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ABSTRACT
Operating system enhancements to support real-time and
multimedia applications often include specializations and
extensions of kernel functionality, as with the kernel HTTP
daemon (khttpd) in Linux, for instance. To enable efficient
and flexible interactions of such extensions with user-level
functionality, we have developed ECalls, a lightweight, bidi-
rectional kernel/user event delivery facility, which not only
supports the timely delivery of events, but it also reduces
the cost and frequency of kernel/user boundary crossings.
ECalls is a communication tool that allows (a) kernel exten-
sions to register their offered services and (b) applications
to register their interest in these services. Using ECalls,
applications use lightweight system calls to generate events,
while kernel extensions raise real-time signals or invoke han-
dler functions (residing in either user or kernel space), or
they may use kernel threads to handle events on behalf of
applications. ECalls can also influence the CPU scheduler
such that a process with pending events is given preference
over other processes. To demonstrate its utility, this paper
implements an I/O event delivery mechanism using ECalls.
This mechanism is shown to improve the performance of two
applications: a distributed video player and a web server.

1. INTRODUCTION
Multimedia and real-time applications often require sup-

port from the underlying operating system to achieve their
real-time and QoS guarantees. This has led to the develop-
ment of operating system services that are responsible for
process scheduling [18, 21, 23] and resource management
tasks [13, 27]. When using such kernel-level services, ap-
plications interact with them via system calls and/or sig-
nals. Since such interactions can be costly, researchers have
sought ways to control call overheads [7, 16], and they have
attempted to reduce the frequency of system calls, e.g., by
extending kernels with appropriate application-specific func-
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tionality [4, 8, 9]. In addition, to better integrate the kernel-
and user-level actions carried out for certain requests, effi-
cient upcall primitives have been developed [6, 12], with
real-time variants addressing the specific needs of multime-
dia and real-time applications [1, 10, 11].

Common elements of these solutions are (1) the need to
share information about performance-critical events between
kernel- and user-level facilities, and (2) to be able to act on
such information in a timely fashion. For instance, commu-
nication rates can be adjusted based on information about
buffer fill-levels [30], if such information is made available
and acted upon with little delay. The same requirements
exist when exploiting knowledge about the ACK/NAK be-
havior of communication protocols to alter the behavior of
media streaming [14] or even scientific applications [28]. In
fact, past work has shown that system quality may be re-
duced rather than improved by runtime adaptation if such
actions are not performed within certain tolerances [26].

This paper presents ECalls (Event Calls), a novel mech-
anism for coordinating kernel/user actions and for sharing
information between both. Event-based approaches to com-
munication have been proven useful in many areas, e.g., in
GUI environments, virtual environments, or active database
systems. ECalls is an event mechanism that offers different
methods for the linkage of the execution of certain kernel
services with corresponding user-level functionality. In ad-
dition, unprivileged instructions use ECalls to access the
services offered by kernel extensions, thereby supporting effi-
cient kernel/user interactions for both statically and dynam-
ically created kernel functionality. Finally, by separating its
facilities for information sharing versus coordination across
the user/kernel boundary, ECalls provides degrees of flexi-
bility in both data and control passing not offered by the
system call facilities existing in general purpose operating
systems [5].

The interaction model supported by ECalls is that of
events and event channels, where parties interested in cer-
tain events subscribe to shared channels to which events are
produced and from which they are received. Event publica-
tion and receipt also imply an action triggered by the event,
e.g., the execution of a handler function. Such an action
(e.g., the execution of a user-defined kernel extension that
filters kernel events on behalf of a specific user) is defined at
the time the event channel is created. The publish/subscribe
paradigm implemented utilizes events that are described by



event-specific formats known to both producers and con-
sumers. Currently, only one consumer and one producer can
subscribe to an event channel. The ability of kernel-level fa-
cilities to subscribe to multiple event channels is subject of
our future work, where such multiple subscriptions will re-
sult in event descriptions being copied to multiple user-level
address spaces.

The exact representation of ECall events and the man-
ner in which their contents are read/written by kernel- and
user-level programs depend on the formats and use of these
events. For instance, ECalls does not prescribe some specific
synchronization strategy for access to event data. Therefore,
an application can create any number of different events and
use them as it sees fit, subject only to restrictions in the total
memory available for storing the events’ representations1.

Event formats and the control semantics of event chan-
nels are defined at the time of channel creation. Specifi-
cally, the implementation of ECalls supports a variety of
well-defined, per-channel ways in which control is passed
between user and kernel upon event production and receipt.
By separating data and control passing in this fashion, dif-
ferent specializations of each may be used to implement ef-
ficient user/kernel event sharing for different applications
and usage scenarios. For instance, a real-time ECall chan-
nel implies that upon event generation by the kernel, a real-
time signal will be generated to the address space subscribed
to this channel. Other control passing methods offered by
ECalls include high performance, lightweight non-blocking
downcall methods (i.e., system calls), and downcalls that
reduce the total number of system calls performed, thereby
improving performance by aggregation of events. In the re-
verse direction, from kernel to user, ECalls can directly in-
voke handler functions residing in either kernel or user space,
or they can execute such functions in kernel threads, or even
raise real-time signals to applications. In addition, we have
modified both the standard Linux scheduler and a hard real-
time scheduler developed by our group to efficiently combine
the scheduling of user-level processes and events. The effect
is that kernel-level events can result in the re-scheduling
of the user-level processes interested in these events. Past
work has shown that such coordinated kernel/user behavior
is particularly important for real-time and multi-media ap-
plications [11, 33].

The results shown in this paper exploit ECalls’ ability to
exchange lightweight events between applications and ker-
nel, and to share application-level information with the ker-
nel, based on which the kernel can change its provided ser-
vice. In addition, we alter the kernel-level scheduling of
applications in response to the communications they re-
ceive. Using ECalls, multiple applications that receive and
play out video streams are scheduled such that desired lev-
els of quality are maintained even in overload situations.
Our measurements demonstrate that in high load scenar-
ios, the cooperative application-kernel behavior supported
by ECalls is superior to simpler solutions in which applica-
tions attempt to self-control their execution via timed waits
(e.g., the Realplayer2 approach). In other measurements,

1The memory areas shared between kernel and user must
be pinned in memory, thereby defining certain limits on the
amounts of data possibly shared between them.
2http://www.realplayer.com

we have attained substantial performance improvements in
a web server’s ability to handle high rates of incoming re-
quests, by using ECalls to coordinate the necessary kernel-
and user-level actions taken in response to web service re-
quests, in place of the standard system call facilities of-
fered by Linux. Using ECalls we have observed improved
throughput in overload scenarios by replacing expensive se-

lect() system calls through a kernel extension, which moni-
tors activity on sockets and uses ECalls to inform interested
applications of these activities. These actions can improve
throughput by more than 50% and response times by more
than 200%.

2. ECALLS SOFTWARE ARCHITECTURE
AND FUNCTIONALITY

2.1 Software Architecture
The ECalls mechanism – simply referred to as ECalls in

the remainder of this paper – has been implemented as
a kernel-loadable module in Linux 2.2.13 and allows user-
level applications and kernel-level functionality to exchange
events and to share information. Events are raised via the
Event Raiser (see Figure 1), and they are delivered via the
Event Dispatcher. A kernel extension registers with ECalls
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Figure 1: Architecture of ECalls.

(using the function register service()) to make its services
publicly available. Along with the registration of its ser-
vices, a kernel extension also informs ECalls of how it wishes
to be notified of events generated in user-level applications.
Once a kernel extension has registered with ECalls, appli-
cations are free to register for these kernel services (using
the function ECalls register()). Along with the registration,
an application also determines how it wishes to be notified
of events generated by the kernel extension. Once the reg-
istration process is complete, both applications and kernel
extensions are able to generate and receive events. The event
dispatcher manages a heap structure containing the informa-
tion necessary to direct events from the event producer to
the event consumer. Our work on ECalls also includes mod-
ifications to the standard Linux CPU scheduler and a hard
real-time CPU scheduler (DWCS) in order to support the
cooperative scheduling of tasks and events. That is, tasks
with events pending can be favored by the scheduler. In or-



der to inform the CPU scheduler about pending events, the
Event Dispatcher can put events in an Event Queue, which
is ordered according to the event priority (e.g., determined
by the application or kernel service raising this event). As
a consequence, the CPU scheduler needs only to look at
the first entry of the Event Queue when selecting the next
runnable process. Finally, ECalls uses two separate data
segments per application and extension, which are pinned
in memory (to prevent paging) and are accessible from both
user space and kernel space. The application uses the first
data segment to transfer data to the kernel extension, and
the second data segment to receive data coming from the
kernel extension. Memory is pinned by the kernel during ap-
plication registration, which means that applications using
ECalls do not require superuser privileges. Unless accessed
by multiple threads, memory accesses need not be synchro-
nized, since each memory area is shared between only one
reader and one writer (i.e., an application and a certain ker-
nel functionality).

2.2 Basic Functionality
The following sections describe the multiple interaction

models supported in ECalls, which are useful for efficient
user/kernel and kernel/user interactions for real-time and
multimedia applications.

2.3 Data Transfer
As stated above, during registration of an application with

a kernel extension, two memory areas are created and locked
into memory; they are used for the exchange of data between
the application and the extension. This memory’s structure
is described in a C header file. It defines two data structures,
both having an integer value (termed flag) as the first entry.
This integer is incremented each time an event is generated
and decremented or reset to zero each time an event (or all
events) are received, therefore serving as an event counter.
Beyond such functionality, the precise usage of this memory
segment is determined by each kernel extension. The exten-
sions used in this paper organize the memory as a list of data
entries (of any desired data types) or as a ring buffer. In the
first case, the memory segment is organized as follows:

struct ecall_data {

int flag;

unsigned long bit_pattern[MAX];

[data part]

};

After the flag entry, an array termed bit pattern holds a bit
per data entry in the following data part. When an event is
generated, flag is incremented, the event data is written into
the corresponding position in the data part, and the corre-
sponding bit in bit pattern is set. The bit pattern facilitates
the search for new events in the memory segment. There
are three possibilities to use the memory: (1) each entry in
the data part is of the same data type and new event data is
put into the next available slot; (2) each entry is of the same
data type as in (1), but the position of the new event data
denotes its priority and therefore the sequence in which new
data is read; and (3) entries in the data part have different
data types and new event data is put into the corresponding
entry according to its type. As an alternative, the memory
segment can be structured as a ring buffer, in that case the
flag entry is followed by a front and a back entry, pointing to

the beginning and the end of the momentarily written part
of the memory segment, respectively:

struct ecall_data {

int flag;

int front;

int back;

[data part]

};

In the case of the ring buffer, new event data is put at the the
end of the written part of the memory segment (indicated
by back) as long as there is enough space.

2.3.1 User-to-Kernel Events
Fast User-ECalls. Fast User-ECalls are a lightweight

version of system calls, with the restriction that the invoked
handler function is not allowed to block. Figure 2 shows
the simplified pseudo code for both system calls and Fast
User-ECalls. On return of a regular system call function,
the kernel first checks for pending bottom halves (the slow
part of interrupts). Next, the kernel checks if it is neces-
sary to invoke the scheduler, and finally, the kernel looks for
pending signals and invokes signal handlers if necessary. In
the case of Fast User-ECalls, the default situation is to avoid
these steps altogether and directly return to the user appli-
cation. The return value of the short non-blocking function
executed by a Fast User-ECall decides if any or all of the
steps described above are required to be executed. In ad-
dition, the return value can indicate that it is necessary to
turn the non-blocking Fast User-ECall into a regular (and
possibly blocking) system call. In that case, the function ex-
ecuted upon a Fast User-ECall acts as an optimistic handler
function, which returns immediately if the optimistic as-
sumption that the handler function is not required to block,
holds true. If the assumption fails, a regular system call is
invoked. Fast User-ECalls are useful for short and simple
actions such as toggling flags in the kernel, updating QoS
attributes for resource managers, etc., i.e., where ordinary
system calls would be too expensive.

Deferred User-ECalls. Deferred User-ECalls are simi-
lar to Fast User-ECalls in that they invoke a non-blocking
handler function. However, in contrast to Fast User-ECalls,
they never handle bottom halves or signals, and the invo-
cation of the function is deferred to a later point in time.
More specifically, the application can decide when the han-
dler function is invoked, on a per-call basis. Possible invoca-
tion times are: (a) at return from the next system call, (b)
after a certain time delay (in multiples of jiffies, i.e., 10ms
on Intel computers), or (c) before the next invocation of the
CPU scheduler. The advantage of Deferred User-ECalls is
the reduced number of crossings of the user/kernel bound-
ary, particularly when several events cause only one invo-
cation of the handler function. This is useful when kernel
extensions want to handle several events at once (batched
events), or when only the most recent event is of interest
to the kernel service, while in both cases a delay in handler
execution does not result in a significant performance loss.
As an example, an application might want to update QoS
attributes in the kernel, but the updated values will not be
required until the next invocation of the resource manager.



System Calls Fast User−ECalls

trap_to_kernel;

call_syscall_function;
if (bottom_halves_pending)
    call_bottom_halves;
if (need_resched)
    call_scheduler;
if (signals_pending)
    call_signal_handler;
return;

trap_to_kernel;
save_all_registers;

if (return_value & run_syscall)
    call_syscall_function;
if (return_value & run_bottom_halves)
    call_bottom_halves;
if (return_value & need_resched)
    call_scheduler;
if (return_value & signals_pending)
    call_signal_handler;
return;

return_value = call_fast_syscall_function;save_all_registers;

Figure 2: Simplified pseudo code for (a) regular system calls and (b) Fast User-ECalls. Fast User-ECalls
differ from regular system calls in three ways: (1) they always invoke non-blocking handler functions, (2) they
perform less tasks upon return from the handler function (per default), and (3) they can act as optimistic
system calls through their ability to directly invoke a regular system call without the need to return to the
user-level application.

System Calls. ECalls also offers a generic system call,
which takes the unique character string identifying the ser-
vice as parameter. ECalls then redirects the system call to
the corresponding kernel extension, which executes a system
call function (useful when it is not desired to implement new
system calls for each new kernel extension).

2.3.2 Kernel-to-User Events
A common problem in multimedia (and in communica-

tion) systems is the need for user-level applications to be
notified of important kernel-level events. A kernel exten-
sion can use ECalls to generate an event for an application,
which may trigger one or more of the following actions:

Kernel Handler Function. ECalls can invoke handler
functions (residing in the kernel) on behalf of the applica-
tion receiving the event. This function can be provided by
the kernel service itself, as well as by the application, e.g.,
in a kernel-loadable module.

User Handler Function. ECalls can invoke a handler
function, which resides in user space and is pinned in mem-
ory to prevent paging (only available to privileged applica-
tions in Linux).

Kernel Handler Thread. ECalls can execute a func-
tion in the context of a kernel thread, which is allowed to
block (unlike Kernel and User Handler Functions).

Real-Time Signals. The last method raises a real-time
signal to the application. When an application registers, it
also specifies which real-time signal(s) will be used. The de-
tails of the implementation of real-time signals are described
in the POSIX.4 standard [1]. Currently, there are up to 64
signals supported in Linux, 32 non-real-time signals, and 32
real-time signals. Real-time signals differ from ordinary sig-
nals in that they are queued to processes, they are handled
according to their priorities, and they can carry some small
amount of data. In Linux, signals are handled in the follow-
ing order: (1) All non-real-time signals (signals 0 to 31) and
(2) all real-time signals from signal 32 (SIGRTMIN) to 63
(SIGRTMAX), giving signal 32 the highest priority among
all real-time signals. Since it is possible to catch non-real-
time signals (except SIGKILL and SIGSTOP) and execute

user-defined handlers instead of the default action, it is pos-
sible to delay real-time signals unpredictably. Therefore,
we changed the order of checking for pending signals to the
following order: (1) we first check the two signals which
cannot be caught (and which will either exit or stop the
application): SIGKILL and SIGSTOP; (2) next, we check
all real-time signals beginning with SIGRTMIN to SIGRT-
MAX; and (3) finally we check all remaining non-real-time
signals. Using this scheme we are able to prevent a real-time
signal from being delayed unpredictably by a non-real-time
signal.

These actions can be combined, e.g., an event may cause
the execution of a Kernel or User Handler Function, which
then decides if a Real-Time Signal to the applications has to
be raised. This allows for preprocessing or filtering of events.

2.4 ECalls-based CPU Scheduling
Using ECalls, the scheduling of applications can be influ-

enced by kernel-level knowledge and/or by application-level
knowledge made available to the kernel via ECalls’ pinned
memory areas. Past work has shown that such coordinated
kernel/user behavior is particularly important for real-time
and multimedia applications [11, 33]. The example of co-
ordinated behavior explored in this paper concerns multiple
applications receiving video frames to be played out. By as-
sociating events with such communications, scheduling may
be changed according to the desired event rates and the
number of events pending for applications. In the current
implementation, ECalls supports the cooperation with both
the standard Linux scheduler and a novel real-time CPU
scheduler based on the DWCS scheduling algorithm [32].

Event Scheduling with the Linux Scheduler. The
Linux scheduler has been modified as follows. If a real-
time process (a process in either the SCHED FIFO or the
SCHED RR queue) has any Kernel-ECalls pending, it will
be given preference over processes with the same or smaller
priority. If only non-real-time processes are runnable (pro-
cesses in the SCHED OTHER queue), a process with Kernel-
ECalls pending will always be given preference.

Event Scheduling with DWCS. To be able to effi-
ciently support real-time processes, we use the hard real-



time CPU scheduler DWCS (Dynamic Window-Constrained
Scheduler), which assigns each process a period T, a runtime
C, and a window-constraint x/y, meaning that a process will
be scheduled y-x times for C time slots each, in a window
of T*y time units. Each process can be scheduled once in
a period of T, unless it is marked as work-conserving, in
that case it is possible to schedule this process several times
within a period. Each time a process gets scheduled within
its period T, both the numerator and the denominator of
the current window-constraint are decremented and there-
fore the window-constraint is relaxed. On the other hand,
if a process misses to be scheduled within its period T, only
the numerator is decremented, resulting in a tighter window-
constraint. Details about DWCS can be found in [32, 34].

The original DWCS algorithm works according to the fol-
lowing (simplified) rules:

• The process with the closest deadline (i.e., the time
until its current period T expires) will be selected. If
several processes have the same deadline, the process
with the tightest current window-constraint x/y is cho-
sen.

• If all processes have been scheduled at least once in
their respective current periods, a work-conserving pro-
cess will be selected according to the rules described
above.

• If no real-time process is runnable, the next available
best-effort task will be selected.

Elsewhere [31], we present boundaries for the worst-case de-
lays of processes and show that we are able to guarantee
schedulability of a set of processes as long as the processor
utilization U does not exceed 100%. The following modifi-
cations minimize average event delivery delay, without vio-
lating the real-time guarantees mentioned above:

• If two or more processes have the same deadline, the
process with an ECall pending is selected as long as
this does not result in an immediate violation of the
other process’ real-time guarantees.

• If a work-conserving process has been selected that
already ran once in its current period, the next process
with an ECall pending is scheduled instead.

• If a best-effort task has been selected by the scheduler,
the next process with an ECall pending is scheduled.

In addition, we introduce the notion of an ECall server,
which is a pseudo task with the attributes x/y, T, and C de-
termined in the following way: x/y = 0/YMAX with YMAX
being the highest possible value for the denominator. This
assigns the ECall server the tightest window constraint pos-
sible. The service time C is the same as the service time of
the process with the highest priority Kernel-ECall pending
or C = 1 time slice if no Kernel-ECalls are pending. The
rest utilization Ur of the system, which is the maximum
utilization minus the current utilization, is used to deter-
mine the value of the period T (T=C/Ur). Each time the
ECall server becomes the highest priority task, the process
with the highest priority Kernel-ECall pending is selected
instead. If there are no Kernel-ECalls pending, the sched-
uler selects a process according to the rules of the original
algorithm as described above.

2.5 Protection
Although protection is not addressed in this work and will

be topic of our future work, it is important to note that we
do not expect protection mechanisms to significantly affect
the performance and functionality of the interaction models
supported in ECalls. The provision of safe extensions will
be mainly supported at compilation time (i.e., as a one-time
operation) through compiler-level safety checks (including
pointer analysis), memory bounds, and type checking.

3. EXPERIMENTAL RESULTS AND
DISCUSSION

3.1 Microbenchmarks
The measurements shown in Table 1 have been performed

on an AMD Athlon computer with 550Mhz and 64MB of
RAM running Linux 2.2.13 with ECalls support. All calls
from user-level to kernel-level in this evaluation return the
process ID of the calling process and all calls from kernel-
level to user-level look up a certain address in memory and
return its content. Fast User-ECalls require only 3.1µs,
which is a gain of 1.8µs compared to standard system calls.
The library function to generate a Deferred User-ECall con-
sumes 700ns per event and each time the scheduler is in-
voked we have an additional kernel overhead of either 1.6µs
(no events pending) or 3.0µs (one or more events pending).
In other words, the costs for Deferred User-ECalls is 3µs
plus 700ns for each new event, which is slightly more than
those experienced with a comparative implementation us-
ing Fast User-ECalls. However, since the handler function
is invoked only once even when several events have been
generated, using Deferred User-ECalls is preferable to using
Fast User-ECalls in high load situations. The ECalls-based
implementation of coordinating user threads with commu-
nications is far better than one using standard Linux facil-
ities like real-time signals. Real-time signals require 26µs,
whereas the invocation of a handler function residing in ker-
nel space requires 2.1µs and in user-space 3.3µs. To add an
event to the event queue requires 200ns, while the scheduler
overhead itself increases by 1.2µs if the event queue contains
one or more entries.

3.2 Implementation of an I/O Event Delivery
Module

Unix systems provide select() and poll() system calls, which
query a set of file descriptors passed in an array for activity.
The system call returns when there is activity in at least
one of these descriptors or when the system call times out.
The application then has to scan a returned array to find
the descriptors that are actually active. Web servers such as
Zeus, Flash [22], or thttpd use the ’select’ approach, which
for thousands of file descriptors does not scale very well.
The problem here is that the kernel has to scan the entire
array each time a system call is executed.

We used ECalls to implement a scalable I/O event delivery
module (called I/O module in the following) using the Linux
2.2.13 kernel. Applications register their interest in sockets
via the ECall mechanism. If data arrives at one of these
sockets, the registered application will be notified using one
or more of the methods described in the sections above.
A similar example has been presented in Banga et al. [3],
which introduces a scalable event notification mechanism



Table 1: Overhead of ECalls (in microseconds).

User-to-Kernel Communication µs Kernel-to-User Communication µs

System Call (Linux) 4.9 Real-Time Signal 26.0

System Call (ECalls) 6.2 Kernel Handler Function 2.1

Fast User-ECall 3.1 User Handler Function 3.3

Deferred User-ECall (library call) 0.7 Event Queue Management 0.2

Deferred User-ECall (w/o events) 1.6 ECalls-based CPU Scheduling 1.2

Deferred User-ECall (w/ events) 3.0

to replace the select() system call, which has been shown to
have poor scalability. To be able to support this notification
mechanism, we added approximately 20 lines of code to the
networking code inside the kernel and one additional entry
into the sock structure, namely a flag that indicates interest
for the owner of the socket.

User−Level

Kernel−Level

. . .

Network−Level

Kernel−Level

ECalls

CPU
Scheduler

Network
Buffers

HTTP Server Video Player Audio Player

Network Packets

I/O Module

Figure 3: Notification of Socket Activity with an
I/O Event Delivery Mechanism and ECalls

When the I/O module detects activity on one of the mon-
itored sockets, it generates an event for the application own-
ing this socket. Each application has two data structures,
which are both locked into memory and shared between the
application and the event delivery mechanism. The first
data structure has the following entries:

struct socket_interest {

int flag;

unsigned long fd_list[MAX];

unsigned long updated_fd_list[MAX];

};

The first entry, called flag, is incremented each time the ap-
plication submits a change in interest. The next entry, called
fd list, is an array used to indicate which file descriptors the
application has registered for, each bit in fd list corresponds
to a file descriptor. The second array, called updated fd list,
is used to indicate the changes in fd list since the last time
the registration module read from this data structure. Its
purpose is to accelerate the registration process.

The second data structure looks as follows:

struct socket_ready {

int flag;

unsigned long fd_active[MAX];

};

The value of flag indicates how many sockets are active,
i.e., how many sockets have data in the receive buffer. The
actual file descriptors for the active sockets can be found in
the next entry, called fd active.

3.3 Experiments with a Distributed Video
Player

ECalls provides a flexible mechanism for coordination and
information sharing for real-time and multimedia applica-
tions that use certain kernel services or that extend ker-
nels with application-specific functions. We modified a dis-
tributed MPEG video player such that it uses ECalls to com-
municate with the I/O module describe above. In this ex-
periment, a number of video players (running on a Pentium
II with 450MHz and 512MB RAM) request video streams
from several video servers (running on five Ultra 30 with
248MHz and 128MB RAM each).
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Figure 4: Achieved Frame Rates without ECalls.

Each video player writes the desired frame rate, a frame
counter, and the time stamp of the last displayed frame into
the pinned memory supplied by ECalls. The frame rate can
be changed dynamically if desired (e.g., as image resolution
or compression changes). The I/O module uses this infor-
mation to compute the display time of the next frame. In-
coming frames are monitored by the I/O module, and ECalls
places the notification events into the Event Queue ordered
by the display time of the next frame. The CPU sched-
uler uses this information to modify the scheduling prior-
ity of the video players. In this experiment all players are
placed into the round-robin scheduling queue (SCHED RR)
of the Linux scheduler with time slices of 150µs, each pro-
cess with the same priority, i.e., all players operate at the
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Figure 5: Achieved Frame Rates with ECalls.

same priority level (future experiments will use DWCS [32]
as CPU scheduler). Using ECalls-based CPU Scheduling,
the players with the shortest deadlines are given preference
by the scheduler. This experiment shows that the interac-
tion between an application and a kernel-level service (using
ECalls) allows the application to achieve its desired QoS.
Figure 4 shows that the achieved frame rates drop rapidly
when the number of players increases. Using ECalls we are
able to maintain frame rates close to the desired frame rates
(Figure 5). ECalls achieves that by delaying event notifica-
tion for a period of time determined by the frame rate and
by influencing the scheduling decisions such that the sched-
uler reorders the run queue to favor applications receiving
these events.

3.4 Experiments with a Web Server
Our next experiments investigate the performance changes

in a web server running on top of ECalls. We modified
thttpd, a small and fast single-process event-driven web-
server, such that it uses the I/O event delivery module de-
scribed above. thttpd is a single-process web server that
uses the select system call for all HTTP requests. We modi-
fied the API such that thttpd subscribes every new incoming
request with the I/O event delivery module and instead of
a select call, thttpd continues to service requests and selects
the next connection to service via the fd active array.

The client requests are generated using the httperf Version
0.8 [20] performance tool. The HTTP server is a Pentium
II with 450 MHz and 512MB RAM, running our modified
thttpd application. The client machines are five Sun Ultra
30 with a 248MHz processor and 128MB RAM each. The
machines are connected via a switched 100Mbps Ethernet.

In this experiment, the clients request a small static web
page for a duration of 180s, each request with a timeout
value of 1s. Figure 6 shows the achieved reply rates with
both the original thttpd server and our modified server using
ECalls (thttpd-ECalls). The web server thttpd is highly
optimized, so that the difference in performance for small
loads is irrelevant, as evident from the graph. On the other
hand, in the case of overload, thttpd displays poor behavior:
its reply rate drops to 25% at request rates of 2000 per
second. The reply rate for thttpd with ECalls also decreases
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Figure 6: Reply rates for both the thttpd web server
and the modified thttpd web server using ECalls and
the I/O event delivery module.
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Figure 7: Response times for both the thttpd web
server and the modified thttpd web server using
ECalls and the I/O event delivery module.

in the case of overload, but less dramatically (to 40% at a
request rate of 2000 per second).

Figure 7 shows the average response times for thttpd and
thttpd-ECalls. Here, the response times of thttpd settle at
approximately 150ms when the server is overloaded, whereas
in the case of thttpd-ECalls the response time increases until
it settles at approximately 300ms. The reason for this be-
havior is the higher reply rate of thttpd-ECalls, i.e., thttpd-
ECalls is able to respond to more requests than thttpd, re-
sulting in higher response times.

The next experiment investigates whether the use of ECalls
can improve the overload behavior shown above. Provos et
al. [24, 25] analyzed the overload behavior for the thttpd
and phhttpd web servers. In [24], real-time signals are used
to notify the web server of new requests, and the number
of signals and therefore, the number of pending requests is
used as indicator for server overload. The overload behavior
shown in Figure 6 is referred to as receive livelock; Mogul et
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al. suggest to drop requests as early as possible to achieve
more request completions [19]. While in [24] requests are
dropped by the server if overload is detected, we use ECalls
to drop requests in the kernel. That is, we flood the server
with requests, this time with a more complex web page, and
monitor overload behavior, but then we improve overload
behavior by using the ability of ECalls to cheaply exchange
information between user- and kernel-level. Specifically, the
web server continuously updates a new variable, numcon-
nects, in the memory segment, telling ECalls the current
number of open connections being serviced by the server.
In addition, ECalls monitors the buffer fill level of the com-
pleted connection queue of the listening socket (ACK-queue
in Figure 8). If both values (number of connections and
buffer fill level) are above a certain threshold, ECalls re-
duces the buffer length of the incomplete connection queue
(SYN-queue in Figure 8), until either the number of connec-
tions or the number of accepted requests drops under their
respective thresholds. The reason why we use two criteria
is to prevent ECalls from decreasing the queue size in case
of transient overloads. As an example, if the ACK-queue is
above the threshold but the number of open connections is
under its threshold, we assume that the server will soon be
able to service this burst of requests. On the other hand,
if the number of connections is over the threshold, but the
buffer fill level is under its threshold, we assume that the
small number of pending requests will reduce the server load
soon such that it is not necessary to drop requests.

Figure 9 and Figure 10 show the results of this experiment.
Using ECalls, we are able to improve the overload case such
that more replies are generated and at the same time the av-
erage response times are reduced. As an example, Figure 9
shows that thttpd is able to service 80 requests per second at
a request rate of 300 per second, while thttpd using ECalls
is able to service 140 requests per second. Figure 10 indi-
cates a 250% better response times than the original thttpd
web server. The values for the thresholds have been deter-
mined via experimentation, and could also be made adap-
tive instead of fixed as done in this experiment. Also, more
knowledge from both kernel-level and user-level can help to
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Figure 9: This graph shows the improved overload
behavior of the web server when ECalls modifies the
size of the incomplete connection queue of the listening
socket according to the load.

improve the overload case even more (such as the average
response time measured in the web server or the type of a
request).

4. CONCLUSIONS
Extensibility in operating systems is key to flexibility and

configurability. We propose ECalls to support the imple-
mentation of kernel services in extension modules, by sup-
plying a flexible interface for both real-time and best-effort
applications. ECalls transports events both from user to
kernel space and vice versa. For events originating in user
space, two lightweight system calls may be used, termed Fast
User-ECalls and Deferred User-ECalls. Their use aims to
reduce the frequency and cost of event communication and
context switches. For events originating in the kernel (in
addition to providing low latency upcall implementations)
ECalls can also provide real-time guarantees for events. This
functionality utilizes a modification of the standard Linux
scheduler or it utilizes a novel hard real-time scheduler,
DWCS. In either case, we can give preference to processes
with pending events, therefore improving the average case
delay. Using DWCS, we are able to provide the same hard
real-time guarantees under worst-case scenarios as those de-
scribed in [31].

In general, ECall-Scheduling can enhance the CPU sched-
uler with knowledge about event receipt, e.g., which pro-
cesses have events pending, and it influences scheduling de-
cisions correspondingly. This functionality builds on and
extends earlier work. For example, in [17], Manimaran et
al. propose an integrated framework for interacting process
and message schedulers for distributed real-time systems.
Similarly, Lee et al. [15] introduce an architecture that is
aware of the real-time characteristics of tasks sending and
receiving network packets. The goal is to overcome the tra-
ditional deficiencies like FIFO ordering of incoming packets
and processing in the kernel of all packets regardless of their
priority to the receiving application.

Andersen et al. [2] describe an kernel module, the Con-
gestion Manager (CM), an architecture that allows for shar-
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approach also improves the response time of re-
quests.

ing of congestion information between multiple concurrent
flows. In CM, a select call on a special socket (control socket)
is used to transfer information between kernel and applica-
tion.

Several proposals try to minimize data copies, including
the work in [7] and [35], where the latter aims at the efficient
transfer of data and control between user and kernel space
and also provides rate-based flow control. This is achieved
by using I/O efficient buffers and independently scheduled
kernel threads. Banga, Mogul, and Druschel [3] introduce
an event delivery system allowing applications to register
interest in event sources like sockets. However, the appli-
cation still has to poll for events, whereas ECalls is able to
notify a process of pending events by executing a handler
function and raising its scheduler priority. Finally, Pai et
al. [22] introduce a new flexible and general I/O approach
that avoids data copying with minimal overhead.

Future Work. Kernel extensions allow applications to
specialize certain kernel functionality and achieve better per-
formance, but they also introduce new threats to system se-
curity and reliability. Small and Seltzer [29] consider three
methods of ensuring safety of the kernel: hardware protec-
tion, software protection, or the use of a run-time code gen-
erator (interpretation). In this paper, we concentrated on
the flexible event communication supported by ECalls, pro-
tection is the topic of future work. The implementation of
protection techniques will include run-time checks for the
execution of kernel-level and user-level functions such that
long running functions are either interrupted and continued
in the context of a kernel thread or aborted. Also, mem-
ory access checks will ensure that functions (especially user
space functions) do not access or modify memory segments
of other processes. In addition, we are working on a mecha-
nism to ensure that recursive calls between applications and
kernel extensions are prevented.
ECalls is able to collect information from both user and ker-
nel space to improve kernel performance. We intend to use
ECalls to monitor resource allocations like network (band-
width, loss rates, round trip times), CPU, or memory, which

can be combined to generate useful information which will
be pushed into user space. Another role of ECalls to be
explored in future papers is its use for adaptive resource
management, offering applications a flexible mechanism to
pass resource management events to the kernel and receive
events from the kernel, with overheads and associated func-
tionalities acceptable to the different resource management
actions being taken.
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