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Abstract. This paper extends our original work on window-constrained
scheduling, to address the problem of meeting end-to-end service guar-
antees across a sequence of servers. We describe an algorithm, called
Multi-hop Virtual Deadline Scheduling (MVDS), that attempts to min-
imize end-to-end window-constraint violations, while maximizing link
utilization for a series of real-time streams. The challenge posed by the
multi-hop problem is how to derive a local scheduling and dropping
scheme from global service requirements, so that each server along a
path can cooperate to guarantee end-to-end service. Similar to our VDS
algorithm developed for a single server, MVDS orders packets at the
heads of streams according to their local virtual deadlines. Using various
packet dropping schemes at each server, based on current workloads and
likelihoods of meeting end-to-end service constraints, we evaluate the
performance of MVDS. Simulation results show that MVDS can provide
better window-constrained service guarantees than other related algo-
rithms, while still maintaining high link utilization.

1 Introduction

In the past few years, streaming multimedia applications have become popular
among Internet users. Applications such as Windows Media Player and RealNet-
works RealPlayer are commonly used to play back audio and video broadcasts
on desktop PCs. End-system buffering is typically used to eliminate playback
jitter as a result of network delays. However, this will not be the solution for
next-generation distributed applications, involving the delivery of many thou-
sands of live, and potentially high-bandwidth data streams. For example, ap-
plications such as live webcasts, interactive distance learning, tele-medicine and
multi-way video conferencing may require the real-time capture of data, that
must be transferred across a network in keeping with multiple end-user QoS re-
quirements. Similarly, data aggregation applications (e.g., used in surveillance or
traffic management) are now being developed on large-scale networks of sensors
to capture and deliver QoS-constrained data to specific hosts, wireless devices
and actuators [1].
Appropriate service disciplines are needed at various points along a network

path, to meet the end-to-end requirements of real-time data streams. Moreover,



the packets in such streams need to be scheduled by specific deadlines at each
hop (e.g., a router, or end-host in an overlay network) to satisfy end-to-end
service constraints. While many researchers have focused on end-to-end delay
guarantees of all packets in a real-time stream [2, 3], there are many applications
that only require timely and predictably service to a fraction of packets. Many
multimedia applications can tolerate some packets being discarded or serviced
late, as long as the consecutive number of such packets is limited. For example, a
streaming video application might experience an acceptable reduction in signal-
to-noise ratio rather than picture breakup, if bursts of late or lost packets are
bounded.
To deal with the above classes of applications, we have developed several

window-constrained scheduling algorithms [4–7], that provide weakly-hard [8, 9]
service guarantees. Both our DWCS (Dynamic Window-Constrained Scheduling)
and VDS (Virtual Deadline Scheduling) algorithms attempt to guarantee at least
m out of a fixed window of k deadlines are met, for packets in real-time streams 1.
DWCS is capable of achieving 100% link utilization, while guaranteeing a feasible
schedule for each stream, when all streams have the same request period (i.e.,
packet inter-arrival time). However, when streams have different request periods,
DWCS may not generate a feasible schedule even when the link utilization is
fairly low. For this reason, we developed VDS to meet window-constraints on
streams with different packet inter-arrival times, or request periods.
Currently, we have only analyzed the performance of DWCS and VDS on sin-

gle servers. However, most real-time traffic needs to cross multiple hops from the
sender to the receiver and, therefore, end-to-end guarantees are required. The
focus of this paper is on the multi-hop window-constrained scheduling problem:
to ensure service constraints hold for all real-time streams across an ordered
sequence of servers. Consequently, we extend our original window-constrained
scheduling model to encompass end-to-end requirements. We use VDS as the
basis for our multi-hop scheduling algorithm, as VDS has been shown to outper-
form DWCS on a single server for many scenarios.

Contributions: The paper describes an extension to VDS, called Multi-hop
Virtual Deadline Scheduling (MVDS), that attempts to minimize end-to-end
window-constraint violations of real-time streams while maximizing link uti-
lization. Per-stream QoS requirements are specified across an entire path from
source to destination, but scheduling decisions are made locally at each hop (or
intermediate server). Without loss of generality, we assume there is no global
control mechanism and no feedback signal from downstream hops to upstream
hops in our model. The challenge is how to perform local scheduling decisions
to meet global window-constraint service guarantees.
In MVDS, each server schedules a packet at the head of a stream according

to its local virtual deadline. Each local virtual deadline is derived from a corre-
sponding real-time deadline and window-constraint. By transforming end-to-end

1 DWCS and VDS have both been applied to servicing periodic real-time threads, as
well as packets in real-time streams.



deadlines and window-constraints into local (per server) values, real-time guar-
antees can be met across entire paths of servers. To show the effectiveness of our
approach, we evaluate the MVDS algorithm using the NS simulator [10].
The rest of the paper is organized as follows: in the next section, we define

the end-to-end window-constrained scheduling problem. The MVDS algorithm
and several different schemes for dealing with late packets are then discussed in
Section 3. In Section 4, we evaluate the performance of MVDS using alternative
packet dropping and prioritization schemes. This is followed by a description of
related work in Section 5. Finally, conclusions and future work are described in
Section 6.

2 End-to-end Window-Constrained Scheduling Problem

Earliest deadline first scheduling (EDF) is capable of meeting all deadlines, when
it is theoretically possible to do so on a single server. However, when a server is
overloaded, it is impossible for any schedule to meet every deadline. If all dead-
lines cannot be met, window-constrained scheduling can still meet a minimum of
mi out of ki deadlines for stream Si, as long as no more than 100% of resources
are required. In prior work, we have derived the conditions under which it is pos-
sible to make window-constrained service guarantees on a single server. In con-
trast, this paper focuses on the multi-hop window-constrained scheduling prob-
lem. Formally, we characterize a stream Si by a six-tuple (pi, Ti,Di, Li,mi, ki),
where pi is the packet size, Ti is the period (or packet inter-arrival time at the
first hop),Di is the end-to-end delay bound, Li is the number of hops (or servers)
along an end-to-end path, and (mi, ki) is the window-constraint.
We assume every packet in Si is the same size, pi. For a stream with different

size packets, we can use the maximum size as pi. The maximum transmission
delay (or service time) of a packet in stream Si at each hop can be determined
by the ratio of the (maximum) packet size, pi, and the bandwidth of the link,
B. We denote this transmission delay as Ci.
Each and every stream, Si, is assumed to have periodic packet arrivals at the

first hop, with the inter-arrival time, or request period, set to Ti. Packets can be
made to arrive at fixed intervals at the first server using a periodic arrival process
or a traffic shaper, such as leaky bucket. Hence, if tsi,j denotes the arrival time
of jth packet of stream Si at the first server, then the arrival time of the j+1th
packet is tsi,j+1 = tsi,j + Ti. However, the inter-arrival time of packets in Si at
other servers may be larger or smaller than Ti, due in part to scheduling effects.
The total end-to-end delay of a packet is the sum of the queuing delays,

transmission delays and propagation delays along all Li hops. For simplicity,
we assume propagation delays are negligible. Similarly, we assume transmission
delays are a constant, based on some fixed packet size and link bandwidth. The
queuing delay of packets at each hop is dependent on the scheduling policy,
and is considered the most important factor for determining end-to-end delay
guarantees in this paper. Moreover, the end-to-end deadline of the jth packet



of Si is tsi,j + Di. In practice, Di ≤ LiTi is typically true, but this is not a
necessary requirement.
The window-constraint on Si requires at least mi out of every ki consec-

utive packets to meet their end-to-end deadlines. That is, in every window of
(ki − 1)Ti + Di time, at least mi packets arrive at the receiver (or final hop)
within their delay bound Di. When fewer than mi out of a window of ki pack-
ets meet their corresponding end-to-end deadlines, Si is said to have violated
its window-constraint. Here, the assumption is that each window of ki packets
is non-overlapping with respect to previous or successive windows in a given
stream. This is different from the sliding window model used by [11]. In [4], we
have shown that non-overlapping (or fixed) windows can be converted to sliding
windows, and vice-versa. For example, for any fixed window-constraint, (mi, ki),
the corresponding sliding window-constraint is (mi, 2ki −mi).
Given the above definitions, the end-to-end problem requires service guar-

antees on window-constrained streams, as they propagate sequentially from one
server to the next. In this regard, we assume there is no global scheduling con-
trol and no feedback information from downstream servers. In summary, the
problem is how to generate a schedule at each hop, that minimizes the num-
ber of window-constraint violations for all streams. Since any single hop cannot
guarantee end-to-end service, all hops needs to coordinate their scheduling and
dropping decisions. This is the motivation behind the extension to our earlier
work on window-constrained scheduling.

3 Multi-hop Virtual Deadline Scheduling

To solve the end-to-end window-constrained scheduling problem, we propose an
algorithm called Multi-hop Virtual Deadline Scheduling (MVDS). Since MVDS
is based on our virtual deadline scheduler (VDS) for a single server, we begin by
giving a brief overview of VDS.

3.1 Overview of VDS

In the window-constrained scheduling problem, each stream has two service re-
quirements: a deadline and a window-constraint. VDS derives a ”virtual dead-
line” from both requirements for each stream, and the stream with the earliest
such deadline has the highest priority. In VDS, we assume every periodic real-
time stream is serviced by a single server, and the request period of each stream
is also its relative deadline, as defined in Rate Monotonic Scheduling [12]. One
can think of a stream’s request period as the interval between when its head
packet is ready for service and when it must complete transmission. Likewise,
a request period can be thought of as the inter-arrival time between successive
packets in a given stream. We can now define a stream’s virtual deadline with
respect to real-time, t, as shown in Equation 1. The start time of the current
request period for stream Si at time t is tsi(t). In effect, this can be consid-
ered the arrival time of the latest packet is Si. Similarly, (m′

i, k
′
i) is the current



window-constraint of the stream Si.

V di(t) =
k′iTi

m′
i

+ tsi(t), m′
i > 0 (1)

Let us first outline the intuition behind a stream’s virtual deadline. If, at
time t, the current window-constraint of stream Si is (m′

i, k
′
i), then mi − m′

i

out of ki − k′i packets have been serviced in the current window. There are still
m′

i packets that need to be transmitted, from the k′i packets yet to arrive. It
also follows that the remaining time in the current window is k′iTi. If in every
interval k′

iTi

m′
i
there is one packet transmitted from Si, then m′

i packets can be
serviced in the current remaining window-time, k′iTi. A side-effect of this is that
Si is assured proportional fairness guarantees with respect to other window-
constrained streams. Additionally, delay jitter is minimized, by preventing at
least mi instances of Si being serviced in a single burst at the end of a given
real-time window.
Initially, the current window-constraint, (m′

i, k
′
i), of each stream Si is set to

its original window-constraint (mi, ki). It gets updated according to the service
that each stream initially requested and has currently received. Figure 1 shows
the precise rules that dictate how the current window-constraint of each stream
Si is updated.

if a packet from stream Si gets service before its deadline,
m′

i = m′
i − 1;

if a new packet arrives from stream Si

k′
i = k′

i − 1 ;
if (k′

i == 0) {
if (m′

i > 0) set tag as violation;
k′

i = ki; m′
i = mi;

}

Fig. 1. Window-constraint Updates

As stated above, when a packet in Si is serviced before its deadline, m′
i is

decreased by 1, because fewer packets need to be serviced in current window.
Thus, the priority of stream Si is decreased and this consequently increases
its virtual deadline. When a new packet arrives, k′i is decreased by 1 because
fewer packets will arrive in the current window. Under the assumption that
packets arrive periodically for a given stream, there is a new packet arrival
from Si every request period Ti. Therefore, k′i is updated every Ti, and the
current remaining window time k′iTi becomes shorter. The priority of stream Si

is implicitly increased as a result of its virtual deadline being reduced. When k′i



reaches 0, it indicates the end of the current window. At this point, if m′ is still
larger than 0, a violation is set because there are less than mi packets serviced
before deadlines in the current window. Then the current window-constraint
(m′

i, k
′
i) is reset to its original value, (mi, ki).

Whenever a stream’s current window-constraint is updated, its corresponding
virtual deadline is recalculated. At each scheduling point, the packet with the
earliest virtual deadline at the head of a stream, that is eligible for service, is
chosen for transmission. However, not all streams are eligible at any time. To
minimize the violation of all streams, a stream is precluded from a scheduling
decision under the following two cases: 1) in each request period only one packet
can be serviced, and a packet is dropped if it misses its deadline; 2) when mi

reached 0, then at leastmi packets in Si have been serviced before their deadlines
in the current window – in this case, Si is given lower priority than any stream yet
to meet its window-constraint. Only if all streams have achieved their minimum
level of service can they again be considered in their current windows.
Figure 2 shows an example of how the current window-constraints and virtual

deadlines are updated.
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Fig. 2. Example of Virtual Deadline Calculation

In [7], we have shown by analysis and experiment that VDS can perform as
well as our earlier DWCS algorithm, when the request periods of all streams are
the same. Significantly, VDS can outperform DWCS when per-stream request
periods are different. The reason is that deadlines and window-constraints are
considered with equal importance in determining the scheduling priority. VDS
combines these two parameters into a single metric, a virtual deadline, while
DWCS uses them separately and orderly. Recent incarnations of DWCS order
packets first in terms of their deadlines and, if there are ties, window-constraints



are then considered. Hence, a packet with a long deadline in a stream with an
urgent window-constraint requirement may be delayed longer than desired. Simi-
larly, in the DBP algorithm [11], the scheduling priority is decided by the distance
from a failing state, which is derived from the current window-constraint. As a
consequence, DBP also suffers from similar problems to DWCS. In fact, we have
shown in prior work that DWCS can perform at least as well as DBP [4], so we
expect VDS to outperform DBP.

3.2 MVDS: Multi-hop Virtual Deadline Scheduling

For the single server scheduling problem, it is straight-forward to check whether
a packet meets its deadline, and update the stream’s current window-constraint.
However, in the multi-hop case, any single server cannot determine whether end-
to-end service guarantees will be satisfied. The challenge is how to derive a local
scheduling and dropping scheme from the global service requirements, so that
each server along a path can cooperate to guarantee end-to-end service. To solve
the multi-hop window-constrained scheduling problem, we need to answer the
following questions:
• How to transform end-to-end deadlines into local values for use at each hop?
• How to update current window-constraints and determine local scheduling
states at each hop?

• How to strategically drop packets in order to minimize window-constraint
violations, while maintaining high link utilization? In other words, how much
queueing delay at each hop can be tolerated?

Local deadlines: In a multi-hop network, each stream may travel a different
number of hops, and each hop may have different service demands. We should
not use end-to-end deadlines alone to determine local scheduling priorities and
state updates at each hop. Rather, local deadlines should be used by each server
to generate a feasible end-to-end schedule.
A key property of multi-hop networks is that packet schedulers at down-

stream nodes (or servers) have an opportunity to compensate for excessive la-
tencies due to congestion at upstream nodes. Similarly, downstream nodes may
reduce the priority of packets receiving preferential service at prior, upstream
nodes. To exploit such inter-node coordination, we adopt the same idea to deter-
mine local packet deadlines as in Coordinated Multi-hop Scheduling (CMS) [3].
The local deadline, dh

i,j , of the jth packet in Si at the hth hop is defined as
follows:

dh
i,j =

{
tsi,j + δ1i,j , h = 1
dh−1

i,j + δh
i,j , 1 < h ≤ Li.

(2)

Here, tsi,j is the arrival time of the jth packet in Si at the first hop. One
can think of tsi,j as the timestamp of the packet. Also, δh

i,j is the relative delay
bound at hop h. It is a non-negative function of i, h, pi and Di, and should
satisfy

∑Li

h=1 δ
h
i,j ≤ Di. Hence, if a packet can meet its local deadline at each



hop along the path, it must be able to meet its end-to-end deadline. In this
equation, we can see the local deadline of each packet is not dependent on its
arrival time at the current hop, but rather its local deadline at the previous hop.
This means a server can compensate for variations in service at previous hops,
and adjust the priority of each packet accordingly. One can think of a packet’s
previous local deadline as its logical arrival time at the current hop.
There are several different approaches to derive δh

i,j . For simplicity, we use a
constant value at each hop, such that δh

i,j =
Di

Li
| ∀h in our simulations described

in Section 4. In general, other values for δh
i,j can be used. MVDS uses this local

deadline at each server to update the corresponding window-constraint, and
calculate virtual deadlines.

Local current window-constraints: The end-to-end (m, k) window-constraint
requires at least mi packets meet the (end-to-end) deadlines in every non-
overlapping window of ki consecutive packets, for each stream Si. The current
window-constraint should be updated according to the service it requires and has
so far received in the current window. In the single-server case, VDS updates k′i
when a new packet arrives, and updates m′

i when a packet meets its deadline.
However, in a multi-hop network, the traffic pattern may be affected in upstream
servers. The original window of ki consecutive packets at the first hop may not
be maintained in the the following hops due to packet drops along a given path.
Figure 3(a) shows the distortion to the original window of packets. To meet
the end-to-end window-constraint for a stream, we should group the original
ki consecutive packets in the same window at each hop. Therefore, instead of
updating window-constraints according to the locally arriving traffic, each hop
should infer the original traffic at the first hop, and update window-constraints
accordingly.
Without loss of generality, we assume the packets in each stream arrive at

the first hop periodically, and are transmitted via a sequence of servers. We also
assume that the sequence number and timestamp are recorded in the packet
header, e.g. in an RTP header field. Hence, according to the sequence number
or timestamp of an arriving packet, we can infer how many packets have been
dropped in the previous hops, and how many packets have arrived in the current
window. This means we can keep track of original windows of packets at each hop,
and update local window-constraints accordingly. For example, if the sequence
number of the head packet of Si at hop h is j, then kh′

i is simply ki - (j mod ki).
It should be noted that a packet serviced by its local deadline at all hops along

a path must be able to meet its end-to-end deadline. Therefore, we update mh′
i

whenever a packet meets its local deadline. In effect, each server should attempt
to meetmi local deadlines in every window of the original ki consecutive packets.
However, even if a packet misses its local deadline at some hop, it may still be
able to meet its end-to-end deadline at the receiver. We should not simply drop
the packet if it only misses its local deadline. Rather we can derive a scheme for
dropping packets at each server according to factors such as workload and the
delay they have currently experienced. Before we describe the local drop scheme,



Figure 3(b) shows how to maintain the correct window for distorted traffic at
each hop.
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Fig. 3. Effects of Packet Dropping on Window-constraints at Successive Hops

Local drop scheme: When a packet misses its local deadline at some hop, it
may make up for its tardiness at a downstream hop, so as to meet its end-to-end
deadline. If we simply discard a packet, it may cause unnecessarily window-
constraint violations and decrease link utilization. However, if we don’t drop it,
it may affect the service of other packets and/or potentially miss its end-to-end
deadline. Especially in the overload case, when it is impossible to serve every
packet in each stream, we must drop some packets. We assume that if a packet
misses its end-to-end deadline, it is unnecessary to send it to its final destination.
Therefore, whenever a packet misses its end-to-end deadline at any hop, it is
always discarded. The bandwidth consumed by this packet transmitted from
previous hops is nonetheless wasted. It follows that a useful service at hop, h,
is one which contributes to a packet meeting its end-to-end service requirement.
In order to maximize the link utilization, we want to minimize wasteful services
and, consequently, the number of packets that are dropped. At the same time as
maximizing resource usage, we still need to guarantee window-constraints where
possible.

For those packets missing their local deadlines but not their end-to-end dead-
lines, we propose a probabilistic drop scheme. Each packet is dropped according
to a certain probability, derived from a function of a server’s minimum utilization
and a packet’s current delay. The minimum utilization at hop h is the minimum
service that hop h must provide to all streams passing through it, in order to



satisfy their window-constraints. It is defined as:

Uh
min =

∑
∀i∈S(h)

miCi

kiTi
, | S(h) = {i | Si passes through hop h} (3)

S(h) is the set of all streams traveling through hop h. In order to meet the
window-constraints, at most 1 − Umin wasted utilization can be tolerated for
all streams. In general, for lower values of Umin, a packet has less probability
of being dropped, even if it misses its local deadline. When Umin approaches
1.0, fewer packets can be serviced late because they impact service guarantees
on other packets meeting their deadlines. Consequently, the drop probability, p,
is a function of Umin, such that p ∝ 1

1−Umin
when Umin < 1.0. For values of

Umin equal to 1.0, we cannot tolerate servicing any late packets in order to meet
end-to-end window-constraints. Observe that for values of Umin larger than 1.0,
it is impossible to generate a feasible window-constrained schedule.
To be fairer, we also consider the latency experienced by each packet when

deciding its drop probability. The latency factor of the jth packet of stream i at
hop h, at time t, is defined as:

lathi,j(t) =
t− dh

i,j

Di,j − dh
i,j

(4)

Di,j = tsi,j +Di

dh
i,j and Di,j are the local deadline at hop h, and the end-to-end deadline,

respectively. The more latency a packet has experienced, the less chance it has
of meeting its end-to-end deadline, and therefore it is more likely to be dropped.
To take in account both server utilization, Umin and packet delay, lathij(t),

the drop probability at time t, of packet j from stream i at hop h is defined in
Equation 5.

ph
ij(t) =



min(1, α( 1

1−Umin
− (1− lathij(t)))), Umin < 1

1, Umin = 1
lathij(t) Umin > 1.

(5)

α is a reference parameter for the function, such that 0<α≤1.0. We use a
value of 0.1 for α in our simulations described later. In the previous equation,
we can see that in the under-load case, the drop probability mainly depends on
the utilization, but in the over-load case it depends more on packet latency.

MVDS (Multi-hop Virtual Deadline): According to the above discussion,
MVDS derives virtual deadlines for head packets in each stream, and uses them
to decide scheduling order at each hop. Based on the VDS algorithm, the local
virtual deadline of the jth packet at the head of each stream is calculated using
Equation 6. The packet with the earliest local virtual deadline has the highest
priority.

V dh
i,j(t) =

kh′
i δ

h
i,j

mh′
i

+ tsh
i,j (mh′

i > 0) (6)



In the above equation, tsh
i,j is latest time of arrival of the jth packet at

hop h given that it meets its local deadline, dh−1
i,j , at the previous hop. If sev-

eral streams’ local virtual deadlines are equal, then we use local deadlines and
remaining path lengths to break the ties. Some properties of MVDS can be
summarized as following, the proofs are omitted due to space limitations..
• A necessary (but not sufficient) condition for MVDS to provide window-
constraint service guarantees to Si is: Uh

min =
∑

∀i∈S(h)
miCi

kiTi
≤ 1 (∀h ∈

P (Si)). P (Si) is the set of hops in the path of stream Si.
• Assuming Di ≤ LiTi, the maximum buffer size for each stream Si at any
hop in MVDS is [1, 
Di

Ti
�] packets. If packets are dropped only when they

miss their local deadlines, the maximum buffer size for each stream is 1
packet. Similarly, if packets are dropped only when they miss their end-to-
end deadlines, the maximum buffer size for each stream is 
Di

Ti
� packets.

• If Si meets its end-to-end window-constraint, the maximum jitter (or delay
variation) experienced by Si at any hop h, is 2((ki −mi)Ti +Di − Ci).

• The complexity of the MVDS algorithm is O(n) per hop in the worst case,
where n is the number of streams requiring service.

4 Experimental Evaluation

This section evaluates the performance of MVDS using a series of ns-2 simula-
tions [10]. We consider a simple network topology as shown in Figure 4. All link
rates are 10Mbps and all propagation delays are ignored. We assume all packet
lengths are 1000 bytes. The main streams enter the network from the first node
N0 and exit the network from the last node, N6. All main streams share the
longest path comprising 6 hops. Additionally, window-constrained cross traffic
occurs at each link, and shares only one hop with the main stream before exit-
ing the network. We consider 12 scheduling classes for all streams. The first 6
classes of streams are main streams. Their original window-constraints expressed
as a fraction (m/k) are 3/5, 5/7, 7/9, 9/11, 11/13, and 13/15, respectively. Cor-
responding arrival rates are 333kbps, 200kbps, 143kbps, 110kbps, 90kbps and
77kbps. All 6 remaining classes of streams represent cross traffic at respective
hops along the main network path. Each cross traffic class has the same window-
constraints and arrival rates as the corresponding main traffic class. For example,
the first cross traffic class for stream s7 has original window-constraints and ar-
rival rates of 3/5 and 333kbps, respectively. We assume that each class has the
same number of streams. We vary the total flow number from 72 to 156 to gener-
ate different workloads for the network. In each load case, we run the simulation
up to 100 seconds.
To measure the effect of end-to-end deadlines on our algorithm, we consider

two scenarios in the simulation:
• Scenario 1: We set the end-to-end delay bound, Di, of each stream, Si, to
the value LiTi. Hence, with the above simulation settings, the end-to-end
delay bounds of the 6 main stream classes are 144ms, 240ms, 336ms, 432ms,
528ms, 624ms. Likewise, the 6 classes of cross traffic streams have delay
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bounds set to 24ms, 40ms, 56ms, 72ms, 88ms and 104ms respectively. We
will refer to this scenario as the “long deadline” case.

• Scenario 2: We set the end-to-end delay bound, Di, of each main stream, Si,
to the value Li

2 Ti, and the end-to-end delay bound, Dj , of each cross traffic
stream, Sj , to the values in Scenario 1. Hence, with the above simulation
settings, the end-to-end delay bounds of the 6 main stream classes are 72ms,
120ms, 168ms, 216ms, 264ms, 312ms. Likewise, the 6 classes of cross traffic
streams have delay bounds as before. We will refer to this scenario as the
“short deadline” case.

Performance Metrics: The traffic load in the network is represented by the
maximum Umin across all hops (i.e., max Umin = max{U1

min· · ·U6
min}, where

U1
min is the minimum utilization requirement at N0 etc). This represents the x-
axis in all figures below. For all experiments, we measure the average miss rate
and window-constraint violation rate per stream for different network loads. The
miss rate is calculated as the ratio of the number of packets missing their end-
to-end deadlines to the total number of packets sent from each stream’s source.
The window-constraint violation rate is calculated as the ratio of the number
of windows with end-to-end violations to the total number of non-overlapping
windows. In the following results, we show the performance across all streams,
and then just the main streams when cross traffic is discounted. Additionally,
we compare the performance of MVDS using different packet drop schemes, and
also the performance of MVDS against other scheduling algorithms for both
scenarios described above.

Performance of different drop schemes: Figures 5 and 6 show the per-
formance of MVDS with different drop schemes in both scenarios, respectively.
With the “no-drop” scheme, all packets in the network are serviced without
dropping. With the “drop-end” scheme, a packet is dropped at any hop if it
misses its end-to-end deadline. Similarly, with the “drop-local” scheme, a packet
is dropped at any hop if it misses its local deadline. Finally, the “drop-prob”
scheme causes a packet to be dropped according to its drop probability as de-
scribed in the previous section. With the exception of the “no-drop” scheme all
other schemes drop a packet if it has already missed its end-to-end deadline.
Hence, the deadline miss rate is the same as drop rate.
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Fig. 5. Performance of MVDS with different drop schemes in Scenario 1

From the results, we can see the “no-drop” scheme performs worst, since
the service of the previous packet will delay the service of all ensuing packets,
and cause more deadline misses and window-constraint violations. The “drop-
local” scheme yields a low violation rate in under-load situations, but may drop
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Fig. 6. Performance of MVDS with different drop schemes in Scenario 2

more unnecessary packets when loads are very small. Moreover, the “drop-local”
scheme favors cross traffic streams with shorter path lengths than those of the
main streams, because it drops packets very early. It can also cause more vio-
lations in the overload case. The “drop-end” approach produces low drop rates



when load is small but, overall, causes more violations than the “drop local”
approach. It favors main streams with the longer path lengths than those of
cross traffic. Overall, we can see the “drop-prob” approach achieves the smallest
violation rate, while keeping the miss rate low, in both under-load and over-load
cases. “Drop-local” and “drop-prob” both begin to have violations when the load
is about 1.0 in scenario 1, and when the load is about 0.9 in scenario 2. However,
the violation rate of “drop-prob” is as low as 0.6×10−4 when the load is approx-
imately 0.9, while the violation rate of the “drop-local” scheme is 2.3× 10−4. It
should be noted that with the “drop-prob” scheme, window-constraint violations
and packet drops are spread more evenly between cross traffic and main streams.
The performance in Scenario 2 is slightly worse than in Scenario 1, although all
drop schemes show the same relative performance.

Performance of different priority schemes: Figures 7 and 8 compare the
performance of MVDS against other scheduling policies, including MDWCS and
Coordinated EDF [3], respectively. Observe that MDWCS (a multi-hop version of
our DWCS scheduling algorithm [4]) behaves in a manner similar to that of DBP-
M [13]. Since we are mainly interested in the effects of packet ordering imposed by
these algorithms, in terms of end-to-end service guarantees, we assume they all
use the same packet dropping scheme. In all three algorithms, we use the “drop-
prob” scheme. Although this is slightly different than the dropping schemes
used in the original Coordinated EDF algorithm, and others such as DBP-M, it
actually improves their performance.

In the case of MDWCS, current (local) window-constraints are first used
to decide packet ordering. Any pair of packets having the same local window-
constraints are then ordered based on their local deadlines at the current hop.
This scheme is similar to DBP-M [13], a multi-hop scheduling approach that
is based on the DBP algorithm [11]. In DBP-M, the distance from a (window-
constraint) failing state is calculated according to state information concerning
the number of packets in a stream’s recent history that have met their local
deadlines. In prior work, we have shown that DWCS performs at least as good
as DBP for a single server [4]. Consequently, we expect MDWCS to perform at
least as well as DBP-M for a multi-hop network of servers.

In contrast to other algorithms, Coordinated EDF makes scheduling decisions
using only the local deadlines of packets at the heads of streams. Compared
to both CEDF and MDWCS, MVDS can achieve lower end-to-end window-
constraint violation rates. In scenario 1, CEDF, MDWCS and MVDS begin
to violate end-to-end service requirements when the network loads are about
0.7, 0.8 and 1.0, respectively. In Scenario 2, CEDF, MDWCS and MVDS begin
to violate service requirements when the network load is about 0.7, 0.6 and
0.9, respectively. In both scenarios, the violation rate of MVDS is much less
than MDWCS and CEDF. The reason is that MVDS combines the per-stream
window-constraints and deadlines together, to decide the schedule priority, while
other algorithms either only use one such service constraint (e.g., CEDF), or
consider them separately (e.g., MDWCS).
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Fig. 7. Comparisons of MVDS, MDWCS, and CEDF in Scenario 1

5 Related Work

The problem of scheduling real-time messages in packet-switched networks has
been studied extensively in recent years. Numerous algorithms have been pro-
posed. Some are priority-based such as Delay-Earliest Due Date (D-EDD), Jitter-
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Fig. 8. Comparisons of MVDS, MDWCS, and CEDF in Scenario 2

Earliest Due Date (J-EDD), Virtual Clock (VC), and Fair Queueing (FQ) [14].
Some are channel-based such as Hierarchical Round-Robin (HRR) [14], and
Budgeted-Weighted-Round-Robin (BWRR) [2]. However, none of these algo-
rithms make use of cooperation between individual servers to ensure end-to-end
guarantees. More precisely, downstream hops can compensate for excessive la-



tency or unfairness incurred at upstream hops. Alternatively, downstream hops
can reduce the priority of a packet which arrives ahead of schedule due to a lack
of congestion upstream.
Some scheduling policies do consider the effects of service at prior hops in a

communication path. These include Global Earliest-Deadline-First (G-EDF) [15],
Coordinated Earliest-Deadline-First (CEDF) [16], and Modified First-In-First-
Out [17]. In [3], they classified these schedulers and proposed a framework for
design and analysis of multi-hop scheduling, that exploits inter-hop coordina-
tion. While such approaches try to provide hard real-time service guarantees,
such that every packet meets its end-to-end delay bound, MVDS attempts to
provide weakly-hard service.
Weakly-hard [8, 9] and (m, k)-firm scheduling [11] are both similar to our

window-constrained scheduling schemes. Hamdaoui and Ramanathan [11] were
the first to introduce the notion of (m, k)-firm deadlines, in which statistical
service guarantees are applied to jobs. Their algorithm uses a “distance-based”
priority (DBP) scheme to increase the priority of a job in danger of missing
more than m deadlines over a sliding window of k requests for service. While
our window-constrained scheduling algorithms all operate on fixed windows, they
are nonetheless able to provide service guarantees over sliding windows as well.
Moreover, our algorithms such as VDS [7] and DWCS [4] are provably superior
to DBP in meeting (m, k) service requirements for a number of specific and
non-trivial situations.
Similar to (m, k)-firm scheduling is the work by Koren and Shasha on ‘skip

over’ scheduling [18]. Skip over scheduling allows certain job instances to be
skipped, but may unnecessarily miss servicing a job instance when there are
resources available. There are also examples of (m, k)-hard schedulers [19], but
most such approaches require off-line feasibility tests, to ensure predictable ser-
vice.
Finally, DBP-M is a multi-hop scheduling algorithm based on the Distance-

based Priority (DBP) algorithm [13]. It uses a very simple heuristic method to
decide per-server (local) deadlines, drop schemes and scheduling states. We have
compared DBP-M and MVDS through analysis and simulation and believe that
MVDS provides better service to window-constrained traffic with end-to-end
requirements.

6 Conclusions and Future Work

In this paper, we address the end-to-end window-constrained scheduling prob-
lem, in which at least m out of (every window of) k consecutive packets should
meet their end-to-end deadlines. Leveraging our prior work on virtual deadline
scheduling (VDS) for a single server, we describe the multi-hop VDS algorithm
(MVDS). By exploiting the cooperation between individual servers, we show how
to transform global service constraints of real-time streams into localized values
for use at each hop.



MVDS schedules head packets from different streams according to their
deadlines and window-constraints local to the current server. Simulation results
suggest that MVDS can outperform other methods which separately consider
window-constraints and deadlines when prioritizing packets. Likewise, packet
dropping schemes play an important role in determining the ability of a window-
constrained scheduler to meet end-to-end guarantees. The probabilistic dropping
scheme described in this paper outperforms alternative approaches, in its at-
tempt to minimize service violation rates while maximizing link utilization.
MVDS is an heuristic algorithm providing (m, k)-firm end-to-end guaran-

tees. Future work involves characterizing the probability that MVDS guarantees
service to real-time streams. While MVDS requires O(n) scheduling costs with
respect to n streams, we are also interested in analyzing the performance of lower
complexity algorithms where scale is a significant issue. Notwithstanding, MVDS
will be used as part of our ongoing work to build an Internet-wide distributed
system for processing and delivering real-time data streams to potentially many
thousands of end-users. In this system, we envision the use of off-the-shelf PCs
to form an overlay network for transporting information. MVDS will play an
important role in the timely delivery of data between end-systems, even though
we do not have total control of Internet traffic.
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