current occupancy, Ei. In short, cache pressure reflects how

aggressively a thread tends to increase its cache occupancy.

A key insight is that at equilibrium occupancies, the cache pressure exerted by

co-running threads are either equal or zero. If the cache pressures are not equal,

then the thread with the highest cache pressure increases its cache occupancy. We

have observed that in most cases, co-running threads do not converge at equilibrium

occupancies, but instead cycle through a series of occupancies with oscillating cache

pressures.

Calculating a thread’s cache pressure requires M(Ei), which is obtained from

its miss-rate curve. As explained earlier, since miss-rate curves are sensitive to con-

tention for memory bandwidth and other dynamic interference, we instead construct

miss-ratio curves, despite our desire to examine time-varying behavior. To translate

MRCs that track MPKI values into misses per cycle, we normalize each point on

the discrete curve by the ideal CPI for the corresponding thread. While this is not

completely accurate, it nonetheless provides a practical way to generate approximate

miss-rate curves that are not sensitive to interference from co-runners.

CAFÉ: Cache-Aware Fair and Efficient Scheduling for CMPs 25

1.4.2.2 Cache Divvying

Using the insight above that cache pressures of co-running threads should match at

equilibrium occupancies, we are able to estimate their average occupancies, enabling

us to predict how the cache will be divided among them. Our cache divvying tech-

nique does not control how cache lines are actually allocated to threads, but rather

serves to predict how cache lines would be allocated given their current occupancy

and working-set demands. It also captures the average occupancies of co-running

threads that cycle through a series of occupancy values at equilibrium.

Algorithm 1: Cache Divvying

// initialize surplus cache lines S
S = C;

foreach τi do

Ei = 0; // initial occupancy

end

repeat

// reset max pressure

Pmax = 0; foreach τi do

// pressure at current occupancy

Pi = (1− Ei/C)·M(Ei);
if Pi > Pmax then

// record thread with max pressure

Pmax = Pi;

max = i;

end

end

// greedily assume chunk of size B
// allocated to thread with max pressure

Emax = Emax +B;

S = S −B;

until S = 0 or ∀Pi = 0;

Algorithm 1 summarizes the cache divvying strategy, assuming the cache is ini-

tially empty. In reality, each thread, τi, will have a potentially non-zero current oc-

cupancy, Ei. The algorithm compares the pressures of each thread at their initial

occupancies, by using miss-rate information obtained from MRC data. The thread

with the highest pressure is assumed to be granted a chunk of cache. The allocat-

able chunk size, B, is configurable, but serves to limit the number of iterations of

the algorithm required to predict steady-state occupancies for the competing threads.

In practice we have found that setting B to one-eighth or one-sixteenth of the total

cache size works well with our MRCs, which are also quantized using discrete cache

occupancy values.

During each iteration, the thread with the highest pressure increases its hypothet-

ical cache occupancy. This in turn affects its current miss rate, M(Ei), and hence its

current pressure, Pi, for its new occupancy. As the pressure from a thread subsides, its

26 Multicore Technology: Architecture, Reconfiguration and Modeling

competition for additional cache lines diminishes. When the entire cache is divvied,

or when all pressures reach zero, the algorithm terminates, yielding a prediction of

cache occupancies for each co-runner.

0

0.5

1

1.5

2

2.5

3

3.5

gc
c

cr
af

ty gc
c

m
cf gc

c

pe
rlb

m
k

cr
af

ty
m

cf

cr
af

ty

pe
rlb

m
k

m
cf

pe
rlb

m
k

Pairwise co-runners

C
ac

he
 o

cc
up

an
cy

 (
M

B
)

Actual

Predicted

FIGURE 1.12

Cache divvying occupancy prediction.

Figure 1.12 shows Algorithm 1 used with our simulator for a dual-core system

as described in Section 1.2.2. Cache divvying is used to predict the occupancies

for six pairs of co-runners, separated by vertical dashed lines in the figure. In each

case, the chunk size, B, is set to one-sixteenth of the cache size (i.e., 256KB). Each

co-runner generates 10 million interleaved cache references from a Valgrind trace.

While this is insufficient to lead to full cache occupancy in all cases, results show

that predicted and actual occupancies are almost always within one chunk size of the

actual occupancy. This suggests cache divvying is an accurate method of determining

cache shares amongst co-runners. We are investigating its accuracy on architectures

with higher core counts.

1.4.2.3 Co-Runner Selection

Cache divvying provides the ability to predict the equilibrium occupancies achieved

by workloads co-running on a shared cache. This information can be used in CPU

scheduling decisions to enhance overall system throughput.

We extended the VMware ESX Server scheduler with a simple heuristic. A user-

level thread periodically snapshots the miss-ratio curves generated by CAFÉ, and

evaluates various co-runner pairings, using cache divvying to predict their associated

equilibrium occupancies. Based on a workload’s estimated occupancy, we predict

its miss ratio by consulting the workload’s miss-ratio curve. We employ a simple

approximation to convert the predicted miss ratio into a time-based miss rate, multi-

plying the workload’s miss ratio by 1/CPIideal, its instructions-per-cycle metric at

full occupancy. The pairing which achieves the smallest aggregate conflict miss rate

CAFÉ: Cache-Aware Fair and Efficient Scheduling for CMPs 27

is chosen, and communicated to the scheduler, which migrates threads to implement

the improved placements.

The conflict miss rate is the miss rate in excess of what a thread experiences at

full cache occupancy. By selecting pairings which reduce aggregate conflict misses,

CAFÉ tries to improve performance as well as fairness. While we have demonstrated

one practical heuristic incorporating cache divvying predictions, many other sched-

uler optimizations could benefit from this information.

1.4.2.4 Co-Runner Selection Experiments

To evaluate our implementation of the co-runner placement heuristic in the ESX

Server scheduler, we used the SPEC2000 benchmarks mcf, swim, gzip and

perlbmk, each running on a separate core. To focus on the effectiveness of CAFÉ

at finding good co-runner placements, we restricted the workloads to execute on a

single package containing two dual-core CMPs, each with its own last-level cache.

mcf swim gzip perlbmk Overall

1x

1.5x

2x

2.5x

3x

3.5x

Sl
ow

do
wn

Best overall placement
Worst overall placement
Average of all placements
CAFE

FIGURE 1.13

Co-runner placement.

As before, we use the average of the per-application slowdowns as the metric for

overall efficiency, and their coefficient of variation as the metric for unfairness. At

the start of the experiment, the co-runner pairings were manually selected to be the

pairing that was determined to result in the worst overall performance (mcf paired

with swim, and perlbmk paired with gzip).

Note that in Figure 1.13, the “Worst overall placement” column for each sep-

arate workload shows the slowdown of that benchmark when running in the worst

overall configuration. As can be seen, some benchmarks do not suffer as much as

others in this worst-case configuration, but mcf was the one that incurred significant

slowdown. Notwithstanding, the rightmost “Overall” column shows that when mcf

experiences its worst slowdown that is when we have the worst overall slowdown

across all workloads.

As Figure 1.13 shows, CAFÉ was able to achieve performance close to the best

overall placement by adjusting the workload assignments to better cores. CAFÉ co-

runner placement reduces unfairness by 24% and improves performance by 5% com-

28 Multicore Technology: Architecture, Reconfiguration and Modeling

pared to the average of all placements. Compared to the worst overall placement,

CAFÉ reduces unfairness by 64% and improves performance by 16%.

1.5 Related Work

The focus of this chapter encompasses several areas of related work, from shared-

cache resource management to co-scheduling of threads on parallel or multi-core

architectures. In the area of shared-cache resource management, there is a sig-

nificant literature on cache partitioning, using either hardware or software tech-

niques [3, 7, 9, 15, 16, 19, 25, 26, 28, 30]. This has been prompted by the obser-

vation that multiple workloads sharing a cache may experience interference in the

form of conflict misses and memory bus bandwidth contention, resulting in signifi-

cant performance degradation. For example, Kim et al. showed significant variation

in execution times of SPEC benchmarks, depending on co-runners competing for

shared resources [16].

Cache partitioning has the potential to eliminate conflict misses and improve fair-

ness or overall performance. While hardware-based approaches are typically faster

and more efficient than those implemented by software, they are not commonly avail-

able on current processors [31, 30]. Software techniques such as those based on page-

coloring require careful coordination with the memory management subsystem of

the underlying OS or hypervisor, and are generally too expensive for workloads with

dynamically varying memory demands [8, 17, 18].

A significant challenge with cache partitioning is deriving the optimal alloca-

tion size for a workload. One way to tackle this problem is to construct cache utility

functions, or performance curves, that associate workload benefits (e.g., in terms of

miss ratios, miss rates, or CPI) with different cache sizes. In particular, methods

to construct miss-ratio curves (MRCs) have been proposed that capture workload

performance impacts at different cache occupancies, but either require special hard-

ware [24, 31, 30], or incur high overhead [5, 32].

The Mattson Stack Algorithm [20] can derive MRCs by maintaining an LRU-

ordered stack of memory addresses. RapidMRC uses this algorithm as the basis for

its online MRC construction [32]. This requires hardware support, in the form of a

Sampled Data Address Register (SDAR) in the IBM POWER5 performance monitor-

ing unit to obtain a stream of memory addresses that match a pre-specified selection

criterion. The total cost of online MRC construction is several hundred millisec-

onds, with more than 80 ms. of workload stall time due to the high overhead of trace

collection. This overhead is mitigated by triggering MRC construction only when

phase transitions are detected, based on changes in the overall cache miss rate. How-

ever, since changes in cache miss rates can be triggered by cache contention caused

by co-runners, and not necessarily phase changes, the phase transition detection in

RapidMRC does not seem robust in overcommitted environments.

In contrast, we deploy an online method to construct MRCs and other cache-

CAFÉ: Cache-Aware Fair and Efficient Scheduling for CMPs 29

performance curves efficiently, requiring only commonly-available performance

counters. Due to the low overhead of our cache-performance curve construction, it

can remain enabled at all times, providing up-to-date information pertaining to the

most recent phase. As a result, CAFÉ does not require an offline reference point to

account for vertical shifts in the online curves due to phase transitions, and is also

robust in the presence of cache contention from co-runners. We do, however, suf-

fer from the problem of obtaining enough occupancy data points to construct full

curves. Using duty-cycle modulation to temporarily reduce the rate of memory ac-

cess by competing workloads is one technique that has the potential to alleviate this

problem.

Other researchers have inferred cache usage and utility of different cache sizes.

In CacheScouts [40], for example, hardware support for monitoring IDs and set sam-

pling are used to associate cache lines with different workloads, enabling cache oc-

cupancy measurements. However, the use of special IDs differs from our occupancy

estimation approach, that only requires currently-available performance monitoring

events common to modern CMPs.

Given cache utility curves, we attempt to perform fair and efficient scheduling

of workloads on multiple cores. Fedorova et al. devised a cache-fair thread sched-

uler that redistributes CPU time to threads to account for unequal cache sharing [10].

This work assumes that different workloads competing for shared resources should

receive equal cache shares to be fair, regardless of different memory demands from

workloads. A two-phase procedure is employed, first computing the fair cache miss

rate of each thread, followed by adjustments to CPU allocations. Computing fair

cache miss rates requires sampling a subset of co-runners followed by a linear re-

gression, and is potentially expensive. In contrast, we derive a workload’s current

and fair CPI values inexpensively, and then perform vtime compensation to improve

fairness.

1.6 Conclusions and Future Work

This chapter introduces several novel techniques for chip-level multiprocessor re-

source management. In particular, we focus on the management of shared last-level

caches, and their impact on fair and efficient scheduling of workloads. Towards this

end, our first contribution is the online estimation of cache occupancies for different

threads, using only performance counters commonly available on commodity pro-

cessors. Simulation results verify the accuracy of our mathematical model for cache

occupancy estimation.

Building on occupancy estimation, we demonstrate how to dynamically generate

cache performance curves, such as MRCs, that capture the utility of cache space on

workload performance. Empirical results using the VMware ESX Server hypervisor

show that we are able to construct per-thread MRCs online with low overhead, in

the presence of interference from co-runners. We show how duty cycle modulation

30 Multicore Technology: Architecture, Reconfiguration and Modeling

can be used to help a thread increase its cache occupancy by reducing interference

from co-runners. This approach facilitates obtaining a wide range of occupancy data

points for MRCs.

Our fast online MRC construction technique is used as part of a cache divvy-

ing heuristic, to predict the average occupancies of a set of co-running workloads.

Simulation results show this to be an effective method of using MRCs to estimate

the expected occupancies if two or more workloads were to co-execute and compete

for cache space. Cache divvying forms the basis of our co-runner selection strategy,

which partitions threads across separate CMPs. By carefully partitioning threads, we

avoid potentially bad groupings of co-runners that could negatively impact the shared

last-level cache on the same CMP. Experiments show that for a group of SPEC CPU

workloads, we are able to reduce slowdown by as much as 5% in the average case,

and 16% in the best case.

Finally, we attempt to improve fairness by compensating a workload for the re-

source conflicts it experiences when co-running with other workloads. Our vtime

compensation technique accounts for the time a thread is stalled contending for

resources, including the stall cycles caused by last-level cache conflict misses and

memory bus access. Estimates of performance degradation experienced by a thread

due to co-runner interference are calculated online. Results show as much as 50%
improvement in fairness using vtime compensation.

While we have presented several new online techniques for CMP resource man-

agement, a variety of interesting research opportunities remain. We are exploring

various approaches for improving CAFÉ’s ability to generate accurate cache perfor-

mance curves at all occupancy points. We continue to investigate new scheduling

heuristics that leverage our cache monitoring capabilities, and we are examining ap-

plications of vtime compensation to other problems, such as NUMA locality man-

agement. We also plan to extend our modeling techniques to address the impact of

threads that block waiting for events such as I/O completion, and to incorporate the

effects of data sharing and constructive interference between threads. Finally, we are

actively exploring ways to extend and integrate our software techniques with future

hardware, such as architectural support for cache QoS monitoring and enforcement,

and large-scale CMPs containing tens to hundreds of cores.

Bibliography

[1] Advanced Micro Devices, Inc. AMD64 Architecture Programmer’s Manual,

Volume 2: System Programming, September 2007.

[2] Advanced Micro Devices, Inc. Multi-Core Processors from AMD, 2009.

http://multicore.amd.com/.

[3] David H. Albonesi. Selective cache ways: on-demand cache resource alloca-

tion. In ACM/IEEE International Symposium on Microarchitecture (MICRO

’99), pages 248–259, November 1999.

[4] Jon C.R. Bennett and Hui Zhang. WF 2Q: Worst-case fair weighted fair queue-

ing. In IEEE INFOCOMM’96, pages 120–128. IEEE, March 1996.

[5] E. Berg, H. Zeffer, and E. Hagersten. A statistical multiprocessor cache model.

In IEEE International Symposium on Performance Analysis of Systems and

Software (ISPASS ’06), pages 89–99, 2006.

[6] John M. Calandrino and James H. Anderson. Cache-aware real-time scheduling

on multicore platforms: Heuristics and a case study. In EuroMicro Conference

on Real-Time Systems (ECRTS ’08), pages 299–308, July 2008.

[7] Jichuan Chang and Gurindar S. Sohi. Cooperative cache partitioning for chip

multiprocessors. In International Conference on Supercomputing (ICS ’07),

pages 242–252, June 2007.

[8] Sangyeun Cho and Lei Jin. Managing distributed, shared L2 caches through

OS-level page allocation. In the 39th Annual IEEE/ACM International Sympo-

sium on Microarchitecture, pages 455–468, 2006.

[9] Haakon Dybdahl, Per Stenström, and Lasse Natvig. A cache-partitioning aware

replacement policy for chip multiprocessors. In High Performance Computing,

volume 4297/2006, pages 22–34, 2006.

[10] Alexandra Fedorova, Margo Seltzer, and Michael D. Smith. Cache-fair thread

scheduling for multicore processors. Technical Report TR-17-06, Harvard Uni-

versity, 2006.

[11] Pawan Goyal, Harrick M. Vin, and Haichen Cheng. Start-time fair queueing:

A scheduling algorithm for integrated services packet switching networks. In

IEEE SIGCOMM’96. IEEE, 1996.

31

32 Multicore Technology: Architecture, Reconfiguration and Modeling

[12] Joe Heinrich. MIPS R4000 Microprocessor User’s Manual. MIPS Technolo-

gies, Inc., 1994.

[13] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s Man-

ual, Volume 3: System Programming Guide, June 2009.

[14] Intel Corporation. Intel Multi-Core Technology, 2009.

http://www.intel.com/multi-core/.

[15] Ravi Iyer. CQoS: a framework for enabling QoS in shared caches of CMP

platforms. In the 18th Annual International Conference on Supercomputing,

pages 257–266, 2004.

[16] Seongbeom Kim, Dhruba Chandra, and Yan Solihin. Fair cache sharing and

partitioning in a chip multiprocessor architecture. In Parallel Architectures and

Compilation Techniques (PACT ’04), October 2004.

[17] Jochen Liedtke, Hermann Härtig, and Michael Hohmuth. OS-controlled cache

predictability for real-time systems. In the 3rd IEEE Real-time Technology and

Applications Symposium, 1997.

[18] Jiang Lin, Qingda Lu, Xiaoning Ding, Zhao Zhang, Xiaodong Zhang, and P. Sa-

dayappan. Gaining insights into multicore cache partitioning: Bridging the gap

between simulation and real systems. In the 14th IEEE International Sympo-

sium on High Performance Computer Architecture, pages 367–378, 2008.

[19] Chun Liu, Anand Sivasubramaniam, and Mahmut Kandemir. Organizing the

last line of defense before hitting the memory wall for CMPs. In Interna-

tional Symposium on High-Performance Computer Architecture, pages 176–

185, 2004.

[20] Richard L. Mattson, Jan Gecsei, Donald R. Slutz, and Irving L. Traiger. Eval-

uation techniques for storage hierarchies. IBM Systems Journal, 9(2):78–117,

1970.

[21] J. Moses, K. Aisopos, A. Jaleel, R. Iyer, R. Illikkal, D. Newell, and S. Maki-

neni. CMPSched$im: Evaluating OS/CMP interaction on shared cache man-

agement. In IEEE International Symposium on Performance Analysis of Sys-

tems and Software (ISPASS ’09), pages 113–122, April 2009.

[22] A. Naveh, E. Rotem, A. Mendelson, S. Gochman, R. Chabukswar, K. Krishnan,

and A. Kumar. Power and thermal management in the Intel Core Duo processor.

Intel Technology Journal, 10(2):109–122, 2006.

[23] A. Parekh. A Generalized Processor Sharing Approach to Flow Control in In-

tegrated Services Networks. PhD thesis, Massachusetts Institute of Technology,

February 1992.

CAFÉ: Cache-Aware Fair and Efficient Scheduling for CMPs 33

[24] Moinuddin K. Qureshi and Yale N. Patt. Utility-based cache partitioning:

A low-overhead, high-performance, runtime mechanism to partition shared

caches. In the 39th Annual IEEE/ACM International Symposium on Microar-

chitecture, pages 423–432, 2006.

[25] Nauman Rafique, Won-Taek Lim, and Mithuna Thottethodi. Architectural sup-

port for operating system-driven CMP cache management. In Parallel Architec-

tures and Compilation Techniques (PACT ’06), pages 2–12, September 2006.

[26] Parthasarathy Ranganathan, Sarita V. Adve, and Norman P. Jouppi. Reconfig-

urable caches and their application to media processing. In the 27th Annual In-

ternational Symposium on Computer Architecture, pages 214–224, June 2000.

[27] Timothy Sherwood, Brad Calder, and Joel S. Emer. Reducing cache misses

using hardware and software page placement. In International Conference on

Supercomputing (ICS ’99), June 1999.

[28] Shekhar Srikantaiah, Mahmut Kandemir, and Mary Jane Irwin. Adaptive set

pinning: Managing shared caches in CMPs. In Architectural Support for Pro-

gramming Languages and Operating Systems (ASPLOS ’08), March 2008.

[29] Ion Stoica, Hussein Abdel-Wahab, Kevin Jeffay, Sanjoy K. Baruah, Johannes E.

Gehrke, and C. Greg Plaxton. A proportional share resource allocation algo-

rithm for real-time, time-shared systems. In Real-Time Systems Symposium.

IEEE, December 1996.

[30] G. E. Suh, L. Rudolph, and S. Devadas. Dynamic partitioning of shared cache

memory. Journal of Supercomputing, 28(1):7–26, April 2004.

[31] G. Edward Suh, Srinivas Devadas, and Larry Rudolph. Analytical cache models

with applications to cache partitioning. In International Conference on Super-

computing (ICS ’01), pages 1–12, June 2001.

[32] David Tam, Reza Azimi, Livio Soares, and Michael Stumm. RapidMRC: Ap-

proximating L2 miss rate curves on commodity systems for online optimiza-

tions. In Architectural Support for Programming Languages and Operating

Systems (ASPLOS ’09), March 2009.

[33] David Tam, Reza Azimi, and Michael Stumm. Thread clustering: sharing-aware

scheduling on SMP-CMP-SMT multiprocessors. In Proceedings of EuroSys

2007, pages 47–58, March 2007.

[34] VMware, Inc. vSphere Resource Management Guide: ESX 4.0, ESXi 4.0, vCen-

ter Server 4.0, 2009.

[35] C.A. Waldspurger and W.E. Weihl. Lottery scheduling: Flexible proportional

share resource management. In OSDI’04, pages 1–11, November 1994.

34 Multicore Technology: Architecture, Reconfiguration and Modeling

[36] Carl A. Waldspurger and William E. Weihl. Stride scheduling: Determinis-

tic proportional-share resource management. Technical Report MIT/LCS/TM-

528, MIT, June 1995.

[37] Hui Zhang and Srinivasav Keshav. Comparison of rate-based service disci-

plines. In ACM SIGCOMM, pages 113–121. ACM, August 1991.

[38] Xiao Zhang, Sandhya Dwarkadas, and Kai Shen. Hardware execution throttling

for multi-core resource management. In Proceedings of the USENIX Annual

Technical Conference, June 2009.

[39] Yuting Zhang and Richard West. Process-aware interrupt scheduling and ac-

counting. In the 27th IEEE Real-Time Systems Symposium, December 2006.

[40] Li Zhao, Ravi Iyer, Ramesh Illikkal, Jaideep Moses, Don Newell, and Sri-

hari Makineni. CacheScouts: Fine-grain monitoring of shared caches in CMP

platforms. In Parallel Architectures and Compilation Techniques (PACT ’07),

September 2007.

