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Abstract—This paper presents different approaches
for real-time fault tolerance using redundancy methods
for multi-core systems. Using hardware virtualization, a
distributed system on a chip is created, where the cores
are isolated from one another except through explicit
communication channels. Using this system architecture,
redundant tasks that would typically be run on separate
processors can be consolidated onto a single multi-core
processor while still maintaining high confidence of system
reliability. A multi-core chip-level distributed system could
therefore offer an alternative to traditional automotive
systems, for example, which typically use a controller
area network such as CAN bus to interconnect multiple
electronic control units. Using memory as the explicit
communication channel, new recovery techniques that
require higher bandwidths and lower latencies than those
of traditional networks, now become viable. In this work,
we discuss several such techniques we are considering in
our chip-level distributed system called Quest-V.

I. INTRODUCTION

Fault-tolerance in real-time systems has historically
been accomplished through redundancy in both hard-
ware and software [1]–[4]. For example Briere et al.
explain how in the Airbus A320/330/340 there are
“sufficient redundancies to provide the nominal per-
formance and safety levels with one failed computer,
while it is still possible to fly the aircraft safely with
one single computer active [5].” Redundancy across
multiple compute nodes protects against both hardware
and software failures. We propose a technique that uses
hardware virtualization to sandbox each core of a multi-
core processor, along with a subset of machine physical
memory and a collection of I/O devices.

This design allows the system to operate as a
separation kernel [6], where communication between
sandboxes occurs through explicit memory channels and
inter-processor interrupts. Each sandbox is isolated from
the software faults that can occur in another sandbox
and any hardware faults that are specific to a single core
or subset of memory. This allows the consolidation of
computational tasks onto a single multi-core processor
while still maintaining a large number of the advantages
associated with a traditional distributed system. This

approach also has the advantage of having a higher
bandwidth communication channel, i.e. memory, than
in traditional control networks such as CAN, enabling
new recovery techniques. In this paper we focus specif-
ically on different Triple Modular Redundancy [7], [8]
(TMR) techniques that can be applied to a virtualized
distributed system on a chip.

The next section provides a brief summary of Quest-
V, a separation kernel we have been developing for use
in real-time mixed-criticality systems [9]. Section III
discusses our generic fault detection approach. Sec-
tion IV introduces three fault tolerance methods we are
currently considering for Quest-V, and each approach
is described in detail in Sections V- VII. This is
followed by a discussion of our generic fault recovery
technique in Section VIII. Related work is discussed in
Section IX followed by the conclusions and future work
in Section X.

II. QUEST-V DESIGN

Quest-V is designed for real-time high confidence
systems. It is written from scratch for Intel’s x86
architecture, and operates as a distributed system on a
chip. Quest-V uses hardware virtualization technology
to partition a one or more cores, a region of machine
physical memory and a subset of I/O devices into
separate sandboxes. Intel’s extended page table (EPT)
feature on modern VT-x processors is used to partition
memory into separate regions for different sandboxes 1.

Hardware virtualization assists in the design of
virtual machine monitors (VMMs, a.k.a. hypervisors),
which are capable of managing multiple virtual ma-
chines (VMs) on the same physical machine. Unlike
in traditional VMMs, Quest-V does not require the
use of a monitor to schedule VMs on processor cores.
Instead, each sandbox runs its own kernel that performs
(sandbox-local) scheduling directly on available proces-
sor cores.

1AMD x86 64 and ARM Cortex hardware virtualization extensions
provide a similar functionality.



This approach has numerous advantages. First, be-
cause a trusted monitor is not performing VM schedul-
ing, it is eliminated from the normal operation of the
system. This results in very few VM exits, resulting
in lower overheads due to virtualization. Second, this
simplifies the design of a monitor, which now only
needs to initialize sandboxes (or, equivalently, VMs) 2,
establish shared memory communication channels be-
tween sandboxes, and assist when necessary in fault
recovery. The reduced complexity of Quest-V’s monitor
code makes it more easily verified for correctness.

III. FAULT DETECTION

Before we discuss different possible TMR config-
urations in Quest-V, we will briefly discuss how we
detect faults. This approach is used throughout all
the subsequently described system configurations. TMR
uses a majority voting mechanism to detect an error.
In the traditional TMR setup, the results of redundant
(replicated) computations are sent to the voter. While
we could use this approach, we have decided to use
a more aggressive fault detection technique that can
detect any deviation in the redundant computation, not
only the result. Our approach takes hashes of memory
on a per-page basis of all memory modified by the
program between synchronization points. We also take
a summary hash of all the modified memory. The voter
first compares the summary hashes. If the summary hash
values are identical, no further error detection actions
are taken. If the summary hashes are not identical, the
voter iterates through the per-page hashes to determine
which pages are different. This allows for faster recov-
ery, described in detail in Section VIII. Currently, we are
using the Jenkins one-at-a-time [10] hash function due
to its simplicity. For added security, where a malicious
sandbox could corrupt a page so that the hash would be
the same as the valid page, a cryptographically secure
hash function could be used.

Taking consensus on memory hashes is a generic
fault detection approach as it just relies on the program’s
user-space state or the entire sandbox being identical
across all instances. This also places a restriction on
the types of programs that can be monitored. Their
execution across sandboxes must be identical during a
fault-free execution. The task or guest can only rely
on its own internal state and any data passed to the
program through shared memory or by the hypervisor.
Redundant tasks or guest code must not make use of
process-specific values such as process IDs, unless they
are identically replicated, and similarly should not use
constructs such as gettimeofday() which might

2Initializing a sandbox requires setting up an appropriate hardware
partition of processor cores, memory and I/O devices. Devices them-
selves can be shared but resource partitioning is typically done only
once, at boot-time.

differ across replicas. We do not believe this restriction
is too prohibitive; however, we plan to remove this
restriction in future work.

During execution, the redundant guests or task in-
stances reach specific synchronization points. Depend-
ing on whether the redundancy is for the entire sandbox
(guest) or only a single task determines whether the
synchronization points are when a VM exit occurs or
when the replicated task makes a system call. This
influences whether synchronization is handled in the
hypervisor or a guest kernel. At the synchronization
point, the hypervisor or kernel determines which pages
have been modified and creates the necessary per-page
hashes and summary hash. The memory management
unit can be used to help track which pages have been
modified as the pages can initially be marked as read
only to cause hypervisor or kernel traps on attempted
page updates. The hashes are sent to the voter and
the sandbox/task continues execution. We do not halt
execution, i.e. barrier synchronize the tasks, and wait for
the results of the voter as this would add unnecessary
overheads. Instead, no external action, e.g. output to an
actuator, is taken on behalf of the redundant copies until
a majority of identical hashes have been collected. Once
enough hashes have been collected and verified, any
necessary I/O is performed and the hashes are released.

If an error has occurred but there is still a majority
consensus, any I/O is performed, and the hypervisor
or kernel is notified as part of fault recovery (see
Section VIII). If there is no consensus, an application
dependent recovery procedure can be used to bring
the system into a useful state. For example, for an
autonomous automobile application, the system could
safely bring the vehicle to a halt. To detect performance
faults, where a sandbox or task does not reach a
synchronization point, timeout values can be specified
by the application developer. If a synchronization point
is not reached within the timeout value it is treated as
a fault and the same generic recover procedure is used
to correct the performance failure.

IV. VIRTUALIZATION BASED TRIPLE MODULAR

REDUNDANCY

The chip-level distributed system design of Quest-V
creates an opportunity to develop new fault tolerance
techniques. For example, techniques that exploit high
bandwidth, low latency communication between sand-
boxes can be explored. In this section, we will introduce
various techniques and we will highlight their strengths
and weaknesses in Sections V, VI and VII.

Redundancy in either data and/or execution can be
used to detect Byzantine errors, e.g. soft errors causing
bit-flips, possibly as a result of the system being exposed
to radiation. Separate Quest-V sandboxes can support



redundant executions of a process or guest. Whenever
an external action needs to be taken, e.g. sending a
message to an actuator, a consensus mechanism, such
as Triple Modular Redundancy [7], [8] (TMR), can
be used to ensure that faulty values do not propagate
to the device. We will focus our discussion of fault
tolerance techniques in Quest-V on those that follow
the TMR approach. In what follows, we describe three
different fault tolerant Quest-V system configurations,
which depend on where the voting mechanism and
device driver are located:

• Voting mechanism and device driver in the
hypervisor – Each process submits its results to
the hypervisor via a hypercall or through emulated
devices. The hypervisor waits for the results or
a timeout, compares the results and sends the
majority to the device.

• Voting mechanism and device driver in one
sandbox – A single sandbox acting as an arbitrator
has sole access to the device. The arbitrator is
responsible for comparing the results of redun-
dant computations, which are distributed across the
other computation sandboxes. Communication be-
tween the arbitrator and each computation sandbox
is via a separate shared memory channel, which
is protected by extended page table (EPT) map-
pings. That is, no two computation sandboxes can
access each other’s private channel to the arbitrator,
thereby preventing a faulty computation sandbox
from corrupting the results of another sandbox.

• Voting mechanism distributed across sand-
boxes and device driver is shared – Each sandbox
that contains a redundant process also has shared
access to the device. Each redundant process com-
pares its own state to the redundant copies to
determine if a fault has occurred and recovers if
necessary. The non-faulty sandboxes elect a leader
to send the data to the device. Communication oc-
curs in pair-wised private shared memory channels
as described in the previous configuration.

In the following three sections, we discuss further
details of our proposed approach for each of the above
configurations.

A. Voter – Single Point of Failure

The final voter in a TMR setup can be a single point
of failure. The voter could malfunction and select the
minority result or simply output a different result than
its inputs. All the configurations above could suffer from
the voter malfunctioning. A common solution is to use
three voters [11] and the output of each voter is the
input to the next stage of the computation. However,
eventually a single output that is to be sent to the
device needs to be determined (assuming the device

does not support three results and will perform its
own TMR). Techniques have been developed to protect
single points of failure such as voters. For example,
Ulbrich et. al used arithmetic encoding techniques to
protect the voters in TMR [12]. Furthermore, while
the redundant sandboxes might not have direct access
to the device in the first and second configurations
described above, they could have read-only access to
ensure that the voting mechanism is behaving correctly.
If the redundant sandboxes reach a consensus that the
voting mechanism is behaving incorrectly the device
driver and voter could be re-initialized or the device
could be mapped to a new sandbox. We plan to explore
these techniques in future work.

V. HYPERVISOR VOTING AND I/O

In this configuration, the voting mechanism and
device driver are located in the hypervisor. This conflicts
with the design philosophy of Quest-V, as the hypervisor
should ideally be as simple as possible. Furthermore,
placing a device driver in the hypervisor could make
the entire system vulnerable if the device driver is
incorrectly implemented. However, if we overlook this,
TMR fault tolerance can be applied to operating systems
other than Quest-V, e.g. Linux, without the need to
modify any source code. Specifically, the hypervisor
could host three or more redundant guests that com-
municate the results of the computation through an
emulated I/O device. Besides voting and performing
I/O, the hypervisor is responsible for encapsulating each
guest to ensure that they remain in loose lockstep. This
approach is depicted in Figure 1.

Fig. 1: Voting mechanism and device driver in the
hypervisor.

This approach builds upon hypervisor-based fault
tolerance (HBFT) [13]–[16]. HBFT is an example of a
primary-backup based fault tolerance system that uses a
hypervisor to encapsulate a guest virtual machine so the
state of the entire system can be easily manipulated and
saved. This allows the primary and backup, which run
on different machines, to be easily synchronized without
relying on any information from, or modification of,
the operating system or application. The execution of



the guests is divided into time epochs. At each epoch,
the primary and backup are ensured that they are in
the same state. This is either accomplished by having
an active backup that is kept in lockstep [13], having a
dormant backup and transferring the changed state from
the primary to the backup [14], or having an active
backup that is not kept in lockstep and any discrep-
ancies between the two executions are handled at the
epoch boundaries [15]. During execution, the hypervisor
buffers all output until an epoch has been reached and
the primary and backup have been synchronized. This
ensures that if the primary fails, the backup can perform
the same output without duplicated output being seen
outside of the system.

HBFT, as it stands, can only handle crash failures,
where the primary node halts when it fails [17], [18].
If the primary fails, the backup guest begins execution
to ensure high availability. The HBFT model can be
extended to recover from Byzantine errors by adding
a third redundant guest. At epoch boundaries, i.e. syn-
chronization points, the hypervisor examines the state of
each guest and if a single guest differs, the state can be
corrected. This approach would not require any mod-
ification of the guest operating system or application
and could even be applied to closed-source software.
By combining all the guests onto a single multi-core
processor, we cannot recover from errors such as power
failures that bring down the entire processor, but we can
recover from Byzantine errors in a much more efficient
manner as data can be transferred between guests at a
much faster rate.

This approach does have some disadvantages com-
pared to the other two approaches. First, as previously
mentioned, the hypervisor must be much more ad-
vanced. For example, it must support emulated devices
and be able to recover the entire guest operating system.
Also, every sandbox must be performing the exact same
operations. It is not possible for one sandbox to run
non-safety critical tasks that the other sandboxes do not
run as the hypervisor has no information about what
state belongs to which task. We will see in the next two
sections that this limitation does not apply to the other
approaches.

VI. ARBITRATOR SANDBOX

In this configuration, the voting mechanism and
device driver are located in an arbitrator sandbox. The
redundant computations are performed in three or more
guests as depicted in Figure 2. Communication between
guests is explicit through shared memory channels.
These could be set up statically by the hypervisor
at boot-time, or dynamically, at run-time. Unlike the
approach described in Section V, the fault tolerance is at
the application-level as opposed to the entire guest. This
has the advantage that each guest does not need to be

identical, e.g. only a subset of the applications running
in each guest need to be replicated. Applications that are
not safety-critical can be executed in just one guest. This
approach requires operating system support, to hash the
application pages and communicate the results to the
arbitrator sandbox.

Fig. 2: Voting mechanism and device driver in an
arbitrator sandbox.

The main advantage to this approach is that the hy-
pervisor remains as simple as possible. The hypervisor
does not have to emulate any devices, nor does it contain
any device drivers. All necessary devices are isolated
from the redundant guests via hardware virtualization
extensions, as described in our earlier work [9]. Not
only is the hypervisor simple but it is kept out of the
control path during normal execution, thus avoiding the
costs of VM exits. Only during recovery would it be
necessary to drop down into the hypervisor. Also, as
previously stated, the granularity of redundancy is much
finer as the redundancy is at the application-level as
opposed to the guest-level.

Having a single sandbox vote and send the results
to the device driver does have its limitations. First,
a sandbox is necessary to contain the voting task.
While the task performing the voting would require
a low overall utilization, the other approaches do not
require a separate sandbox just for voting. Another
limitation is that while we gain the ability to do task-
level redundancy we do so at the cost of having to add
the redundancy support into the operating system. While
this is possible for an operating system such as Quest-
V, it becomes increasingly difficult for a more complex
system such as Linux.

VII. SHARED VOTING

A third configuration is to have the voting process
and device shared across all sandboxes. This approach
is similar to the second approach in that it has a smaller
granularity of redundancy, e.g. at the application level,
and therefore the redundant sandboxes do not have
to be executing identical sets of tasks or operate in
lockstep. It also requires operating system support to
hash memory pages and communicate the results to
different sandboxes. This approach avoids the need for



a special arbitrator sandbox. Each sandbox takes a vote
on the results of the other sandboxes, again communi-
cating through private shared memory channels. Of the
sandboxes that have a value equal to the majority vote,
a temporary leader is elected, which performs the actual
I/O. This approach is depicted in Figure 3.

Fig. 3: Voting mechanism and device driver are shared
across sandboxes.

There are two possible ways that the shared driver
could be implemented. One is that the device is directly
mapped to all participating sandboxes all the time.
This has obvious security and safety concerns as a
faulty sandbox could at any time send erroneous output
signals through the device. As previously mentioned in
Section IV, the other sandboxes could be monitoring
the memory associated with the device to determine if
such behavior occurs and if so, signal to the hypervisor
that the device should be unmapped from the faulty
sandbox. This could be acceptable if a few erroneous
I/O messages were permitted and the device could be
reinitialized.

A more secure method would be the following:
whenever an I/O operation needed to be performed, each
sandbox sends to the hypervisor the sandbox it wishes
to be the leader to perform the I/O operations. The hy-
pervisor then temporarily grants that sandbox the write
privileges to the device while still permitting the other
sandboxes to have read access. Once the I/O operation is
complete the sandboxes signal that the write privileges
should be revoked. The granting and revoking of write
privileges performed by the hypervisor only occurs if a
majority of the sandboxes signal that it should occur. In
this way, a sandbox would have to fail specifically after
it was granted write privileges and before the privileges
were revoked. Such an approach requires some support
from the hypervisor as the hypervisor has to be able
to dynamically map and unmap a device to different
sandboxes. It would also involve a large number of
VM exits which would be required to temporarily grant
and then later remove access to the device. Also, how
interrupt service routines should be handled is unclear

as they often require direct access to the device and
occur asynchronously.

VIII. RECOVERY

We have a few key requirements for our recovery
procedure. First, it should be as generic as possible, so
that it can be used across multiple applications. Second,
the recovery procedure should be applicable to both an
entire operating system running within a sandbox and to
a task running within an operating system. Obviously
there will be some differences, mostly complications
due to operating system recovery, but the general ap-
proach should be the same. This allows us to share a
similar code base between operating system and task
recovery, reducing the code base size and the possibility
of errors.

Initially, our recovery procedure involved taking
snapshots of the changed state at each synchronization
point, similar to a rollback procedure. However, instead
of rolling back to the last known good state we would
instead roll forward using the snapshot of a correct
instance to bring an incorrect instance up to the same
state. However, in our preliminary evaluations, the snap-
shot procedure dominated the overhead associated with
recovery to the point that rolling back and rolling for-
ward had nearly identical recovery times. We therefore
decided to abandon taking snapshots at synchronization
points and perform recovery without them.

The point of taking snapshots was to allow one
sandbox or task to be recovered without interfering
with the execution of the sandbox that is being used as
the correct instance. The snapshot pages could be read
without the fear that the correct instance would modify
them while the recovery procedure was occurring, as
the correct instance would actually be using different
memory frames at the time of recovery. If we do not
take snapshots, then we run the risk that the correct
instance modifies a page while we are copying it for
recovery. This is the same issue that occurs during live
migrations of virtual machines [19]. The solution is
to divide the migration, or in our case, the recovery
procedure into different phases. First, pages are pushed
from source (correct instance) to destination (recovering
instance), and if a page is modified, it is re-pushed.
Second, the source is stopped and pages are copied
without the need to be concerned about consistency.
Finally, as the migrated virtual machine executes, any
pages that have not been pushed are pulled as they
become necessary. Different live migration strategies
balance these phases. We can use a similar approach
to recovery which basically involves performing a live
migration on a sandbox or application. However, instead
of halting the source instance, we allow it to continue
running. We will explore what balance of the three
phases is most appropriate for a recovery.



IX. RELATED WORK

Achieving triple modular redundancy through mul-
tiple executions of a task has been previously explored
by Reinhardt and Mukherjee [20], and Döbel, Härtig
and Engel [21]. Reinhardt and Mukherjee developed
a simultaneous and redundantly threaded processor, in
which hardware is responsible for error checking and
recovery. While this alleviates software developers of
fault tolerance concerns it also adds extra overhead
by replicating components that are not safety-critical.
Furthermore, specialized hardware features must be
available.

Döbel et al. developed a software based approach
to task replication on top of the L4 Fiasco micro-
kernel [21]. Their approach involved a master-controller
task, which monitored the execution of redundant tasks.
The controller handled CPU exceptions, page faults and
system calls made by the redundant tasks and ensured
they had identical state at these points. This is similar
to our first approach of using a hypervisor as the master
controller. As with our other two approaches, it operates
on a per-task basis rather than an entire guest.

X. CONCLUSIONS AND FUTURE WORK

We have presented three fault tolerant configurations
based on TMR. Such techniques are made possible by
the unique design of the Quest-V separation kernel. We
have focused on TMR as it is a common fault tolerance
mechanism used to handle soft errors.

Beyond implementing and comparing the previously
described techniques, one of the main challenges re-
maining is protecting the voter. As briefly discussed
in Section IV, techniques such as arithmetic encoding
can be used to protect voters in TMR. We have also
discussed the possibility of having redundant sandboxes
monitor the results of the voter, by having read-only
access to a device driver and signaling the monitor if an
error is detected. We plan to compare these techniques
as part of (real-time) online fault detection and recovery
in Quest-V.
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