
Time Management in the Quest-V RTOS∗

Richard West, Ye Li, and Eric Missimer

Computer Science Department
Boston University

Boston, MA 02215, USA
{richwest,liye,missimer}@cs.bu.edu

Abstract

Quest-V is a new system currently under development
for multicore processors. It comprises a collection of sep-
arate kernels operating together as a distributed system on
a chip. Each kernel is isolated from others using virtual-
ization techniques, so that faults do not propagate through-
out the entire system. This multikernel design supports on-
line fault recovery of compromised or misbehaving services
without the need for full system reboots. While the system is
designed for high-confidence computing environments that
require dependability, Quest-V is also designed to be pre-
dictable. It treats time as a first-class resource, requir-
ing that all operations are properly accounted and handled
in real-time. This paper focuses on the design aspects of
Quest-V that relate to how time is managed. Special atten-
tion is given to how Quest-V manages time in four key areas:
(1) scheduling and migration of threads and virtual CPUs,
(2) I/O management, (3) communication, and (4) fault re-
covery.

1 Introduction

Multicore processors are becoming increasingly popu-
lar, not only in server domains, but also in real-time and
embedded systems. Server-class processors such as Intel’s
Single-chip Cloud Computer (SCC) support 48 cores, and
others from companies such as Tilera are now finding their
way into real-time environments [18]. In real-time systems,
multicore processors offer the opportunity to dedicate time-
critical tasks to specific processors, allowing others to be
used by best effort services. Alternatively, as in the case of
processors such as the ARM Cortex-R7, they provide fault
tolerance, ensuring functionality of software in the wake of
failures of any one core.

∗This work is supported in part by NSF Grant #1117025.

Quest-V is a new operating system we are developing for
multicore processors. It is designed to be both dependable
and predictable, providing functionality even when services
executing on one or more cores become compromised or be-
have erroneously. Predictability even in the face of software
component failures ensures that application timing require-
ments can be met. Together, Quest-V’s dependability and
predictability objectives make it suitable for the next gener-
ation of safety-critical embedded systems.

Quest-V is a virtualized multikernel, featuring multiple
sandbox kernels connected via shared memory communica-
tion channels. Virtualization is used to isolate and prevent
faults in one sandbox from adversely affecting other sand-
boxes. The resultant system maintains availability while
faulty software components are replaced or re-initializedin
the background. Effectively, Quest-V operates as a “dis-
tributed system on a chip”, with each sandbox responsible
for local scheduling and management of its own resources,
including processing cores.

In Quest-V, scheduling involves the use ofvirtual CPUs
(VCPUs). These differ from VCPUs in conventional hy-
pervisor systems, which provide an abstraction of the un-
derlying physical processors that are shared among sepa-
rate guest OSes. Here, VCPUs act as resource contain-
ers [3] for scheduling and accounting the execution time
of threads. VCPUs form the basis for system predictabil-
ity in Quest-V. Each VCPU is associated with one or more
software threads, which can be assigned to specific sand-
boxes according to factors such as per-core load, interrupt
balancing, and processor cache usage, amongst others. In
this paper, we show how VCPU scheduling and migration is
performed predictably. We also show how time is managed
to ensure bounded delays for inter-sandbox communication,
software fault recovery and I/O management.

An overview of the Quest-V design is described in the
next section. This is followed in Section 3 by a description
of how Quest-V guarantees predictability in various sub-
systems, including VCPU scheduling and migration, I/O



management, communication and fault recovery. Finally,
conclusions and future work are described in Section 4.

2 Quest-V Design

Quest-V is targeted at safety-critical applications, pri-
marily in real-time and embedded systems where depend-
ability is important. Target applications include those
emerging in health-care, avionics, automotive systems, fac-
tory automation, robotics and space exploration. In such
cases, the system requires real-time responsiveness to time-
critical events, to prevent potential loss of lives or equip-
ment. Similarly, advances in fields such as cyber-physical
systems means that more sophisticated OSes beyond those
traditionally found in real-time domains are now required.

The emergence of off-the-shelf and low-power proces-
sors now supporting multiple cores and hardware virtual-
ization offer new opportunities for real-time and embedded
system designers. Virtualization capabilities enable new
techniques to be integrated into the design of the OS, so that
software components are isolated from potential faults or
security violations. Similarly, added cores offer fault toler-
ance through redundancy, while allowing time-critical tasks
to run in parallel when necessary. While the combination
of multiple cores and hardware virtualization are features
currently found on more advanced desktop and server-class
processors, it is to be anticipated that such features will ap-
pear on embedded processors in the near future. For exam-
ple, the ARM Cortex A15 processor is expected to feature
virtualization capabilities, offering new possibilitiesin the
design of operating systems.

Quest-V takes the view that virtualization features
should be integral to the design of the OS, rather than pro-
viding capabilities to design hypervisors for hosting sepa-
rate unrelated guest OSes. While virtualization provides the
basis for safe isolation of system components, proper time
management is necessary for real-time guarantees to be met.
Multicore processors pose challenges to system predictabil-
ity, due to the presence of shared on-chip caches, memory
bus bandwidth contention, and in some cases non-uniform
memory access (NUMA). These micro-architectural fac-
tors must be addressed in the design of the system. Fortu-
nately, hardware performance counters are available, to help
deduce micro-architectural resource usage. Quest-V fea-
tures a performance monitoring subsystem to help improve
schedulability of threads and VCPUs, reducing worst-case
execution times and allowing higher workloads to be admit-
ted into the system.

2.1 System Architecture

Figure 1 shows an overview of the Quest-V architec-
ture. One sandbox is mapped to a separate core of a mul-

ticore processor, although in general it is possible to map
sandboxes to more than one core1. This is similar to
how Corey partitions resources amongst applications [7].
In our current approach, we assume each sandbox kernel
is associated with one physical core since that simplifies
local (sandbox) scheduling and allows for relatively easy
enforcement of service guarantees using a variant of rate-
monotonic scheduling [12]. Notwithstanding, application
threads can be migrated between sandboxes as part of a load
balancing strategy, or to allow parallel thread execution.

A single hypervisor is replaced by a separate monitor for
each sandbox kernel. This avoids the need to switch page ta-
ble mappings within a single global monitor when accessing
sandbox (guest) kernel addresses. We assume monitors are
trusted but failure of one does not necessarily mean the sys-
tem is compromised since one or more other monitors may
remain fully operational. Additionally, the monitors are ex-
pected to only be used for exceptional conditions, such as
updating shared memory mappings for inter-sandbox com-
munication [11] and initiating fault recovery.

Figure 1. Quest-V Architecture Overview

Quest-V currently runs as a 32-bit system on x86 plat-
forms with hardware virtualization support (e.g., Intel VT-x
or AMD-V processors). Memory virtualization is used as
an integral design feature, to separate sub-system compo-
nents into distinct sandboxes. Further details can be found
in our complementary paper that focuses more extensively
on the performance of the Quest-V design [11]. Figure 2
shows the mapping of sandbox memory spaces to physical
memory. Extended page table (EPT2) structures combine
with conventional page tables to map sandbox (guest) vir-
tual addresses to host physical values. Only monitors can
change EPT memory mappings, ensuring software faults or
security violations in one sandbox cannot corrupt the mem-
ory of another sandbox.

1Unless otherwise stated, we make no distinction between a processing
core or hardware thread.

2Intel processors with VT-x technology support extended page tables,
while AMD-V processors have similar support for nested page tables. For
consistency we use the term EPT in this paper.



Figure 2. Quest-V Memory Layout

The Quest-V architecture supports sandbox kernels that
have both replicated and complementary services. That is,
some sandboxes may have identical kernel functionality,
while others partition various system components to form
an asymmetric configuration. The extent to which function-
ality is separated across kernels is somewhat configurable
in the Quest-V design. In our initial implementation, each
sandbox kernel replicates most functionality, offering a pri-
vate version of the corresponding services to its local ap-
plication threads. Certain functionality is, however, shared
across system components. In particular, we share certain
driver data structures across sandboxes3, to allow I/O re-
quests and responses to be handled locally.

Quest-V allowsany sandbox to be configured for cor-
responding device interrupts, rather than have a dedicated
sandbox be responsible for all communication with that de-
vice. This greatly reduces the communication and control
paths necessary for I/O requests from applications in Quest-
V. It also differs from the split-driver approach taken by sys-
tems such as Xen [4], that require all device interrupts to be
channeled through a special driver domain.

Sandboxes that do not require access to shared devices
are isolated from unnecessary drivers and associated ser-
vices. Moreover, a sandbox can be provided with its own
private set of devices and drivers, so if a software failure
occurs in one driver, it will not necessarily affect all other
sandboxes. In fact, if a driver experiences a fault then its
effects are limited to the local sandbox and the data struc-
tures shared with other sandboxes. Outside these shared
data structures, remote sandboxes (including all monitors)
are protected by EPTs.

Application and system services in distinct sandbox ker-

3Only for those drivers that have been mapped as shared betweenspe-
cific sandboxes.

nels communicate via shared memory channels. These
channels are established by extended page table map-
pings setup by the corresponding monitors. Messages are
passed across these channels similar to the approach in Bar-
relfish [5].

Main and I/O VCPUs are used for real-time management
of CPU cycles, to enforcetemporal isolation. Application
and system threads are bound to VCPUs, which in turn are
assigned to underlying physical CPUs. We will elaborate
on this aspect of the system in the following section.

2.2 VCPU Management

In Quest-V,virtual CPUs(VCPUs) form the fundamen-
tal abstraction for scheduling and temporal isolation of the
system. Here, temporal isolation means that each VCPU
is guaranteed its share of CPU cycles without interference
from other VCPUs.

The concept of a VCPU is similar to that in virtual ma-
chines [2, 4], where a hypervisor provides the illusion of
multiple physical CPUs(PCPUs)4 represented as VCPUs
to each of the guest virtual machines. VCPUs exist as kernel
abstractions to simplify the management of resource bud-
gets for potentially many software threads. We use a hierar-
chical approach in which VCPUs are scheduled on PCPUs
and threads are scheduled on VCPUs.

A VCPU acts as a resource container [3] for scheduling
and accounting decisions on behalf of software threads. It
serves no other purpose to virtualize the underlying physical
CPUs, since our sandbox kernels and their applications ex-
ecute directly on the hardware. In particular, a VCPU does
not need to act as a container for cached instruction blocks
that have been generated to emulate the effects of guest
code, as in some trap-and-emulate virtualized systems.

In common with bandwidth preserving servers [1, 9, 14],
each VCPU,V , has a maximum compute time budget,CV ,
available in a time period,TV . V is constrained to use no
more than the fractionUV = CV

TV

of a physical processor
(PCPU) in any window of real-time,TV , while running at
its normal (foreground) priority. To avoid situations where
PCPUs are idle when there are threads awaiting service, a
VCPU that has expired its budget may operate at a lower
(background) priority. All background priorities are set be-
low those of foreground priorities to ensure VCPUs with
expired budgets do not adversely affect those with available
budgets.

Quest-V defines two classes of VCPUs: (1)Main VC-
PUsare used to schedule and track the PCPU usage of con-
ventional software threads, while (2)I/O VCPUsare used
to account for, and schedule the execution of, interrupt han-
dlers for I/O devices. This distinction allows for interrupts

4We define a PCPU to be either a conventional CPU, a processing core,
or a hardware thread in a simultaneous multi-threaded (SMT) system.



from I/O devices to be scheduled as threads [17], which may
be deferred execution when threads associated with higher
priority VCPUs having available budgets are runnable. The
flexibility of Quest-V allows I/O VCPUs to be specified for
certain devices, or for certain tasks that issue I/O requests,
thereby allowing interrupts to be handled at different prior-
ities and with different CPU shares than conventional tasks
associated with Main VCPUs.

2.2.1 VCPU API

VCPUs form the basis for managing time as a first-class re-
source: VCPUs are specified time bounds for the execution
of corresponding threads. Stated another way, every exe-
cutable control path in Quest-V is mapped to a VCPU that
controls scheduling and time accounting for that path. The
basic API for VCPU management is described below. It is
assumed this interface is managed only by a user with spe-
cial privileges.

• int vcpucreate(struct vcpuparam *param)– Creates
and initializes a new Main or I/O VCPU. The func-
tion returns an identifier for later reference to the new
VCPU. If theparam argument isNULL the VCPU as-
sumes its default parameters. For now, this is a Main
VCPU using aSCHED SPORADIC policy [15, 13].
Theparam argument points to a structure that is ini-
tialized with the following fields:
struct vcpu_param {

int vcpuid; // Identifier
int policy; // SCHED_SPORADIC or SCHED_PIBS
int mask; // PCPU affinity bit-mask
int C; // Budget capacity
int T; // Period

}

Thepolicy isSCHED SPORADIC for Main VCPUs
andSCHED PIBS for I/O VCPUs.SCHED PIBS is a
priority-inheritance bandwidth-preservingpolicy that
is described further in Section 3.1. Themask is a
bit-wise collection of processing cores available to the
VCPU. It restricts the cores on which the VCPU can
be assigned and to which the VCPU can be later mi-
grated. The remaining VCPU parameters control the
budget and period of a sporadic server, or the equiv-
alent bandwidth utilization for a PIBS server. In the
latter case, the ratio ofC andT is all that matters, not
their individual values.
On success, avcpuid is returned for a new VCPU.
An admission controller must check that the addition
of the new VCPU meets system schedulability require-
ments, otherwise the VCPU is not created and an error
is returned.

• int vcpudestroy (int vcpuid, int force)– Destroys and
cleans up state associated with a VCPU. The count of
the number of threads associated with a VCPU must

be 0 if theforce flag is not set. Otherwise, destruc-
tion of the VCPU will force all associated threads to
be terminated.

• int vcpusetparam (struct vcpuparam *param)– Sets
the parameters of the specified VCPU referred to by
param. This allows an existing VCPU to have new
parameters from those when it was first created.

• int vcpugetparam (struct vcpuparam *param)– Gets
the VCPU parameters for the next VCPU in a list for
the caller’s process. That is, each process has associ-
ated with it one or more VCPUs, since it also has at
least one thread. Initially, this call returns the VCPU
parameters at the head of a list of VCPUs for the call-
ing thread’s process. A subsequent call returns the pa-
rameters for the next VCPU in the list. The current
position in this list is maintained on a per-thread basis.
Once the list-end is reached, a further call accesses the
head of the list once again.

• int vcpubind task (int vcpuid)– Binds the calling task,
or thread, to a VCPU specified byvcpuid.

Functionsvcpudestroy, vcpusetparam, vcpugetparam
andvcpubind taskall return 0 on success, or an error value.

2.2.2 Parallelism in Quest-V

At system initialization time, Quest-V launches one or more
sandbox kernels. Each sandbox is then assigned a partition-
ing of resources, in terms of host physical memory, avail-
able I/O devices, and PCPUs. The default configuration cre-
ates one sandbox per PCPU. As stated earlier, this simpli-
fies scheduling decisions within each sandbox. Sandboxing
also reduces the extent to which synchronization is needed,
as threads in separate sandboxes typically access private re-
sources. For parallelism of multi-threaded applications,a
single sandbox must be configured to manage more than
one PCPU, or a method is needed to distribute application
threads across multiple sandboxes.

Quest-V maintains aquest tss data structure for each
software thread. Every address space has at least one
quest tss data structure. Managing multiple threads
within a sandbox is similar to managing processes in con-
ventional system designs. The only difference is that Quest-
V requires every thread to be associated with a VCPU and
the corresponding sandbox kernel (without involvement of
its monitor) schedules VCPUs on PCPUs.

In some cases it might be necessary to assign threads of
a multi-threaded application to separate sandboxes. This
could be for fault isolation reasons, or for situations where
one sandbox has access to resources, such as devices, not
available in other sandboxes. Similarly, threads may need
to be redistributed as part of a load balancing strategy.

In Quest-V, threads in different sandboxes are mapped
to separate host physical memory ranges, unless they ex-



ist in shared memory regions established between sand-
boxes. Rather than confining threads of the same appli-
cation to shared memory regions, Quest-V defaults to us-
ing separate process address spaces for threads in different
sandboxes. This increases the isolation between application
threads in different sandboxes, but requires special commu-
nication channels to allow threads to exchange information.

Here, we describe how a multi-threaded application is
established across more than one sandbox.

STEP 1: Create a new VCPU in parent process
– Quest-V implements process address spaces using
fork/exec/exit calls, similar to those in conventional
UNIX systems. A child process, initially having one thread,
inherits acopyof the address space and corresponding re-
sources defined in the parent thread’squest tss data
structure. Forked threads differ from forked processes in
that no new address space copy is made. A parent calling
fork first establishes a new VCPU for use by the child.
In all likelihood the parent will know the child’s VCPU pa-
rameter requirements, but they can later be changed in the
child usingvcpu setparam.

If the admission controller allows the new VCPU to be
created, it will be established in the local sandbox. If the
VCPU cannot be created locally, the PCPU affinity mask
can be used to identify a remote sandbox for the VCPU. Re-
mote sandboxes can be contacted via shared memory com-
munication channels, to see which one, if any, is best suited
for the VCPU. If shared channels do not exist, monitors can
be used to send IPIs to other sandboxes. Remote sandboxes
can then respond withbidsto determine the best target. Al-
ternatively, remote sandboxes can advertise their willing-
ness to accept new loads by posting information relating to
their current load in shared memory regions accessible to
other sandboxes. This latter strategy is anoffer to accept re-
mote requests, and is made without waiting forbid requests
from other sandboxes.

STEP 2: Fork a new thread or process and specify the
VCPU – A parent process can now make a specialfork
call, which takes as an argument thevcpuid of the VCPU
to be used for scheduling and resource accounting. The
request can originate from a different sandbox to the one
where the VCPU is located, so some means of global reso-
lution of VCPU IDs is needed.

STEP 3: Set VCPU parameters in new thread/process– A
thread or process can adjust the parameters of any VCPUs
associated with it, usingvcpu setparam. This includes
updates to its utilization requirements, and also the affinity
mask. Changes to the affinity might require the VCPU and
its associated process to migrate to a remote sandbox.

The steps described above can be repeated as necessary

to create a series of threads, processes and VCPUs within
or across multiple sandboxes. As stated in STEP 3, it might
be necessary to migrate a VCPU and its associated address
space to a remote sandbox. The initial design of Quest-
V limits migration of Main VCPUs and associated address
spaces. We assume I/O VCPUs are statically mapped to
sandboxes responsible for dedicated devices.

The details of how migration is performed are described
in Section 3.1. The rationale for only allowing Main VC-
PUs to migrate is because we can constrain their usage
to threads within a single process address space. Specifi-
cally, a Main VCPU is associated with one or more threads,
but every such thread is within thesameprocess address
space. However, two separate threads bound to different
VCPUs can be part of the same or different address space.
This makes VCPU migration simpler since we only have
to copy the memory for one address space. It also means
that within a process the system maintains a list of VCPUs
that can be bound to threads within the corresponding ad-
dress space. As I/O VCPUs can be associated with multiple
different address spaces, their migration would require the
migration, and hence copying, of potentially multiple ad-
dress spaces between sandboxes. For predictability reasons,
we can place an upper bound on the time to copy one ad-
dress space between sandboxes, as opposed to an arbitrary
number. Also, migrating I/O VCPUs requires association of
devices, and their interrupts, with different sandboxes. This
can require intervention of monitors to update I/O APIC in-
terrupt distribution settings.

3 System Predictability

Quest-V uses VCPUs as the basis for time management
and predictability of its sub-systems. Here, we describe
how time is managed in four key areas of Quest-V: (1)
scheduling and migration of threads and virtual CPUs, (2)
I/O management, (3) inter-sandbox communication, and (4)
fault recovery.

3.1 VCPU Scheduling and Migration

By default, VCPUs act like Sporadic Servers [13]. Spo-
radic Servers enable a system to be treated as a collection
of equivalent periodic tasks scheduled by a rate-monotonic
scheduler (RMS) [12]. This is significant, given I/O events
can occur at arbitrary (aperiodic) times, potentially trigger-
ing the wakeup of blocked tasks (again, at arbitrary times)
having higher priority than those currently running. RMS
analysis can therefore be applied, to ensure each VCPU is
guaranteed its share of CPU time,UV , in finite windows of
real-time.

Scheduling Example.An example schedule is provided in



Figure 3. Example VCPU Schedule

Figure 3 for three Main VCPUs, whose budgets are depleted
when a corresponding thread is executed. Priorities are in-
versely proportional to periods. As can be seen, each VCPU
is granted its real-time share of the underlying PCPU.

In Quest-V there is no notion of a periodic timer interrupt
for updating system clock time. Instead, the system is event
driven, using per-processing core local APIC timers to re-
plenish VCPU budgets as they are consumed during thread
execution. We use the algorithm proposed by Stanovich et
al [15] to correct for early replenishment and budget ampli-
fication in the POSIX specification.

Main and I/O VCPU Scheduling. Figure 4 shows an ex-
ample schedule for two Main VCPUs and one I/O VCPU
for a certain device such as a gigabit Ethernet card. In this
example, Schedule (A) avoids premature replenishments,
while Schedule (B) is implemented according to the POSIX
specification. In (B), VCPU1 is scheduled att = 0, only
to be preempted by higher priority VCPU0 att = 1, 41, 81,
etc. By t = 28, VCPU1 has amassed a total of 18 units
of execution time and then blocks untilt = 40. Similarly,
VCPU1 blocks in the interval[t = 68, 80]. By t = 68,
Schedule (B) combines the service time chunks for VCPU1
in the intervals[t = 0, 28] and [t = 40, 68] to post future
replenishments of18 units att = 50 andt = 90, respec-
tively. This means that over the first100 time units, VCPU1
actually receives46 time units, when it should be limited
to 40%. Schedule (A) ensures that over the same100 time
units, VCPU1 is limited to the correct amount. The prob-
lem is triggered by the blocking delays of VCPU1. Sched-
ule (A) ensures that when a VCPU blocks (e.g., on an I/O
operation), on resumption of execution it effectively starts
a new replenishment phase. Hence, although VCPU1 ac-
tually receives21 time units in the interval[t = 50, 100]
it never exceeds more than its40% share of CPU time be-
tween blocking periods and over the first100 time units it
meets its bandwidth limit.

For completeness, Schedule (A) shows the list of replen-
ishments and how they are updated at specific times, accord-
ing to scheduling events in Quest-V. The invariant is that
the sum of replenishment amounts for all list items must
not exceed the budget capacity of the corresponding VCPU
(here,20, for VCPU1). Also, no future replenishment,R,
for a VCPU,V , executing fromt to t + R can occur before
t + TV .

When VCPU1 first blocks att = 28 it still has2 units of
budget remaining, with a further18 due for replenishment
at t = 50. At this point, the schedule shows the execution
of the I/O VCPU for2 time units. In Quest-V, threads run-
ning on Main VCPUs block (causing the VCPU to block
if there are no more runnable threads), while waiting for
I/O requests to complete. All I/O operations in response to
device interrupts are handled as threads on specific I/O VC-
PUs. Each I/O VCPU supports threaded interrupt handling
at a priority inherited from the Main VCPU associated with
the blocked thread. In this example, the I/O VCPU runs at
the priority of VCPU1. The I/O VCPU’s budget capacity is
calculated as the product of it bandwidth specification (here,
UIO = 4%) and the period,TV , of the corresponding Main
VCPU for which it is performing service. Hence, the I/O
VCPU receives a budget ofUIO·TV = 2 time units, and
through bandwidth preservation, will be eligible to execute
again atte = t + Cactual/UIO, wheret is the start time
of the I/O VCPU andCactual | 0≤Cactual≤UIO·TV is how
much of its budget capacity it really used.

In Schedule (A), VCPU1 resumes execution after un-
blocking at times,t = 40 and80. In the first case, the I/O
VCPU has already completed the I/O request for VCPU1
but some other delay, such as accessing a shared resource
guarded by a semaphore (not shown) could be the cause
of the added delay. Timet = 78 marks the next eligible
time for the I/O VCPU after it services the blocked VCPU1,
which can then immediately resume. Further details about
VCPU scheduling in Quest-V can be found in our accompa-
nying paper for Quest [8], a non-virtualized version of the
system that does not support sandboxed service isolation.

Since each sandbox kernel in Quest-V supports local
scheduling of its allocated resources, there is no notion of
a global scheduling queue. Forked threads are by default
managed in the local sandbox but can ultimately be mi-
grated to remote sandboxes along with their VCPUs, ac-
cording to load constraints or affinity settings of the target
VCPU. Although each sandbox is isolated in a special guest
execution domain controlled by a corresponding monitor,
the monitor is not needed for scheduling purposes. This
avoids costly virtual machine exits and re-entries (i.e., VM-
Exits and VM-resumes) as would occur with hypervisors
such as Xen [4] that manage multiple separate guest OSes.

Temporal Isolation. Quest-V provides temporal isolation



Figure 4. Sporadic Server Replenishment List Management

of VCPUs assuming the total utilization of a set of Main
and I/O VCPUs within each sandbox do not exceed specific
limits. Each sandbox can determine the schedulability of
its local VCPUs independently of all other sandboxes. For
cases where a sandbox is associated with one PCPU,n Main
VCPUs andm I/O VCPUs we have the following:

n−1
X

i=0

Ci

Ti

+

m−1
X

j=0

(2 − Uj)·Uj ≤ n

“

n
√

2 − 1
”

Here,Ci andTi are the budget capacity and period of Main
VCPU,Vi. Uj is the utilization factor of I/O VCPU,Vj [8].

VCPU and Thread Migration. For multicore processors,
the cores share a last-level cache (LLC) whose lines are oc-
cupied by software thread state from any of the sandbox ker-
nels. It is therefore possible for one thread to suffer poorer
progress than another, due to cache line evictions from con-
flicts with other threads. Studies have shown memory bus
transfers can incur several hundred clock cycles, or more,
to fetch lines of data from memory on cache misses [7, 10].
While this overhead is often hidden by prefetch logic, it
is not always possible to prevent memory bus stalls due to
cache contention from other threads.

To improve the global performance of VCPU schedul-
ing in Quest-V, VCPUs and their associated threads can be
migrated between sandbox kernels. This helps prevent co-
schedules involving multiple concurrent threads with high
memory activity (that is, large working sets or frequent ac-
cesses to memory). Similarly, a VCPU and its correspond-
ing thread(s) might be better located in another sandbox that
is granted direct access to an I/O device, rather than hav-
ing to make inter-sandbox communication requests for I/O.
Finally, on non-uniform memory access (NUMA) architec-
tures, threads and VCPUs should be located close to the
memory domains that best serve their needs without hav-
ing to issue numerous transactions across an interconnect
between chip sockets [6].

In a real-time system, migrating threads (and, in our
case, VCPUs) between processors at runtime can impact the
schedulability of local schedules. Candidate VCPUs for mi-
gration are determined by factors such as memory activity
of the threads they support. We use hardware performance
counters found on modern multicore processors to measure
events such as per-core and per-chip packagecache misses,
cache hits, instructions retiredandelapsed cyclesbetween
scheduling points.

For a single chip package, or socket, we distribute
threads and their VCPUs amongst sandboxes to: (a) bal-
ance total VCPU load, and (b) balance per-sandbox LLC
miss-rates or aggregate cycles-per-instruction (CPI) forall
corresponding threads. For NUMA platforms, we are con-
sidering cache occupancy prediction techniques [16] to es-
timate the costs of migrating thread working sets between
sandboxes on separate sockets.

Predictable Migration Strategy. We are considering two
approaches to migration. In both cases, we assume that a
VCPU and its threads are associated withoneaddress space,
otherwise multiple address spaces would have to be moved
between sandboxes, which adds significant overhead.

The first migration approach uses shared memory to
copy an address space and its associatedquest tss data
structure(s) from the source sandbox to the destination. This
allows sandbox kernels to perform the migration without in-
volvement of monitors, which would require VM-Exit and
VM-resume operations. These are potentially costly opera-
tions, of several hundred clock cycles [11]. This approach
only requires monitors to establish shared memory map-
pings between a pair of sandboxes, by updating extended
page tables as necessary. However, for address spaces that
are larger than the shared memory channel we effectively
have to perform a UNIXpipe-style exchange of informa-
tion between sandboxes. This leads to a synchronous ex-
change, with the source sandbox blocking when the shared
channel is full, and the destination blocking when awaiting



more information in the channel.
In the second migration approach, we can eliminate the

need to copy address spaces bothinto and out of shared
memory. Instead, the destination sandbox is asked to move
the migrating address space directly from the source sand-
box, thereby requiring only one copy. However, the mi-
grating address space and itsquest tss data structure(s)
are initially located in the source sandbox’s private memory.
Hence, a VM-Exit into the source monitor is needed, to send
an inter-processor interrupt (IPI) to the destination sand-
box. This event is received by a remote migration thread
that traps into its monitor, which can then access the source
sandbox’s private memory.

The IPI handler causes the destination monitor to tem-
porarily map the migrating address space into the target
sandbox. Then, the migrating address space can be copied
to private memory in the destination. Once this is complete,
the destination monitor can unmap the pages of the migrat-
ing address space, thereby ensuring sandbox memory isola-
tion except where shared memory channels should exist. At
this point, all locally scheduled threads can resume as nor-
mal. Figure 5 shows the general migration strategy. Note
that for address spaces with multiple threads we still have
to migrate multiplequest tss structures, but a bound on
per-process threads can be enforced.

Migration Threads. We are considering both migration
strategies, using specialmigration threadsto move address
spaces and their VCPUs in bounded time. A migration
thread in the destination sandbox has a Main VCPU with
parametersCm andTm. The migrating address space asso-
ciated with a VCPU,Vsrc, having parametersCsrc andTsrc

should ideally be moved without affecting its PCPU share.
To ensure this is true, we require the migration cost,∆m,src,
of copying an address space and itsquest tss data struc-
ture(s) to be less than or equal toCm. Tm should ideally be
set to guarantee the migration thread runs at highest priority
in the destination. To ease migration analysis, it is prefer-
able to move VCPUs with full budgets. For any VCPU with
maximum tolerable delay,Tsrc − Csrc, before it needs to
be executed again, we require preemptions by higher prior-
ity VCPUs in the destination sandbox to be less than this
value. In practice,Vsrc might have a tolerable delay lower
thanTsrc − Csrc. This restricts the choice of migratable
VCPUs and address spaces, as well as the destination sand-
boxes able to accept them. Further investigation is needed to
determine the schedulability of migrating VCPUs and their
address spaces.

3.2 Predictable I/O Management

As shown in Section 3.1, Quest-V assigns I/O VCPUs to
interrupt handling threads. Only a minimal “top half” [17]

Figure 5. Time-Bounded Migration Strategy

part of interrupt processing is needed to acknowledge the
interrupt and post an event to handle the subsequent “bot-
tom half” in a thread bound to an I/O VCPU. A worst-
case bound can be placed on top half processing, which is
charged to the current VCPU as system overhead.

Interrupt processing as part of device I/O requires proper
prioritization. In Quest-V, this is addressed by assigning
an I/O VCPU the priority of the Main VCPU on behalf
of which interrupt processing is being performed. Since
all VCPUs are bandwidth preserving, we set the priority
of an I/O VCPU to be inversely proportional to the pe-
riod of its corresponding Main CPU. This is the essence
of priority-inheritance bandwidth preservation scheduling
(PIBS). Quest-V ensures that the priorities of all I/O opera-
tions are correctly matched with threads running on Main
VCPUs, although such threads may block on their Main
VCPUs while interrupt processing occurs. To ensure I/O
processing is bandwidth-limited, each I/O VCPU is as-
signed a specific percentage of PCPU time. Essentially, a
PIBS-based I/O VCPU operates like a Sporadic Server with
onedynamically-calculated replenishment.

This approach to I/O management prevents live-lock
and priority inversion, while integrating the management
of interrupts with conventional thread execution. It does,
however, require correctly matching interrupts with Main
VCPU threads. To do this, Quest-V’s drivers supportearly
demultiplexingto identify the thread for which the interrupt
has occurred. This overhead is also part of the top half cost
described above.

Finally, Quest-V programs I/O APICs to multicast de-



vice interrupts to the cores of sandboxes with access to
those devices. In this way, interrupts are not always di-
rected to one core which becomes an I/O server for all oth-
ers. Multicast interrupts are filtered as necessary, as partof
early demultiplexing, to decide whether or not subsequent
I/O processing should continue in the target sandbox.

3.3 Inter-Sandbox Communication

Inter-sandbox communication in Quest-V relies on mes-
sage passing primitives built on shared memory, and
asynchronous event notification mechanisms using Inter-
processor Interrupts (IPIs). IPIs are currently used to com-
municate with remote sandboxes to assist in fault recov-
ery, and can also be used to notify the arrival of messages
exchanged via shared memory channels. Monitors update
shadow page table mappings as necessary to establish mes-
sage passing channels between specific sandboxes. Only
those sandboxes with mapped shared pages are able to com-
municate with one another. All other sandboxes are isolated
from these memory regions.

A mailboxdata structure is set up within shared mem-
ory by each end of a communication channel. By default,
Quest-V currently supports asynchronous communication
by polling a status bit in each relevant mailbox to determine
message arrival. Message passing threads are bound to VC-
PUs with specific parameters to control the rate of exchange
of information. Likewise, sending and receiving threads
are assigned to higher priority VCPUs to reduce the latency
of transfer of information across a communication channel.
This way, shared memory channels can be prioritized and
granted higher or lower throughput as needed, while ensur-
ing information is communicated in a predictable manner.
Thus, Quest-V supports real-time communication between
sandboxes without compromising the CPU shares allocated
to non-communicating tasks.

3.4 Predictable Fault Recovery

Central to the Quest-V design is fault isolation and re-
covery. Hardware virtualization is used to isolate sandboxes
from one another, with monitors responsible for mapping
sandbox virtual address spaces onto (host) physical regions.

Quest-V supports both local and remote fault recovery.
Local fault recovery attempts to restore a software compo-
nent failure without involvement of another sandbox. The
local monitor re-initializes the state of one or more compro-
mised components, as necessary. The recovery procedure
itself requires some means of fault detection and trap (VM-
Exit) to the monitor, which we assume is never compro-
mised. Remote fault recovery makes sense when a replace-
ment software component already exists in another sand-
box, and it is possible to use that functionality while the

local sandbox is recovered in the background. This strategy
avoids the delay of local recovery, allowing service to be
continued remotely. We assume in all cases that execution
of a faulty software component can correctly resume from
a recovered state, which might be a re-initialized state or
one restored to a recent checkpoint. For checkpointing, we
require monitors to periodically intervene using a preemp-
tion timeout mechanism so they can checkpoint the state of
sandboxes into private memory.

Here, we are interested in the predictability of fault re-
covery and assume the procedure for correctly identifying
faults, along with the restoration of suitable state already
exists. These aspects of fault recovery are, themselves, chal-
lenging problems outside the scope of this paper.

In Quest-V, predictable fault recovery requires the use of
recovery threadsbound to Main VCPUs, which limit the
time to restore service while avoiding temporal interference
with correctly functioning components and their VCPUs.
Although recovery threads exists within sandbox kernels
the recovery procedure operates at the monitor-level. This
ensures fault recovery can be scheduled and managed just
like any other thread, while accessing specially trusted mon-
itor code. A recovery thread traps into its local monitor and
guarantees that it can be de-scheduled when necessary. This
is done by allowing local APIC timer interrupts to be de-
livered to a monitor handler just as they normally would be
delivered to the event scheduler in a sandbox kernel, outside
the monitor. Should a VCPU for a recovery thread expire its
budget, a timeout event must be triggered to force the moni-
tor to upcall the sandbox scheduler. This procedure requires
that wherever recovery takes place, the corresponding sand-
box kernel scheduler is not compromised. This is one of
the factors that influences the decision to perform local or
remote fault recovery.

When a recovery thread traps into its monitor, VM-Exit
information is examined to determine the cause of the exit.
If the monitor suspects it has been activated by a fault we
need to initialize or continue the recovery steps. Because
recovery can only take place while the sandbox recovery
thread has available VCPU budget, the monitor must be pre-
emptible. However, VM-Exits trap into a specific monitor
entry point rather than where a recovery procedure was last
executing if it had to be preempted. To resolve this issue,
monitor preemptions must checkpoint the execution state so
that it can be restored on later resumption of the monitor-
level fault recovery procedure. Specifically, the common
entry point into a monitor for all VM-Exits first examines
the reason for the exit. For a fault recovery, the exit handler
will attempt to restore checkpointed state if it exists froma
prior preempted fault recovery stage. This is all assuming
that recovery cannot be completed within one period (and
budget) of the recovery thread’s VCPU. Figure 6 shows how
the fault recovery steps are managed predictably.



Figure 6. Time-Bounded Fault Recovery

4 Conclusions and Future Work

This paper describes time management in the Quest-V
real-time multikernel. We show through the use of vir-
tual CPUs with specific time budgets how several key sub-
system components behave predictably. These sub-system
components relate to on-line fault recovery, communica-
tion, I/O management, scheduling and migration of execu-
tion state.

Quest-V is being built from scratch for multicore pro-
cessors with hardware virtualization capabilities, to isolate
sandbox kernels and their application threads. Although
Intel VT-x and AMD-V processors are current candidates
for Quest-V, we expect the system design to be applicable
to future embedded architectures such as the ARM Cortex
A15. Future work will investigate fault detection schemes,
policies to identify candidate sandboxes for fault recovery,
VCPU and thread migration, and also load balancing strate-
gies on NUMA platforms.

References

[1] L. Abeni, G. Buttazzo, S. Superiore, and S. Anna. Inte-
grating multimedia applications in hard real-time systems.
In Proceedings of the 19th IEEE Real-time Systems Sympo-
sium, pages 4–13, 1998.

[2] K. Adams and O. Agesen. A comparison of software and
hardware techniques for x86 virtualization. InProceedings
of the 12th Intl. Conf. on Architectural Support for Program-
ming Languages and Operating Systems, pages 2–13, New
York, NY, USA, 2006.

[3] G. Banga, P. Druschel, and J. C. Mogul. Resource contain-
ers: a new facility for resource management in server sys-

tems. InProceedings of the 3rd USENIX Symposium on Op-
erating Systems Design and Implementation, 1999.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and
the art of virtualization. InSOSP ’03: Proceedings of the
nineteenth ACM symposium on Operating systems princi-
ples, pages 164–177, New York, NY, USA, 2003. ACM.

[5] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs,
S. Peter, T. Roscoe, A. Schüpbach, and A. Singhania. The
Multikernel: A new OS architecture for scalable multicore
systems. InProceedings of the 22nd ACM Symposium on
Operating Systems Principles, pages 29–44, 2009.

[6] S. Blagodurov, S. Zhuravlev, M. Dashti, and A. Fedorova. A
case for NUMA-aware contention management on multicore
processors. InUSENIX Annual Technical Conference, 2011.

[7] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, M. F.
Kaashoek, R. Morris, A. Pesterev, L. Stein, M. Wu, Y. hua
Dai, Y. Zhang, and Z. Zhang. Corey: An operating system
for many cores. InProceedings of the 8th USENIX Sym-
posium on Operating Systems Design and Implementation,
pages 43–57, 2008.

[8] M. Danish, Y. Li, and R. West. Virtual-CPU Scheduling
in the Quest Operating System. Inthe 17th IEEE Real-
Time and Embedded Technology and Applications Sympo-
sium, April 2011.

[9] Z. Deng, J. W. S. Liu, and J. Sun. A scheme for scheduling
hard real-time applications in open system environment. In
Proceedings of the 9th Euromicro Workshop on Real-Time
Systems, 1997.

[10] U. Drepper. What Every Programmer Should Know About
Memory. Redhat, Inc., November 21 2007.

[11] Y. Li, M. Danish, and R. West. Quest-V: A virtualized multi-
kernel for high-confidence systems. Technical Report 2011-
029, Boston University, December 2011.

[12] C. L. Liu and J. W. Layland. Scheduling algorithms for mul-
tiprogramming in a hard-real-time environment.Journal of
the ACM, 20(1):46–61, 1973.

[13] B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic task schedul-
ing for hard real-time systems.Real-Time Systems Journal,
1(1):27–60, 1989.

[14] M. Spuri, G. Buttazzo, and S. S. S. Anna. Scheduling aperi-
odic tasks in dynamic priority systems.Real-Time Systems,
10:179–210, 1996.

[15] M. Stanovich, T. P. Baker, A.-I. Wang, and M. G. Harbour.
Defects of the POSIX sporadic server and how to correct
them. InProceedings of the 16th IEEE Real-Time and Em-
bedded Technology and Applications Symposium, 2010.

[16] R. West, P. Zaroo, C. A. Waldspurger, and X. Zhang. On-
line cache modeling for commodity multicore processors.
Operating Systems Review, 44(4), December 2010. Special
VMware Track.

[17] Y. Zhang and R. West. Process-aware interrupt scheduling
and accounting. Inthe 27th IEEE Real-Time Systems Sym-
posium, December 2006.

[18] C. Zimmer and F. Mueller. Low contention mapping of real-
time tasks onto a TilePro 64 core processor. Inthe 18th
IEEE Real-Time and Embedded Technology and Applica-
tions Symposium, April 2012.


