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Abstract—Single Board Computers (SBCs) are now emerging
with multiple cores, ADCs, GPIOs, PWM channels, integrated
graphics, and several serial bus interfaces. The low power
consumption, small form factor and I/O interface capabilities of
SBCs with sensors and actuators makes them ideal in embedded
and real-time applications. However, most SBCs run non-real-
time operating systems based on Linux and Windows, and do
not provide a user-friendly API for application development. This
paper presents QduinoMC, a multicore extension to the popular
Arduino programming environment, which runs on the Quest
real-time operating system. QduinoMC is an extension of our ear-
lier single-core, real-time, multithreaded Qduino API. We show
the utility of QduinoMC by applying it to a specific application: a
web-connected 3D printer. This differs from existing 3D printers,
which run relatively simple firmware and lack operating system
support to spool multiple jobs, or interoperate with other devices
(e.g., in a print farm). We show how QduinoMC empowers devices
with the capabilities to run new services without impacting
their timing guarantees. While it is possible to modify existing
operating systems to provide suitable timing guarantees, the
effort to do so is cumbersome and does not provide the ease
of programming afforded by QduinoMC.

I. INTRODUCTION

The Internet-of-Things (IoT) is leading to a revolution
in areas such as manufacturing, robotics, driverless cars, au-
tonomous drones, and intelligent home automation systems.
For IoT devices to interoperate with one another they need to
be able to connect and exchange data. Consider, for example,
a web-connected 3D printer with the capability to receive and
spool remote printing requests via a webserver. A farm of these
printers might then operate together to serve multiple remote
user requests, as part of a distributed manufacturing facility.
However, current consumer-grade 3D printers are not yet able
to spool requests like a 2D printer, let alone coordinate their
operations across a network.

Many consumer-grade 3D printers are based on relatively
simple microcontrollers such as the Arduino Mega. These
controllers incorporate several stepper motor drivers, general-
purpose I/O pins (GPIOs) and analog-to-digital converters
(ADCs), for motion, extruder, heat-bed and fan control. Exam-
ples include the RepRap printing platforms that run Arduino-
based firmware such as Marlin. While these platforms provide
low-latency I/O with sensors and actuators, they are unable
to run a real-time printing control program along with web
services, to interoperate with other devices or remote users.

To provide greater capabilities for IoT applications, nu-
merous single board computers (SBCs) are now emerging.
These SBCs often feature multiple cores, ADCs, GPIOs, pulse-
width modulation (PWM), integrated graphics, networking,
and several serial bus interfaces. Examples include the Intel

Edison, Minnowboard MAX (MinnowMax) and Joule, which
feature multicore Atom x86-based processors. Yocto and other
variants of Linux are typically targeted at these platforms, to
manage the complexity of their hardware. However, Linux is
not ideal for real-time embedded application development, due
to both unpredictable, non-negligible system overheads and the
lack of a uniform, intuitive programming interface.

To take full advantage of these new hardware platforms
requires the use of an operating system and a suitable program-
ming interface. Ideally, the operating system needs to be real-
time, to satisfy the requirements of many robotics, 3D printing,
drone, and smart devices. Additionally, the programming in-
terface needs to be simple and easy to use, with the ability to
specify timing requirements for GPIOs, PWM signals, tasks
and interrupts.

In this paper, we present QduinoMC, a programming in-
terface and runtime environment for real-time, multithreading
applications on multicore architectures. QduinoMC adopts the
simplicity of the Arduino API, with support to take advantage
of hardware-level parallelism in a predictable manner. While
being backward-compatible with the existing Arduino API,
QduinoMC provides several key interface extensions to en-
able: (1) the construction of multiple time-constrained loops,
(2) temporal isolation between loops, (3) the assignment of
loops to cores, (4) the mapping and masking of interrupts
for specific cores, (5) real-time communication via semi-
/fully-asynchronous channels between loops, and (6) the time-
bounded delivery of interrupts to user-level services.

We show the utility of QduinoMC by applying it to the
management of a web-connected 3D printer that we built.
Our web-connected 3D printer is based on a Printrbot Simple
Metal, with a replacement controller that uses a MinnowMax
SBC running QduinoMC. Results show how our 3D printer is
able to perform multiple tasks, while ensuring their temporal
isolation. In contrast, the same tasks running on an embedded
Yocto Linux 3D printer controller are not able to achieve
the same timing guarantees. Consequently, QduinoMC is able
to produce successfully printed objects within certain time
bounds while a system running Yocto Linux is not. When
Linux is able to successfully print a 3D object, it takes
far longer than an equivalent system based on QduinoMC.
In manufacturing, the time to produce items is critical to
productivity, making QduinoMC far more suitable for smart
manufacturing devices.

Contributions of this paper include: (1) an analysis and
case-study of the real-time issues in a 3D printer, (2)
QduinoMC, an API and runtime environment for real-time
embedded applications, and (3) the design and evaluation of a
web-connected 3D printer on a custom printer controller.



The rest of this paper is organized as follows: Section II
provides background to the timing requirements for a web-
connected 3D printer. Section III describes the implementation
of, and problems with, a prototype 3D printer running Linux.
Section IV follows with an overview of QduinoMC, including
its real-time properties, programming interface, and support for
multicore platforms. Comparisons between our printer running
on QduinoMC to the ones on equivalent systems is given in
Section V. Related work is discussed in Section VI, followed
by conclusions and future work in Section VII.

II. BACKGROUND

In this section, we describe the operation and timing
requirements of a popular class of current 3D printers. We
then briefly describe the added features and system challenges
to support web-connected 3D printers.

A. Mechatronics in FDM 3D Printers
3D printers are classified by the filament materials they

use and the way layers of filament are deposited to create
parts. Most of the 3D printers in the consumer market utilize
fused deposition modeling (FDM), which produces objects by
extruding small beads of material that harden immediately to
form layers on a movable bed. These printers have 3 axes of
motion, with stepper motors to control the bed’s movement
along the X and Y axes, and the extruder’s movement along
the Z axis (Figure 1). An additional stepper motor feeds the
filament through the extruder to maintain the correct bead
deposition rate.

Fig. 1: A Conceptual View of a 3D Printer

Motor Control in 3D Printers. In a 3D printer, stepper
motors combine with linear motion systems, such as pulleys
and belts, to control the position and speed of the bed and
extruder. Stepper motors are able to make precise angular
movements. A stepper motor divides its full rotation into a
number of equal steps. A microcontroller and driver circuit
commands the motor to rotate and hold at one of these steps
without a feedback sensor. Motor steps are triggered by a series
of digital pulses sent to a GPIO pin, which feeds a driver
circuit (e.g., Pololu 4988) that produces directional current
within the motor windings. Electromagnets are switched on
and off to attract teeth on the motor’s shaft, causing it to
rotate. This makes the shaft rotate one step for each pulse.
Higher rotational accuracy is achieved by using driver circuits
that generate microsteps. Similarly, rotational speed is affected
by the frequency at which digital pulses are generated.

Control of the stepper motor’s acceleration and deceleration
is needed to ensure smooth linear movement. The time delay
between the stepper motor pulses must be calculated, so

that the motor’s operation follows the trapezoidal speed ramp
(example shown in Figure 2) as closely as possible.

Fig. 2: An Example Speed Ramp for a Stepper Motor

B. Timing Requirements
For a better understanding of the timing issues, we use a

Printrbot Simple Metal 3D printer as an example. The Printrbot
Simple Metal uses one of its four NEMA (National Electrical
Manufacturers Association) 17 stepper motors with a belt
driven system to move the bed along the X axis. The NEMA
17 has 200 full steps per revolution, denoted as s. Each step is
divided by α = 16 microsteps, to achieve more precise motor
rotation with less vibration. Thus, s · α = 200 × 16 = 3200
digital pulses are needed per revolution. The Printrbot uses a
GT2 belt driven system, with a belt tooth pitch, b = 2 mm,
and pulley tooth count, p = 20. This means one rotation of the
stepper motor will be translated to b · p = 2 × 20 = 40 mm
linear movement of the bed. For Θ radians of rotation, the rela-
tionship between linear motion speed, v, and pulse frequency,
f , is as follows:

v =
∆S

∆t
=

∆Θ
2π · b · p

∆t
=

∆t·f · 2π
s·α

2π · b · p
∆t

=
bp

sα
f (1)

After the extruder is heated, we assume melted filament
continuously flows out of the extruder tip hole at speed γ
when material needs to be deposited. Within a time period
of ∆t, using an extruder tip with diameter d, filament of
volume ∆V = γ∆t · (d2 )2π will be extruded. We assume
that during this process, the pulse train frequency is steady
at f . Using Equation 1, the relative displacement of the bed to
the extruder is ∆S = v∆t = bp

sαf∆t. So filament of volume
∆V is distributed on a rectangle of area ∆A = ∆Sd. This
reveals the relationship between layer thickness, H and pulse
frequency, f :

H =
∆V

∆A
=
γ∆t · (d2 )2π
bp
sαf∆t · d

= K · 1

f
(2)

where K = π
4 ·

sαd
bp · γ.

Equation 2 indicates that, for a given printer configuration
and filament material, an unstable pulse train will cause uneven
thickness of a printed layer. If the task that generates the pulse
experiences a delay δt, due to temporal interference from other
tasks or delays within the control system, the pulse frequency
will drop to f ′ = 1

1
f +δt

. According to Equation 2, this will
result in a vertical gap of height ∆H ,

∆H = K(
1

f ′
− 1

f
) = Kδt (3)

between adjacent layers and therefore undermine the structural
soundness of the printed object. This example is illustrated in
Figure 3 where the delay δt happens at the (n+ 1)th step.



Fig. 3: Structural Deficiency due to Unstable Pulse Train

C. A Web-connected 3D printer
Traditional 3D printers are tethered to a PC via a USB

link, to receive manual configurations or low-level commands
(G-codes 1) for one printing job. In some cases, they are able
to read G-codes from a local SD card. In contrast, a web-
connected 3D printer provides an interface to interact with
either end users or other printers on the web. It is also capable
of spooling multiple job requests, which is a common feature
of 2D printers. Web-connected 3D printers form the basis
for more sophisticated farms of manufacturing devices that
coordinate their operation.

A 3D printer is required to translate G-codes into peripheral
I/O control sequences. More advanced features might include
running a local compute-intensive slicer engine to translate 3D
modeling files into 2D sequences of G-codes, for each layer
of a print job. At the same time, time-critical I/O signaling
operations are necessary to drive stepper motors, fans and
heaters. For a high volume of remote requests, interrupts
from the disk and the network interface controller start to
consume a large portion of CPU cycles. This poses challenges
to balance system resources among several types of tasks:
those performing latency-sensitive versus high-bandwidth I/O
operations, and those involved in G-code processing.

III. IMPLEMENTATION ON LINUX

This section describes the web-connected 3D printer we
built on Linux, including both hardware and software setup. It
then identifies the problems we observed during building and
testing this prototype.

A. Hardware
While we reused the mechanical parts of the Printrbot

Simple Metal 3D printer, we replaced the original Printrboard
controller with our custom controller. Most traditional 3D
printers, including the Printrbot, are equipped with the AVR
ATmega microcontroller, operating at speeds up to 20 MHz,
and run firmware on the bare metal. In such an environment,
however, it is difficult if not impossible to run a webserver in
parallel with the printing control software. Therefore, our cus-
tom 3D printer controller is based on the much more powerful
Intel MinnowMax board. The MinnowMax is equipped with
a 64-bit dual-core Atom 1.33 GHz processor, 2 GB memory
and 86 GPIOs, of which some are configurable as I2C, SPI,
UART and PWM pins.

We interfaced the MinnowMax to a RepRap Arduino Mega
Polulo Shield (RAMPS) and various analog circuits to level-
shift the 3.3V GPIO pins to appropriate values, to control
the Printrbot’s motors, fan and extruder heater. Our custom
controller uses four Pololu 4988 stepper motor drivers and
an ADS7828 8-channel 12-bit I2C analog-to-digital converter

1G-code is a numerical control programming language for computer-aided
manufacturing.

(ADC), to monitor extruder temperature readings. A snapshot
of the controller board is shown in Figure 14 and the controller
circuit diagram is shown in Figure 18. Further information is
available on our project webpage 2.

B. Software
We ran Yocto Linux 4.4.13 with the PREEMPT RT patch

on the MinnowMax. A lighttpd daemon runs in the background
to receive remotely submitted printing jobs, and a custom
spooler queues and feeds jobs to the printing control program,
which is a customized version of Marlin.

Marlin is a firmware for RepRap single-processor electron-
ics, supporting RAMPS, RAMBo, Ultimaker, BQ, and several
other Arduino-based 3D printers. It has one Arduino loop
function and two interrupt handlers for a pair of hardware
timers, illustrated in Figure 4. In each iteration of the loop, a G-
code is read from the serial bus and is processed. Though there
are hundreds of different G-codes, the most common are G0
and G1, which specify the speed and position for the extruder
to move. Positional coordinates are then translated into each
stepper motor’s direction, number of steps and angular speed
(according to the speed ramp). This is the core algorithm of
Marlin and consumes the most CPU cycles. As the last stage,
the loop packages the stepper motor motion parameters into a
data block and adds it to a finite capacity queue, after which
the main loop repeats.

The block queue is shared between the loop and an inter-
rupt handler, which is bound to a hardware timer in one-shot
mode. When the timer fires, the interrupt handler is invoked to
check the remaining steps to execute on each axis, and their
respective rate. It then, accordingly, sends one pulse to each
stepper motor that should be driven and programs the timer for
when the next pulse should occur. When the handler completes
all the steps in a block, it consumes a new one from the queue
if it is not empty.

Marlin has a second interrupt handler bound to a hardware
timer in periodic mode. Every 8 milliseconds it samples the
extruder temperature, and adjusts the fan speed and heater
settings using PID feedback control. Typical PLA plastic
filament, for example, requires a temperature of about 208-
210 degrees Celcius, and the PID controller is used to keep
the target and actual temperature within a small error margin.

We ported Marlin to run as a multithreaded Linux ap-
plication. The loop function and the two interrupt handlers
are each converted to run as an individual thread. Proper
locking is applied to data shared among threads. GPIO and
I2C operations are performed via the mraa library from Intel’s
IoT Dev Kit, to replace AVR I/O instructions. Instead of
programming hardware timers directly, we rely on nanosleep
to perform timed operations. We also refactored the program
structure by moving the PID controller to the thread that runs
the original Timer2 interrupt handler, from the thread that runs
the original loop function. In the original Marlin firmware,
the PID control code is in the loop function, because its
execution takes a relatively long time and renders the system
unresponsive if invoked in an interrupt handler. The new
Marlin application-level code is optimized for the real-time
preemption patch by carefully setting its scheduling priority,
and locking all pages into memory [1].

2https://www.cs.bu.edu/∼richwest/smartprint3d.php

https://www.cs.bu.edu/~richwest/smartprint3d.php


Fig. 4: The Structure of Marlin
C. Observations

We carefully tuned the 3D printer and it successfully
printed out our test objects 3. This was done under the circum-
stances that the webserver was disabled during printing. We
then proceeded to enable the webserver and start submitting
G-code files while printing was active. We used a script to
automatically generate submission requests. The submission
intervals were random numbers uniformly selected from 100
to 10000 milliseconds. The file sizes were randomly selected
from a log-uniform distribution, ranging from 50 KB to 150
MB 4. Each file was then submitted to the printer via an HTTP
POST request. We were able to observe evident jitter of the
extruder relative to the bed. Backlash noise from the stepper
motor gearing and belt drive was evident for an active job
when a file larger than 15 MB was being transferred.

TABLE I: Case Descriptions

Case # Description
Case 1 Webserver/Spooler Disabled. No Job Submitted.
Case 2 Webserver/Spooler Enabled. Jobs Submitted from the Script.

In order to quantify our observations, we created two
micro-benchmarks to examine the interference by the web-
server and spooler on: (1) the timely execution of the tem-
perature control thread, and (2) the stepper motor control
thread. In the first experiment, we logged the temperature
readings from the thermistor under the two cases in Table I.
The sample period was set to 1 second. The extruder was
heated to 209 degrees Celcius, and kept at that value during
printing. Results are plotted in Figure 5. It can be seen that,
despite the continuous reception of submitted files, the PID
controller maintained the temperature close to the setpoint in
both cases. The 8 ms period of the temperature control thread
is large enough to hide delay variations caused by Linux.

In the second experiment, we measured the frequency
of the pulse train that drives the stepper motors. However,
when a 3D printer is printing, the pulse train changes its
frequency in different G-code commands and phases in the
speed ramp. It is hard to tell if an observed frequency change is
actually caused by interference. Therefore, we wrote a micro-
benchmark program to drive a stepper motor at a constant
speed. Listing 1 shows our benchmark code. Variable period

3A 3mm cube, fan shroud, Ultimaker robot, and the object in Figure 15.
4It is realistic to have a G-code file exceeding 100 MB, if the object to

print is relatively large, requires thin layers and dense infill.
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Fig. 5: Temperature Readings

was set to 100 microseconds, to generate a 10kHz pulse. Using
Equation 1, this yields an expected linear speed of 125 mm/s.
When the webserver is disabled, an oscilloscope showed a
pulse wave of variable frequency, ranging from 7.75 to 8.02
kHz, shown in Figure 10. After we started the script to submit
jobs, the frequency showed more fluctuation, even dropping to
as low as 6.42 kHz.

Listing 1: Loop to Measure Frequency
struct timespec period =

{.tv_sec = 0, .tv_nsec = 100000};
for (;;) {
nanosleep(&period, NULL);
/* write 1 to gpio6 */
mraa_gpio_write(GPIO6, HIGH);
/* write 0 to gpio6 */
mraa_gpio_write(GPIO6, LOW);

}

D. Operating System Control
The second experiment reveals two problems we faced

when generating a precise pulse train on the Linux platform.
First, the frequency range is too low to drive the motors at
their expected speed. Second, the stepper motor control thread
is subject to interference from other tasks, causing jerks in the
stepper motor’s rotation, due to backlash. In this section, we
take a look into the causes of these two problems.

We reran the benchmark shown in Listing 1 with the times-
tamp counter recorded at various stages within the program
and the kernel, to determine the root cause of these costs.
Results are shown in Table II. All times are averaged over
1,000 samples, and shown in nanoseconds (ns). The average
time of one iteration is 126,422 ns, resulting in a 7.91 kHz
pulse train. Except for the times spent sleeping, and setting the
GPIO value register, the others are operating system overheads,
which fall into four categories:
• nanosleep Kernel Crossing – from user space to kernel and

back, which accounts for ∼0.5% of the execution time.
• The hrtimer Subsystem – for high-resolution kernel timers.
The nanosleep call uses the hrtimer subsystem to access
the highest precision hardware timing mechanism, either
local APIC timers or the high precision event timer (HPET).
• Context Switch Overhead – to put a task to sleep, run the

scheduler, and wake up the next task.



Fig. 6: Call Graph for Listing 1

• The GPIO Framework – which interfaces GPIO pins with
user-space programs using sysfs. This includes the general
GPIO framework (gpiolib) and the actual GPIO controller
driver for the Minnow MAX (the BayTrail GPIO driver).
This accounts for roughly 12.5% of the execution time.

TABLE II: Kernel Overheads (in nanoseconds)

Costs Percentage
nanosleep Kernel Crossing 587 0.5%

Timer Framework 2420 1.9%
In sleep 100000 79.1%

Context Switch 7744 6.1%
sysfs Framework 10592 8.4%

gpiolib Framework 1038 0.8%
GPIO Controller Driver 4146 3.3%

Total 126422 100%

GPIO Framework Overhead. As shown in Table II, the
biggest overhead stems from GPIO operations. Intel develop-
ment boards, such as Galileo, Edison, MinnowMax and Up,
all have PCI-based GPIO controllers with memory-mapped
device registers. On top of the GPIO controller drivers, Yocto
Linux uses a uniform GPIO sysfs interface for userspace. The
sysfs interface provides a simple way to manually check the
status of an input pin or write values to output pins, from
the command line or a shell script. However, an autonomous
control program suffers from this convenience, by paying the
cost of going through convoluted kernel control paths before
reaching the actual GPIO driver to set the value register, as
shown in Figure 6. Instead, a simple userspace GPIO driver is
all that the control system really needs.

Context Switch Overhead. The nanosleep system call
is invoked whenever a Linux task wishes to relinquish the
processor and sleep for a precise period of time. This call sets
a high-resolution timer (hrtimer) to fire at some future point in
time, when the task will be woken up and allowed to run again
on the processor. As shown in Figure 6, nanosleep programs
the Local APIC timer and calls into the kernel scheduler. In a
tickless kernel, the next LAPIC timer interrupt will check the
timer and call the scheduler to wake the task up. The cost of
going through the hrtimer subsystem, (re-)programming the
LAPIC timer, handling the timer interrupt and running the
scheduler adds up to more than 10 microseconds.

Timing Unpredictability. There is a trend in the operat-
ing system community to optimize away microsecond-level
latency, with a focus on minimizing the costs of network
and storage operations in datacenter applications [2]. However,
unlike disk and network interface controllers that use direct-
memory access (DMA) to transfer high-bandwidth (bulk) data,
GPIOs are used for latency- and jitter-sensitive control of
sensors and actuators. As explained earlier, a fluctuating pulse
train results in jerky stepper motor movements in 3D printer
control. This is exacerbated by the lack of temporal isolation

between Linux processes, and the interference from interrupts
on process execution.

E. Further Optimizations
We recognize that Linux can be further optimized for

latency-sensitive real-time applications, such as by using the
cset utility to isolate a CPU, making use of the SCHED -
DEADLINE scheduling class, or enabling CONFIG NO -
HZ FULL to disable timer interrupts on certain cores. How-
ever, all these techniques involve system utilities or kernel
settings without a uniform programming interface. Significant
kernel and real-time expertise is required to take advantage of
these features, and thus raises barriers to embedded application
development.

IV. IMPLEMENTATION ON QDUINOMC
Rather than focusing on the optimization of Linux to meet

the timing requirements of a web-connected 3D printer, we
decided to investigate a programming approach applicable
to a wide variety of time-critical applications on emerging
SBCs. We started with our earlier work on Qduino [3], a
programming interface and runtime environment and extended
it to QduinoMC. QduinoMC provides additional support for
multicore architectures. In this section, we first describe the
real-time task model that characterizes a web-connected 3D
printer. We then briefly summarize the key features of Qduino,
followed by a detailed description of the extensions made in
QduinoMC. Finally, we describe the implementation of the 3D
printer on this new platform.

A. Task Model and Scheduling
Tasks are scheduled using Rate-Monotonic Scheduling

(RMS) [4], and admission control involves both RMS uti-
lization bound and completion time tests [5]. The Sporadic
Server [6] model is used for main tasks and Priority Inheritance
Bandwidth preserving Servers (PIBS) [7] for threaded bottom
halves. Bottom halves are the deferrable (i.e., schedulable)
parts of interrupt handling.

Variable Period Task. We model the web-connected 3D
printer control program as a set of n real-time tasks T =
{τ1, τ2, ..., τn}. Each task τ is characterized by its worst-
case execution time (WCET) Ci and period Ti. For periodic
tasks, the Ci and Ti are fixed during execution. However, the
pulse-generating task changes its period according to current
step number and the pre-calculated speed ramp, as illustrated
in Figure 2. Given a speed ramp, the period of the pulse-
generating task follows the pattern below.

Suppose the stepper motor is in the acceleration phase, with
angular acceleration ω̇ based on a changing velocity ω. The
pulse-generating task generates the nth pulse at time tn. The



angular displacement θn, relative to θ0, at time tn is:

θn =
1

2
ω̇tn

2 = nφ (4)

where φ is the angular displacement of each step, and θ0 is
assumed to be 0. tn is then expressed as:

tn =

√
2nφ

ω̇
(5)

It follows that the period, Tn, between the nth pulse and (n+
1)th pulse is:

Tn = tn+1 − tn =

√
2φ

ω̇
(
√
n+ 1−

√
n) (6)

A Taylor series 2nd order approximation on Equation 6 gives:

Tn = Tn−1(1− 2

4n+ 1
) (7)

Equation 7 confirms that the period decreases in the accelera-
tion phase. Conversely, it is easy to see that the period increases
in the deceleration phase. Therefore, the sum of each task’s
utilization reaches its peak when the printer’s linear motion
system is running at its maximum speed. Thus, for a given
configuration of a 3D printer, we apply a schedulability test
on the control software using each task τi’s parameters, Ci
and Ti, assuming a maximum print speed. For example, the
default maximum speed on the X axis is set to 125 mm/s
in the Marlin firmware. Using Equation 1, and parameters
given in Section II-B, the period of the pulse-generating task
is calculated to be 100 microseconds.

I/O-Intensive Task. The webserver and spooler interact
with underlying disk and network interface controllers that
use direct-memory access (DMA) to transfer high-bandwidth
(bulk) data. During a high volume of job submissions, the
rate of interrupts has the potential to interfere with the timely
execution of tasks that perform latency- and jitter-sensitive I/O
operations for sensor and actuator control.

To temporally isolate interrupts from other main tasks,
we execute interrupt bottom halves in a deferrable thread
context, and the cycles for interrupt handling are charged to
the bottom half thread’s budget. This way, the handling of an
interrupt does not steal CPU cycles from a currently running,
potentially time-critical task. Instead of using the Sporadic
Server model for both main tasks and bottom half threads, an
I/O event is serviced by a PIBS. As with a Sporadic Server,
PIBS uses replenishments but instead of a list there is only
a single replenishment. If a Sporadic Server were used, it
would need to maintain a replenishment list, to keep track
of when in time each part of its budget was available. This
is essential for correct timing behavior. However, short-lived
ISRs lead to significant fragmentation of replenishment list
budgets, requiring frequent reprogramming of timers (e.g.,
LAPIC x86 one-shot timers) to denote when budget fragments
for a VCPU become available. A PIBS also differs from a
Sporadic Server in that it will not execute again until the next
replenishment time, regardless of whether it has utilized its
entire budget or not.

It is shown in [8], by using PIBS for interrupt bottom half
threads, the scheduling overheads are reduced due to reduced
context switching and timer reprogramming. While a system of

Sporadic Servers and PIBS has a slightly lower schedulability
than a system of only Sporadic Servers from a theoretical point
of view, in practice an implementation of both scheduling
policies results in a system of Sporadic Servers and PIBS
outperforming a system of only Sporadic Servers.

B. Qduino
Qduino is a predictable, multithreaded Arduino system

built on the Quest real-time operating system. Quest operates
on 32-bit x86 architectures and has support for kernel threads
including threaded interrupt handlers, POSIX threads, and a
network protocol stack based on lightweight IP (lwIP) [9].

Quest features a two-level scheduling hierarchy, with
threads mapped to virtual CPUs (VCPUs) and VCPUs mapped
to physical CPUs (PCPUs). In effect, VCPUs are resource con-
tainers [10] for threads that are assigned to them. They account
for budget usage in specific windows of real-time. Each VCPU
is specified a processor capacity reserve [11] consisting of a
budget capacity, C, and period, T . A VCPU is required to
receive at least C units of execution time every T time units
when it is runnable, as long as a schedulability test is passed
when creating new VCPUs. All VCPUs assigned to the same
core are scheduled using Rate-Monotonic Scheduling (RMS),
where the VCPU with the smallest period has the highest
priority. An admission controller runs RMS utilization bound
and completion time tests on each core. Quest’s scheduling
subsystem provides temporal isolation between tasks and I/O
events using two different classes of VCPUs: (1) Main VCPUs
for conventional tasks, and (2) I/O VCPUs for interrupt bottom
halves. Main VCPUs are implemented as Sporadic Servers
and I/O VCPUs implement a PIBS scheme. Quest enables
I/O VCPUs to be bound to Main VCPUs for the purposes of
handling I/O requests from specific devices, or device classes,
such as a network, USB, or GPIO class.

Qduino builds on top of Quest and provides users with an
extended Arduino API which, while backward-compatible with
the original API, supports real-time multithreaded sketches and
event handling. While only one loop() function is allowed
in the standard Arduino API, Qduino allows up to 32 loops,
which is translated by the C preprocessor to a thread creation
call, with the loop function being the thread routine. Thus, each
loop is viewed as a schedulable entity by the underlying Quest
scheduler. When one loop blocks on I/O, it yields execution
to another loop instead of leaving the CPU idle. By default,
each thread associated with a loop creates a new Main VCPU
and binds itself to it, before repeatedly performing the loop()
function. The budget and period of the VCPU are determined
by the second and third loop arguments, whose time units
default to milliseconds but are configurable in microseconds
or clock cycles. A program written in Qduino should have
separate loops for tasks with different timing requirements, if
the temporal isolation between them is necessary.

Qduino supports inter-loop communication using semi-
asynchronous ring buffers and Simpson’s four-slot fully-
asynchronous communication channels [12], [13]. Ring buffers
allow lossless exchange of data through shared memory be-
tween producers and consumers. Communication imposes no
delays on the sender or receiver, except when the buffer is
full or empty. For completely asynchronous communication,
four-slot channels are possible. These guarantee the freshness
and coherence of data exchanges, ensuring the most recently



written data object is always available to the reader, without
being partially updated by interleaved reads and writes. This
is particularly important in sensor-data processing, where a
consumer cares more for the most recent (freshest) sensor
reading than a full history of values.

C. Web-connected 3D Printer on Qduino
To support our custom 3D printer controller, we ported

Qduino to the MinnowMax board, which required updating the
ACPI driver to correctly parse tables in a newer version of the
ACPI firmware. We modified the existing PCI device manager
to recognize and handle the nonstandard PCI configuration
space of the GPIO controller. We implemented the drivers
for the on-board GPIO, I2C and NIC controller. We ported
the multithreaded Marlin on Linux to a Qduino multi-loop
sketch, with each thread being a loop. Interrupts from I2C
and NIC are handled in respective I/O VCPUs. The stepper
motor data queue is implemented using the semi-asynchronous
ring buffers, and status variables shared between loops are
exchanged using four-slot channels. A simple webserver and a
spooler were implemented as Quest native processes, running
as background tasks to the main printer control code.

A practical question to ask is how to decide the appropriate
budget and period for a loop. For control applications, a loop
period should be set to the sampling interval for an I/O signal.
The budget should be sufficient to complete all computational
requirements within one loop iteration. In some cases, this
may require offline profiling, to determine how long it takes
the instructions within a loop to execute. In hard real-time
systems, worst-case execution time analysis is necessary. For
less time-critical situations, a user is able to define loop timing
constraints more loosely.

We switched the time units of all VCPU parameters to
microseconds, from their default millisecond values. The tem-
perature control loop period was set to 8 milliseconds, and the
stepper motor control loop period was set to 100 microsec-
onds, as derived in Section IV-A. We profiled the worst-case
execution time of both loops, using a 1 millisecond budget (C)
for the temperature loop and a 10 microseconds budget for
the stepper loop. The G-code reading and translation loop was
less time-critical but more CPU-intensive. Consequently, we
set the budget and period for this loop to 30 milliseconds, and
100 milliseconds, respectively. The webserver and the spooler
operated as non-real-time tasks, and were assigned to a default
VCPU with C = 10 ms and T = 100 ms. All other low-
priority system tasks used this default VCPU. The I/O VCPUs
for I2C and network controller interrupts were both set to 1
ms budget and 100 ms period.

After careful tuning, the printer successfully printed out
the three test objects. Again, we proceeded to do the two
quantitative experiments described in Section III-C. Under
both cases in Table I, the temperature control loop effectively
maintained the extruder temperature around 209 degrees. In
Case 1, the stepper motor control loop generated a relatively
stable pulse train at 9.009 kHz (Figure 11), only occasionally
dropping down to 8.975 kHz. However, in Case 2, when
jobs were submitted using the script in III-C, the frequency
started fluctuating, dropping to as low as 8.236 kHz. While the
pulse train on Qduino has higher and more stable frequency
than Linux, it still reveals one problem that Qduino has with
handling tasks of strict timing requirements: the processing of

TABLE III: New APIs added in QduinoMC

Function Signatures Category
loop(loopID, budget, period Structure

[,coreID])
interruptsVcpu(device, budget,

Interruptperiod [,coreID]),
noInterrupts(device, coreID),
noTimer(coreID), reTimer(coreID)
delayBusyMicroseconds(ms), Time
delayBusyNanoseconds(ns)

top half (non-deferrable part of interrupts) and the following
invocation of the scheduler impose non-negligible overheads
when the system experiences a high volume of interrupts.
The overheads affects the timely execution of latency-sensitive
tasks running on the same core.

D. QduinoMC: Leveraging Hardware Parallellism
In Qduino, the CPU affinity and interrupt routing is man-

aged by the underlying kernel. This leads to possible problems
when two or more time-critical loops share the same core that
handles frequent interupts, while a non-real-time task occupies
another core with only occasional hardware interrupts. This
motivated us to develop QduinoMC, an extension to Qduino.
QduinoMC provides easy-to-use APIs that allow developers
to better specify application-level timing requirements on
multicore architectures.

Fig. 7: QduinoMC Architecture Overview

In QduinoMC, the loop function allows the specification
of multiple time-budgeted loops within the same program,
which can be restricted to specific cores. The Interrupts
API category is extended to support I/O bandwidth control
as well as interrupt routing. Combining these two APIs, it
is easy to provide a core with strict isolation. We further
added two new time functions, delayBusyNanoseconds() and
delayBusyMicroseconds(). These read the time stamp counter
and wait until the specified time instance is passed. They are
intended to be used for time-driven event loops. Within a
task loop, GPIOs are manipulated via digital and analog I/O
functions. On MinnowMax, the GPIO controller is a PCI-based
device with memory-mapped registers. We wrote a user-mode
GPIO driver by mapping the registers to a memory region
with user-level access rights. QduinoMC’s GPIO functions are



wrappers around the user-mode driver functions. This way, the
kernel crossing overheads are significantly reduced for loops
that perform intensive GPIO operations. Newly added APIs
are listed in Table III.

Loop Pinning. QduinoMC provides extensions to the
loop() and interruptsVcpu() APIs, to pin a loop and a bottom
half interrupt handler, respectively, on specific cores. Loops
with different CPU utilizations may be load balanced across
cores to guarantee their collective timing requirements. Inter-
rupts are then delivered only to those cores that require them.

Additionally, loops with high-precision timing require-
ments can be assigned to dedicated cores, to avoid scheduling
and context-switching overheads between separate threads.
SBCs such as the Intel Up board have four cores, with the
likelihood that this will increase further on future SBCs. It is
therefore not impractical to dedicate a core to high-precision,
time-critical tasks such as those operating at the nano- and
micro-second resolution.

Interrupts. As stated earlier, Quest is capable of schedul-
ing interrupt handlers as time-budgeted threads, to avoid in-
terference with other tasks. Each threaded interrupt handler
is bound to an I/O VCPU dedicated to that I/O device. The
I/O VCPU budget prevents a high volume of interrupts being
handled indefinitely, at the cost of other tasks. We exploit this
feature by providing APIs for tuning the budget and period of
I/O VCPUs so that a system designer can balance CPU time
between CPU- and I/O-intensive tasks. The interruptsVcpu()
function takes an I/O device type as the first parameter.
Currently, QduinoMC supports GPIO, I2C and SPI, although
we are considering additional support for UARTs and NICs.
The second and third parameters specify the budget and period,
respectively, of the I/O VCPU dedicated to that device.

QduinoMC also allows I/O device interrupts to be routed
to a specified core. interruptsVcpu() accepts an optional fourth
parameter to specify which core is associated with the threaded
interrupt handler. To further isolate a core, hardware interrupts
of a specified I/O device can be disabled on a specified core,
by calling noInterrupts(). It internally modifies the I/O APIC
registers to mask a core from the delivery destination of the
interrupt line of the specified device.

noTimer() is used to disable the local APIC timer interrupts
on a specified core. This is useful when a real-time task does
not want to be interrupted, to allow another task on the same
core to execute. As a consequence, all scheduling and context-
switching overheads are eliminated. Interrupts from the local
APIC timer are reactivated by a call to reTimer().

In summary, we have developed QduinoMC to address
problems that neither Qduino nor Linux-based embedded sys-
tems has completely solved. Pros of QduinoMC include:
• Simple programming interface – The QduinoMC API is

based on the Arduino API, which is a popular programming
model for physical computing. It provides a uniform and
intuitive way to interact with I/O devices involving sensors
and actuators, with the underlying OS being transparent to
users.
• Timing guarantees – QduinoMC is designed for embedded

applications comprising multiple tasks with different timing
requirements on multicore platforms. QduinoMC supports
the specification of real-time loops, as well as latency-
sensitive I/O interrupt handling.

E. Marlin on QduinoMC

Fig. 8: Marlin on QduinoMC

We refactored the Qduino version of Marlin to take ad-
vantage of new features in QduinoMC. The new Marlin code
maintained the three loops, shown in Figure 8. Apart from
Marlin, a webserver and a spooler ran natively on the Quest
OS, sharing the default Main VCPU. Therefore, four Main
VCPUs existed in total in the system.

The second loop for the stepper motors had the most critical
timing requirement. The other tasks associated with different
VCPUs had weaker real-time requirements. Thus, we assigned
Loop 2 to a dedicated core on which all unnecessary interrupts
were disabled. By calling noTimer(1) in the setup phase, the
timer interrupt was disabled on Core 1 so that Loop 2 was
free from the interruption of the scheduler. Interrupts were
generated by the I2C controller as part of communication
with the ADC, which recorded readings from a thermistor to
monitor extruder temperature. A call to noInterrupts(ALL, 1)
was used to suppress all interrupts, including I2C and NIC
interrupts, on Core 1. The threaded bottom half of the I2C and
NIC interrupt handler, running on respective I/O VCPUs, were
automatically pinned to Core 0 by calling noInterrupts(ALL,
1). Outside of the Marlin sketch, the webserver and the spooler
ran on the default Main VCPU, which was pinned to Core 0.
After these setup stages, Core 1 was able to run Loop 2 in
isolation of all other loops and interrupt events.

V. EVALUATION

This section evaluates the implementation of the web-
connected 3D printer on the QduinoMC platform, in terms
of its overheads, predictability and usability. Comparison tests
involve an unmodified off-the-shelf Printrbot 3D printer, with
a Printrboard controller based on an Atmel AT90USB1286,
operating at 16 MHz. The Printrboard runs Marlin as firmware,
lacking the capabilities of an operating system with web
connectivity. Thus, experiments on the Printrbot are conducted
without remote job submissions. Additional comparisons are
shown for Linux (Section III-C) and Qduino (Section IV-B)
running on our custom MinnowMax controller.

Temperature Control. We measured the temperature dur-
ing printing under the two cases shown in Table I. The results
are plotted against those of the Printrboard. As shown in



Figure 9, the execution of the PID controller in QduinoMC
Marlin does not suffer interference by the webserver or the
spooler. The PID controller maintains the temperature close to
the setpoint, as effectively as the Printrboard.
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Fig. 9: Temperature Control

The 10 kHz Pulse Train. We also performed the 10 kHz
pulse train experiment on QduinoMC. The benchmark sketch
is shown in Listing 2. Due to the hard real-time nature of
this single loop sketch, we pinned the loop to Core 1 and
disabled all interrupts on that core in the setup phase. The C
and T parameters were both set to 100, to indicate the task’s
dedication to the whole core. Oscilloscope readings yielded a
pulse train with a stable frequency of 9.569 kHz (Figure 12).
We then enabled the webserver and spooler in the default Main
VCPU, that is pinned to Core 0 by default. After we started
the script described in Section III-C to submit jobs, the pulse
frequency stayed at 9.569 kHz.

Listing 2: The 10 kHz Pulse Train Sketch
int GPIO6 = 6;
void setup() {
pinMode(GPIO6, OUTPUT);
noInterrupts(ALL, 1);

}
void loop(1, 100, 100, 1) {
delayBusyNanoseconds(100000);
digitalWrite(GPIO6, 1);
digitalWrite(GPIO6, 0);

}

The Printrboard has four hardware timers, which are pro-
grammable with a maximum frequency as fast as the system
clock. We modified the Marlin firmware to set the Timer1
prescaler to 8, resulting in a 2 MHz timer. We then put Timer1
in the Clear Timer on Compare (CTC) mode and programmed
the Output Compare Register to 200. Under this setting, the
timer incremented the counter by 1 every 500 nanoseconds.
When the counter reached 200, it fired an interrupt. The
interrupt handler did nothing but generate a pulse on the
GPIO6 pin, and then reset Timer1. An oscilloscope showed
a stable pulse frequency of 9.96 kHz (Figure 13) on GPIO6,
which was very close to the theoretical 10 kHz5. However,
this was without any background tasks running, and served as
a reference for the performance of all other scenarios.

Experiments show that while the pulse frequency on
QduinoMC was slightly lower than the one on the Printboard,

5The Printrboard uses 5V logic levels.

it was more than 21% higher than the one on Yocto Linux,
and 6.2% higher than with Qduino. More importantly, the
pulse train on QduinoMC was more stable, especially when the
system load was high. While QduinoMC was able to maintain
a pulse frequency close to that of the Printrboard, it did so
while handling background web requests.

Example Test Object. We developed a 3D test object
to work as a wheel encoder for a mobile robot, as shown
in Figure 15. We compared the performance of QduinoMC
against Linux to print the object, while our job submission
script was actively communicating with the webserver. Given
the inability of Linux to maintain a high stepper pulse rate,
the whole print process ran at a slower speed to produce
a successfully printed object, as shown in Figure 16. The
Linux object was still not printed to the same quality as
with QduinoMC, and took more than one hour to complete.
With Linux, jitter and delays in stepper motor speeds for
both printer movement and extrusion caused jerky operation
and fine strands of unwanted filament being deposited. In
contrast, QduinoMC printed the object (Figure 17) in about
thirty minutes, which was similar to the Printrboard without
the ability to support web requests. QduinoMC is able to em-
power a 3D printer with additional services without impacting
manufacturing time, which is critical in a production system.

Platform Usability. One of the goals of QduinoMC is to
provide easy-to-use APIs for application development. The
pulse train generation sketch for QduinoMC in Listing 2
required only 10 lines, while the Yocto Linux code in Listing 1
needed 35 lines 6. We also observed a 10% source code
reduction in Marlin, with Linux Marlin having 3,674 lines
of code, and QduinoMC Marlin having 3,342. The minimal
system overheads incurred by QduinoMC compared to those
of the Printrboard firmware are compensated by its ability to
work in conjunction with a richer set of embedded application
services (e.g., web services). QduinoMC is a platform on
which to develop more sophisticated IoT applications.

VI. RELATED WORK

Contiki [14] is an operating system for embedded devices.
The Contiki programming model is based on protothreads [15]
that shares features of both multithreading and event-driven
programming. Applications are written in a subset of the C
programming language. RIOT OS [16] is another operating
system designed for embedded devices. It provides full mul-
tithreading and real-time abilities. RIOT allows application
programming in C and C++. Both Contiki and RIOT are aimed
at developing applications on resource-constrained wireless
networking devices. However, QduinoMC is a system designed
for physical computing on more powerful multicore platforms.
It provides a simpler application programming interface for
developing embedded applications that perform both CPU-
intensive and latency-sensitive tasks.

ERIKA Enterprise is an OSEK/VDX real-time kernel [17]
that supports time-sensitive applications on a wide range of
microcontrollers and multicore platforms. ERIKA supports
EDF scheduling of engine control applications [18]. Similar to
the web-connected 3D printer, engine control applications are
typically characterized by a set of periodic tasks and adaptive

6Scheduling priority settings, memory locking and error checking are not
shown in Listing 1.



variable-rate (AVR) tasks whose activation time is determined
by the current engine rotation speed. A detailed analysis of
scheduling AVR tasks is given in [19]. Apart from the OSEK-
compliant API, ARTE [20] is an Arduino extension built
upon ERIKA to support multitasking real-time applications.
While ARTE is designed for single-core hardware devices
(e.g., Arduino Uno and Arduino Due), QduinoMC exploits
multicore architectures to improve performance and temporal
isolation amongst tasks with hard real-time requirements.

To the best of the authors’ knowledge, there is no published
work on building intelligent 3D printers. However, Replicape
is an open source add-on board for BeagleBone and Bea-
gleBone Black, to enable 3D-printing. It hosts a standard
Linux distribution (Ångström/Debian) for running the G-code
daemon, while real-time stepper timings are handled by the
two on-chip Programmable Real-time Units (PRU) present
on BeagleBone. It also supports a web interface for reading
and writing configuration files. However, PRUs have to be
programmed in a special assembly language. Our 3D printer
does not require any special hardware to guarantee the real-
time stepper timings, and the firmware is written using simple
QduinoMC APIs. In addition, our web interface is not only
used for configuration files but also for G-code transmission
so that users can request 3D printing services remotely.

VII. CONCLUSION AND FUTURE WORK

This paper presents QduinoMC, a platform to ease the
process of developing applications with critical timing re-
quirements on emerging multicore SBCs. We also describe
a case study based on the development of a web-connected
3D printer, which has the ability to spool print requests via a
webserver without being tethered to a remote computer. We
analyze the real-time issues in a 3D printer, and compare the
performance of a prototype controller running Linux, Qduino,
and QduinoMC. Experiments show that stepper motor control
requires precise timing at the microsecond resolution and the
underlying scheduling and context switching overheads on
Linux and Qduino are prohibitive to accurate task timing at
this granularity. Even with the real-time preemption patch and
carefully tuned thread priorities, the Linux Marlin 3D printing
code was unable to maintain print speeds on par with either the
original Marlin firmware on the Printrboard, or Marlin running
on QduinoMC in the presence of web requests.

QduinoMC leverages multicore architectures and extends
Qduino by enabling: (1) the assignment of loops to cores,
and (2) the mapping and masking of interrupts for specific
cores. With QduinoMC, we pinned the stepper control logic
on a separate core without interference from interrupts or
scheduling overheads. The printer built on QduinoMC displays
lower overheads and better predictability.

Future work will extend QduinoMC with security features
based on our Quest-V separation kernel. This way, untrusted
users will be able to communicate and exchange data with
secure IoT devices, without compromising the timing and
integrity of safety- and timing-critical operations.
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VIII. APPENDIX
A. The 10 kHz Pulse Train Experiment

Fig. 10: Target 10kHz Pulse on Yocto Linux (Actually 7.591kHz) Fig. 11: Target 10kHz Pulse on Qduino (Actually 9.009kHz)

Fig. 12: Target 10kHz Pulse on QduinoMC (Actually 9.569kHz) Fig. 13: 10kHz Pulse on the Printrboard (without a webserver)

B. Prototype 3D Printer Controller

Fig. 14: MinnowMax-based Controller for the Printrbot

C. Example 3D Object

Fig. 15: 3D Image STL File for Test Object



D. Printed Test Objects

Fig. 16: Linux (More than twice the print time of QduinoMC) Fig. 17: QduinoMC (Faster and better quality than Linux)

E. MinnowMax-based 3D Printer Controller

Fig. 18: 3D Printer Controller Circuit Diagram
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