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Abstract
This paper presents the design of user-level scheduling

hierarchies in the Composite component-based system. The
motivation for this is centered around the design of a system
that is both dependable and predictable, and which is con-
figurable to the needs of specific applications. Untrusted
application developers can safely develop services and poli-
cies, that are isolated in protection domains outside the ker-
nel. To ensure predictability, Composite needs to enforce
timing control over user-space services. Moreover, it must
provide a means by which asynchronous events, such as in-
terrupts, are handled in a timely manner without jeopar-
dizing the system. Towards this end, we describe the fea-
tures of Composite that allow user-defined scheduling poli-
cies to be composed for the purposes of combined inter-
rupt and task management. A significant challenge arises
from the need to synchronize access to shared data struc-
tures (e.g., scheduling queues), without allowing untrusted
code to disable interrupts or use atomic instructions that
lock the memory bus. Additionally, efficient upcall mech-
anisms are needed to deliver asynchronous event notifica-
tions in accordance with policy-specific priorities, without
undue recourse to schedulers. We show how these issues are
addressed in Composite, by comparing several hierarchies
of scheduling polices, to manage both tasks and the inter-
rupts on which they depend. Studies show how it is possible
to implement guaranteed differentiated services as part of
the handling of I/O requests from a network device while
avoiding livelock. Microbenchmarks indicate that the costs
of implementing and invoking user-level schedulers in Com-
posite are on par with, or less than, those in other systems,
with thread switches more than twice as fast as in Linux.
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National Science Foundation.

1 Introduction

As software complexity increases, it becomes increas-
ingly more difficult to verify that system and application-
level code will behave correctly under various operating
conditions. Likewise, the need for fault isolation to be a
central focus of system design is becoming increasingly im-
portant. Safety critical systems require both dependability
and predictability, with emphasis placed on timely execu-
tion and fault tolerance. To limit the scope of impact of
potentially faulty or misbehaving software on the overall
system, it makes sense to encapsulate logical units of func-
tionality in separate components mapped to their own pro-
tection domains. Likewise, untrusted software, or software
developed by third-parties, needs to be isolated from the
trusted kernel protection domain. Component-based sys-
tems [7, 22] and micro-kernels [16, 1] provide solutions to
the separation of services and applications. Extensibility is
integral to these system designs, in that application-specific
services can be added to a system, and mapped to their own
logical protection domains, thereby bridging the “semantic
gap” between application needs and existing service provi-
sions. The challenge, however, is to ensure the interaction
between such services remains predictable and efficient.

This paper focuses on the design of predictable and ef-
ficient user-level services in our Composite component-
based system. In particular, we show how a hierarchy of
component-based schedulers can be supported with our sys-
tem design. By isolating such services in user-space, we
avoid potentially adverse interactions with the trusted ker-
nel protection domain, that could otherwise render the sys-
tem inoperable, or could lead to unpredictability. We show
how a series of schedulers can be composed to manage both
the handling of interrupts as well as conventional threads of
execution. Specifically, in situations where threads make
I/O requests on devices that ultimately respond with inter-
rupts, we ensure that interrupt handlers are scheduled in ac-



cordance with the urgency and importance of the threads
that led to their occurrence. In essence, there is adepen-
dencybetween interrupt and thread scheduling that is not
adequately solved by many existing operating systems [34],
but which is addressed in our component-based system.

While micro-kernels offer a means by which new ser-
vices can be deployed at user-level, inter-process commu-
nication (IPC) is still mediated by the trusted kernel. Such
IPC mechanisms require thread switching, often involving
scheduling decisions. In early micro-kernel designs, IPC
costs were deemed prohibitive, but more recent systems
have addressed such costs, often by using hardware-specific
features [16]. In Composite, communication between com-
ponents is carried out by thread migration [10] to avoid
scheduling costs during IPC. A thread executing in one
component may communicate with, and continue execution
in, another component. This design also avoids complica-
tions concerning thread synchronization on IPC [29, 26].

User-level schedulers introduce design challenges due
to the need to make scheduling decisions both predictably
and efficiently. Synchronization around scheduler data-
structures is complicated by the fact that interrupts are not
allowed to be disabled. Preventing interrupts from being
disabled is required for Composite to be predictable. Simi-
larly, for efficiency, it is undesirable to issue kernel requests
to access synchronization objects such as semaphores, es-
pecially if the cost of kernel-user transitions is high. Worse
still, kernel-provided synchronization mechanisms such as
semaphores may yield deadlock or livelock situations on
access to user-level scheduling structures. As an exam-
ple, supposeτ1 is preempted while holding a semaphore,
S, for a scheduling queue. An upcall thread,τ2 (e.g., for
a timer interrupt), tries to accessS and cannot proceed.
At this point, the kernel needs to know which thread to
schedule and upcalls into the user-level scheduler inτ2’s
context, with yet another attempt to acquireS. Thus, nei-
ther τ1 nor τ2 are able to make effective progress. Other
problems include the use of atomic instructions which can
lock the memory bus, causing undue latencies. We address
these practical issues in Composite using an optimistic syn-
chronization mechanism, based on “restartable atomic se-
quences” [6] and inspired by futexes [12]. During typi-
cal execution, synchronization is ensured without relying
on atomic instructions or kernel invocations. This utilityis
used both for inter-thread synchronization in schedulers and
for synchronization between threads and a non-preemptive
kernel, and does not require a kernel-resident scheduler.

Another significant challenge is the predictable schedul-
ing and accounting of asynchronous events, such as inter-
rupts. One of the goals of Composite is to associate in-
terrupts with their own threads of execution, for the pur-
poses of scheduling. However, we wish to avoid invoca-
tions of user-level schedulers every time an asynchronous

event occurs, as this would be too expensive. Consequently,
Composite provides a mechanism by which asynchronous
threads can be executed in accordance with their scheduling
constraints without direct invocation of user-level sched-
ulers.

In Composite, when an interrupt occurs it is initially
trapped by the base kernel. From there, anupcall is made
into a user-space component to handle the interrupt. Asso-
ciated with each such upcall is abrand, that identifies user-
level scheduler information for the interrupts. Additionally,
brands record the sequence of components that are to be ex-
ecuted by the upcall in response to an asynchronous event.

In the following sections we elaborate on the design
details within Composite, focusing on the design of hier-
archical component services for predictable and efficient
scheduling and interrupt management. Section 2 describes
in further detail some of the design challenges of Compos-
ite, including the implementation of hierarchical schedulers.
This is followed by an experimental evaluation in Section 3.
Related work is discussed in Section 4 while a summary of
conclusions and future work are presented in Section 5.

2 Composite Component-based Scheduling
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Figure 1. An example component graph.

In Composite, a system is constructed from a collection
of user-level components that define the system’s policies.
These components communicate via thread migration and
compose to form a graph as depicted in Figure 1. Edges im-
ply possible invocations. Here we show a simplified com-
ponent graph with two tasks, a networking component, a
fixed priority round-robin scheduler, and a deferrable server.
As threads make component invocations, the system tracks
their progress by maintaining aninvocation stack, as shown
in Figure 2. In this example, the downward control flow of a
thread proceeds throughA, B, C andD. Each of these in-
vocations is reflected in its execution stack. On return from
D andC, the thread pops components off of its execution
stack, and invokesE. Its invocation stack after this action is
shown with the dotted lines.

One of the goals of Composite is to provide a base sys-
tem that is configurable for the needs of individual applica-
tions. However, for performance isolation, it is necessary
that global policies maintain system-wide service guaran-
tees across all applications. Consequently, we employ a hi-
erarchical scheduling scheme [24] whereby a series of suc-
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Figure 2. Thread execution through compo-
nents.

cessive schedulers are composed in a manner that maintains
control by more trusted schedulers, while still allowing pol-
icy specialization for individual applications. In addition
to traditional notions of hierarchical scheduling, we require
that parent schedulers do not trust their children, and are
isolated from their effects. In this way, the affects of faulty
or malicious schedulers are restricted to their subtree in
the scheduling hierarchy. By comparison, scheduler activa-
tions [3] are based on the premise that user-level schedulers
interact with a more trusted kernel scheduler in a manner
that cannot subvert the kernel scheduler. Composite adopts
a mechanism that generalizes this notion to a full hierarchy
of schedulers that all exist at user-level.

Composite exports a system call API for controlling the
scheduler hierarchy. This enables the construction of a re-
cursive structure of schedulers whereby more trusted (par-
ent) schedulersgrantscheduling privileges to their children.
Likewise, schedulers have the ability torevoke, transitively,
all such scheduling permissions from their children. To
bootstrap the system, one scheduler is chosen to be the root
scheduler. Creating new child schedulers is done with feed-
back from abstract application requirements [14], or via ap-
plication specified policies.

COS SCHED PROMOTE SCHED promote component to be a child scheduler

COS SCHED DEMOTE SCHED remove child subtree’s schedulers privileges

COS SCHED GRANT THD grant scheduling privileges to child scheduler

for a specific thread

COS SCHED REVOKE THD revoke scheduling privileges to a child

scheduler’s subtree for a specific thread

COS SCHED SHARED REGION specify a region to share with the kernel

COS SCHED THD EVT specify an event index in the shared region to

associate with a thread

Table 1. cos sched cntl options.

A component that has been promoted to scheduler status
has access to thecos sched cntl(operation,
thd id, other) system call. Hereoperation is
simply a flag, the meaning of which is detailed in Table 1,
and other is either a component id, or a location in
memory, depending on the operation. In a hierarchy of
scheduling components only the root scheduler is allowed
to create threads. This restriction prevents arbitrary sched-
ulers from circumventing the root scheduler for allocating
kernel thread structures. Thus, it is possible for the root
scheduler to implement thread creation policies (e.g.
quotas) for specific subsystems or applications. Threads
are both created and passed up to other components

via the thd id cos thd cntl (component id,
flags, arg1, arg2) system call. To create a new
thread, the root scheduler makes a system call with the
COS THD CREATE flag. If a non-root scheduler attempts
to create a new thread using this system call an error is
returned. Threads all begin execution at a specific upcall
function address added by a Composite library into the
appropriate component. Such an invocation is passed
three arguments: the reason for the upcall (in this case,
because of thread creation) and the user-defined arguments
arg1 andarg2. These are used, for example, to emulate
pthread create by representing a function pointer and
the argument to that function.

In Composite, each kernel thread structure in-
cludes an array of pointers to corresponding sched-
ulers. These are the schedulers that have been
granted scheduling privileges over a thread via
cos sched cntl(COS SCHED GRANT THD,...).
The array of pointers within a thread structure is copied
when a new thread is created, and is modified by the
cos sched cntl system call. Certain kernel operations
must traverse these structures and must do so with bounded
latency. To maintain a constant overhead for these traver-
sals, the depth of the scheduling hierarchy in Composite is
limited at system compile time.

2.1 Implementing Component Schedulers

Unlike previous systems that provide user-level schedul-
ing [11, 4, 30], the operation of blocking in Composite is
not built into the underlying kernel. This means that sched-
ulers are able to provide customizable blocking semantics.
Thus, it is possible for a scheduler to allow arbitrary block-
ing operations to time-out after waiting for a resource if, for
example, a deadline is in jeopardy. In turn, user-level com-
ponents may incorporate protocols to combat priority inver-
sion (e.g., priority inheritance or ceiling protocols [27]).

Not only do schedulers define the blocking behavior, but
also the policies to determine the relative importance of
given threads over time. Given that schedulers are respon-
sible for thread blocking and prioritization, the interesting
question is what primitives does the kernel need to pro-
vide to allow the schedulers to have the greatest freedom
in policy definition? In Composite, a single system call
is provided,cos switch thread(thd id, flags)
that permits schedulers with sufficient permissions to dis-
patch a specific thread. This operation saves the current
thread’s registers into the corresponding kernel thread struc-
ture, and restores those of the thread referenced bythd id.
If the next thread was previously preempted, the current
protection domain (i.e. page-table information) is switched
to that of the component in which the thread is resident.

In Composite, each scheduling component in a hierarchy



can be assigned a different degree of trust and, hence, dif-
ferent capabilities. This is related to scheduler activations,
whereby the kernel scheduler is trusted by other services
to provide blocking and waking functionality, and the user-
level schedulers are notified of such events, but are not al-
lowed the opportunity to control those blocked threads until
they return into the less trusted domain. This designation
of duties is imperative in sheltering more trusted schedulers
from the potential ill-behavior of less trusted schedulers, in-
creasing the reliability of the system. An example of why
this is necessary follows: suppose a network device driver
component requests the root scheduler to block a thread for
a small amount of time, until the thread can begin transmis-
sion on a TDMA arbitrated channel. If a less trusted sched-
uler could then restart that thread before this period elapsed,
it could cause detrimental contention on the channel. The
delegation of blocking control to more trusted schedulers in
the system must be supported when a hierarchy of sched-
ulers is in operation. To allow more trusted schedulers to
make resource contention decisions (such as blocking and
waking) without being affected by less trusted schedulers,
a flag is provided for thecos switch thread system
call, COS STATE SCHED EXCL, which implies that only
the current scheduler and its parents are permitted to wake
the thread that is being suspended.

2.2 Brands and Upcalls

Composite provides a notification mechanism to invoke
components in response to asynchronous events. For exam-
ple, components may be invoked in response to interrupts
or events similar to signals in UNIX systems. In many sys-
tems, asynchronous events are handled in the context of the
thread that is running at the time of the event occurrence. In
such cases, care must be taken to ensure the asynchronous
execution path is reentrant, or that it does not attempt to
block on access to a lock that is currently being held by
the interrupted thread. For this reason, asynchronous event
notifications in Composite are handled in their own thread
contexts, rather than on the stack of the thread that is active
at the time of the event. Such threads have their own pri-
orities so they may be scheduled in a uniform manner with
other threads in the system. Additionally, a mechanism is
needed to guide event notification through multiple com-
ponents. For example, if a thread reads from a UDP socket,
and an interrupt spawns an event notification, it may be nec-
essary to traverse separate components that encompass both
IP and UDP protocols.

Given these constraints, we introduce two concepts:
brandsandupcalls. A brand is a kernel structure that rep-
resents (1) a context, for the purposes of scheduling and
accounting, and (2) an ordered sequence of components
that are to be traversed during asynchronous event han-

dling. Such brands have corresponding priorities that re-
flect the urgency and/or importance of handling a given
event notification. An upcall is the active entity, or thread
associated with a brand that actually executes the event
notification. Brands and upcalls are created using the
cos brand cntl system call. In the current implementa-
tion, only the root scheduler is allowed to make this system
call as it involves creating threads. The system call takes
a number of options to create a brand in a specific compo-
nent, and to add upcalls to a brand. Scheduling permissions
for brands and upcalls can be passed to child schedulers in
the hierarchy in exactly the same fashion as with normal
threads. An upcall associated with a given brand is invoked
by thecos brand upcall(brand id, flags) sys-
tem call, in a component in which that brand has been cre-
ated.

Figure 3 depicts branding and upcall execution. A thread
traversing a specific path of components,A, B, C, D,
requests that a brand be created for invocation fromC: TB

= cos brand cntl(COS BRAND CREATE BRAND,
C). Thus, a brand is created that records
the path already taken through componentsA
and B. An upcall is added to this brand with
cos brand cntl(COS BRAND CREATE UPCALL,
TB). When the upcall is executed, componentB is
invoked, as depicted with the coarsely dotted line. This
example illustrates a subsequent component invocation
from B to E, as depicted by the finely dotted line.
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Figure 3. Branding and upcall execution.
When an upcall begins execution in a component, it in-

vokes the generic upcall function added to the component
via the Composite library. If an event occurs that requires
the execution of an upcall for the same brand as an active
upcall, there are two options. First, if there is an inactiveup-
call associated with a brand, then the inactive upcall can be
executed immediately to process the event. The precise de-
cision whether the upcall is immediately executed depends
on the scheduling policy. Second, if all upcalls associated
with a brand are active, then a brand’s pending count of
events is incremented. When an upcall completes execution
and finds that its brand has a positive event count, the count
is decremented and the upcall is re-instantiated.

Brands and upcalls in Composite satisfy the require-
ments for asynchronous event notification, but an impor-
tant aspect is how to efficiently and predictably schedule
their corresponding threads. When the execution of an up-
call is attempted, a scheduling decision is required between
the currently running thread and the upcall. The scheduler



that makes this decision is theclosest commonscheduler
in the hierarchy of both the upcall and the currently exe-
cuting thread. Additionally, when an upcall has completed
execution, assuming its brand has no pending notifications,
we must again make a scheduling decision. This time the
threads that are candidates for subsequent execution in-
clude: (1) the thread that was previously executing when
the upcall occurred, (2) any threads that have been woken up
by the upcall’s execution, and (3) any additional upcalls that
occurred in the meantime (possibly due to interrupts), that
were not immediately executed. At the time of this schedul-
ing decision, one option is to upcall into the root scheduler,
notifying it that the event completed. It is then possible
for other schedulers in the hierarchy to be invoked. Unfor-
tunately, invoking schedulers adds overhead to the upcall,
and increases the response time for event notification. We,
therefore, propose a novel technique in which the sched-
ulers interact with the kernel to provide hints, usingevent
structures, about how to perform subsequent scheduling de-
cisions without requiring their invocation during upcall ex-
ecution. This technique requires each scheduler in the sys-
tem to share a private region with the kernel. This region is
established by passing theCOS SCHED SHARED REGION
flag to thecos sched cntl system call detailed in Ta-
ble 1.

Corresponding threads under the control of a given
scheduler are then associated with an event structure using
theCOS SCHED THD EVT flag. Each of these event struc-
tures has anurgencyfield, used for priority-based schedul-
ing. Depending on the policy of a given scheduler, urgen-
cies can be dynamic (to reflect changing time criticality of
a thread, as in the case of a deadline) or static (to reflect
different degrees of importance). Numerically lower values
for the urgency field represent higher priorities relative to
other threads. Within the event structure, there is also a flag
section to notify schedulers about the execution status of the
thread associated with the event. This is relevant for inac-
tive upcalls, as they are not currently schedulable. The last
field of the event structure is an index pointer used to main-
tain a linked list of pending events that have not yet been
recorded by the scheduler.

Event structures are placed in a corresponding shared
memory region, accessible from the kernel regardless of
which protection domain is currently active. Thus, when
an upcall is performed, the event structures for the closest
common scheduler in the hierarchy to the currently running
thread and the upcall thread are efficiently located, and the
urgency values in these structures are compared. If the up-
call’s brand has a lower numeric urgency field than the cur-
rent thread, the upcall is immediately executed. The sce-
nario is more complicated for the case when the upcall is
completed. In this case, the kernel checks to see if a sched-
uler with permissions to schedule the previously executing

thread has changed its preference for which thread to run.
If this happens it will be reflected via the shared memory
region between the scheduler and the kernel. Changes to
the scheduling order might be due to the fact that the up-
call invoked a scheduler to wake up a previously blocked
thread. Additionally the kernel considers if another upcall
was made while the current upcall was executing, but is
deferred execution. If either of these conditions are true,
then an upcall is made into the root scheduler allowing it to
make a precise scheduling decision. However, the system
is designed around the premise that neither of these cases
occur frequently, and most often needs only to switch im-
mediately back to the previous thread. This is typically the
case with short running upcalls. However, if the upcalls
execute for a more significant amount of time and the root
scheduler is invoked, the consequent scheduling overhead
is amortized.

Given these mechanisms which allow user-level compo-
nent schedulers to communicate with the kernel, Compos-
ite supports low asynchronous event response times while
still maintaining the configurability of scheduling policies
at user-level.

2.3 Thread Accountability

Previous research has addressed the problem of accu-
rately accounting for interrupt execution costs and identi-
fying the corresponding thread or process associated with
such interrupts [9, 34]. This is an important factor in real-
time and embedded systems, where the execution time of
interrupts needs to be factored into task execution times.
Composite provides accurate accounting of the costs of
asynchronous event notifications and charges them, accord-
ingly, to corresponding threads.

As stated earlier, brands and upcalls enable efficient
asynchronous notifications to be used by the system to de-
liver events, e.g. interrupts, without the overhead of ex-
plicit invocation of user-level schedulers. However, because
thread switches can happen without direct scheduler exe-
cution, it is more difficult for the schedulers themselves to
track total execution time of upcalls. If the problem were
not correctly addressed, then the execution of upcalls might
be charged to whatever thread was running when the up-
call was initiated. We, therefore, expand the event struc-
ture within the shared kernel/scheduler region to include a
counter, measuring progress of that event structure’s asso-
ciated thread. In our prototype implementation on the x86
architecture, we use the time-stamp counter (TSC) to mea-
sure the amount of time each thread spends executing by
taking a reading whenever threads are switched. The previ-
ous reading is subtracted from the current value, to produce
the elapsed execution time of the thread being switched out.
This value is added to the progress counter in that thread’s



event structure for each of its schedulers. On architectures
without efficient access to a cycle counter, execution time
can be sampled, or a simple count of the number of times
upcalls are executed can be reported.

Observe that Composite provides library routines for
common thread and scheduling operations. These ease de-
velopment as they hide event structure manipulation and au-
tomatically update thread accountability information.

2.4 Efficient Scheduler Synchronization

When schedulers are implemented in the kernel, it is
common to disable interrupts for short amounts of time
to ensure that processing in a critical section will not be
preempted. This approach has been applied to user-level
scheduling in at least one research project [7]. However,
given our design requirements for a system that is both de-
pendable and predictable, this approach is not feasible. Al-
lowing schedulers to disable interrupts could significantly
impact response time latencies. Moreover, scheduling poli-
cies written by untrusted users may have faulty or mali-
cious behavior, leading to unbounded execution (e.g., infi-
nite loops) if interrupts are disabled. CPU protection needs
to be maintained as part of a dependable and predictable
system design.

An alternative to disabling interrupts is to provide a user-
level API to kernel-provided locks, or semaphores. This ap-
proach is both complicated and inefficient, especially in the
case of blocking locks and semaphores. As blocking is not
a kernel-level operation in Composite, and is instead per-
formed at user-level, an upcall would have to be performed.
However, it is likely that synchronization would be required
around wait queue structures, thus producing a circular de-
pendency between kernel locks and the user scheduler, po-
tentially leading to deadlocks or starvation. Additionally, it
is unclear how strategies to avoid priority inversion could
be included in such a scheme.

Preemptive non-blocking algorithms also exist, that do
not necessarily require kernel invocations. These algo-
rithms include both lock-free and wait-free variants [15].
Wait-free algorithms are typically more processor inten-
sive, while lock-free algorithms do not necessarily protect
against starvation. However, by judicious use of schedul-
ing, lock-free algorithms have been shown to be suitable in
a hard-real-time system [2]. It has also been reported that in
practical systems using lock-free algorithms, synchroniza-
tion delays are short and bounded [15, 17].

To provide scheduler synchronization that will maintain
low scheduler run-times, we optimize for the common case
when there is no contention, such that the critical section
is not challenged by an alternative thread. We use lock-
free synchronization on a value stored in the shared sched-
uler region, to identify if a critical section has been entered,

and by whom. Should contention occur, the system pro-
vides a set of synchronization flags that are passed to the
cos switch thread syscall, to provide a form of wait-
free synchronization. In essence, the thread,τi waiting to
access a shared resource “helps” the thread,τj , that cur-
rently has exclusive access to that resource, by allowingτj

to complete its critical section. At this point,τj immediately
switches back toτi. The assumption here is that the most
recent thread to attempt entry into the critical section has
the highest priority, thus it is valid to immediately switch
back to it without invoking a scheduler. This semantic be-
havior exists in a scheduler library in Composite, so if it is
inappropriate for a given scheduler, it can be trivially over-
ridden. As threads never block when attempting access to
critical sections, we avoid having to put blocking semantics
into the kernel. The design decision to avoid expensive ker-
nel invocations in the uncontested case is, in many ways,
inspired by futexes in Linux [12].

Generally, many of the algorithms for non-blocking syn-
chronization require the use of hardware atomic instruc-
tions. Unfortunately, on many processors the overheads
of such instructions are significant due to factors such as
memory bus locking. We have found that using hardware-
provided atomic instructions for many of the common
scheduling operations in Composite often leads to schedul-
ing decisions having significant latencies. For example,
both the kernel and user-level schedulers require access to
event structures, to update the states of upcalls and account-
ability information, and to post new events. These event
structures are provided on a per-CPU basis, and our design
goal is to provide a synchronization solution that does not
unnecessarily hinder thread execution on CPUs that are not
contending for shared resources. Consequently, we use a
mechanism calledrestartable atomic sequences(RASes),
that was first proposed by Bershad [6], and involves each
component registering a list of desired atomic assembly sec-
tions. These assembly sections either run to completion
without preemption, or are restarted by ensuring the CPU
instruction pointer (i.e., program counter) is returned tothe
beginning of the section, when they are interrupted.

Essentially, RASes are crafted to resemble atomic in-
structions such as compare and swap, or other such func-
tions that control access to critical sections. Common op-
erations are provided to components via Composite library
routines1. The Composite system ensures that if a thread
is preempted while processing in one of these atomic sec-
tions, the instruction pointer isrolled backto the beginning
of the section, similar to an aborted transaction. Thus, when
an interrupt arrives in the system, the instruction pointerof
the currently executing thread is inspected and compared

1In this paper, we discuss the use of RASes to emulate atomic instruc-
tions but we have also crafted specialized RASes for manipulating event
structures.



with the assembly section locations for its current compo-
nent. If necessary, the instruction pointer of the interrupted
thread is reset to the beginning of the section it was exe-
cuting. This operation performed at interrupt time and is
made efficient by aligning the list of assembly sections on
cache lines. We limit the number of atomic sections per-
component to 4 to bound processing time. The performance
benefit of this technique is covered in Section 3.1.

cos_atomic_cmpxchg:
movl %eax, %edx
cmpl (%ebx), %eax
jne cos_atomic_cmpxchg_end
movl %ecx, %edx
movl %ecx, (%ebx)

cos_atomic_cmpxchg_end:
ret

Figure 4. Example compare and exchange
atomic restartable sequence.

Figure 4 demonstrates a simple atomic section that mim-
ics thecmpxchg instruction in x86. Libraries in Compos-
ite provide thecos cmpxchg(void *memory, long
anticipated, long new val) function which ex-
pects the address in memory we wish to change, the antici-
pated current contents of that memory address, and the new
value we wish to change that memory location to. If the
anticipated value matches the value in memory, the mem-
ory is set to the new value which is returned, otherwise the
anticipated value is returned. The library function calls the
atomic section in Figure 4 with registereax equal to antic-
ipated,ebx equal to the memory address,ecx equal to the
new value, and returns the appropriate value inedx.

Observe that RASes do not provide atomicity on multi-
processors. To tackle this problem, however, either requires
the use of true atomic instructions or the partitioning of data
structures across CPUs. Note that in Composite, scheduling
queue and event structures are easily partitioned into CPU-
specific sub-structures, so our synchronization techniques
are applicable to multi-processor platforms.

3 Experimental Evaluation

All experiments are performed on IBM xSeries 305 e-
server machines with Pentium IV, 2.4 GHz processors and
904 MB of available RAM. Each computer has a tigon3 gi-
gabit Ethernet card, connected by a switched gigabit net-
work. We use Linux version 2.6.22 as the host operating
system with a clock-tick (orjiffy) set to 10 milliseconds.
Composite is loaded using the techniques from Hijack [21],
and uses the networking device and timer subsystem of the
Linux kernel, overriding all other control flow.

3.1 Microbenchmarks

Here we report a variety of microbenchmarks: (1) Hard-
ware measurements for lower bounds on performance.
(2) The performance of Linux primitives, as a comparison
case. (3) The performance of Composite operating system
primitives. All measurements were averaged over 100000
iterations in each case.

Operation Cost in CPU cycles

User→ kernel round-trip 166

Two user→ kernel round-trips 312

RPC between two address spaces 1110

Table 2. Hardware measurements.
Table 2 presents the overheads we obtained by perform-

ing a number of hardware operations with a minimum num-
ber of assembly instructions specially tailored to the mea-
surement. The overhead of switching between user-level
to the kernel and back (as in a system call) is 166 cycles.
Performing two of these operations approximately doubled
the cost. Switching between two protection domains (page-
tables), in conjunction with the two system calls, simulates
RPC between components in two address spaces. It is no-
table that this operation on Pentium 4 processors incurs sig-
nificant overhead.

Operation Cost in CPU cycles

Null system call 502

Thread switch in same process 1903

RPC between 2 processes using pipes 15367

Send and return signal to current thread 4377

Uncontended lock/release using Futex 411

Table 3. Linux measurements.
Table 3 presents specific Linux operations. In the past,

the getpid system call has been popular for measuring
null system call overhead. However, on modern Linux
systems, such a function does not result in kernel exe-
cution. To measure system-call overhead, then, we use
gettimeofday(NULL, NULL), the fastest system call
we found. To measure context switching times, We use
the NPTL 2.5 threading library. To measure context switch
overhead, we switch from one highest priority thread to the
other in the same address space usingsched yield. To
measure the cost of IPC in Linux (an OS that is not specif-
ically structured for IPC), we passed one byte between two
threads in separate address spaces using pipes. To under-
stand how expensive it is to create an asynchronous event in
Linux, we generate a signal which a thread sends to itself.
The signal handler is empty, and we record how long it takes
to return to the flow of control sending the signal. Lastly,
we measure the uncontended cost of taking and releasing a
pthread mutex which uses Futexes [12]. Futexes avoid
invoking the kernel, but use atomic instructions.



Operation Cost in CPU cycles

RPC between components 1629

Kernel thread switch overhead 529

Thread switch w/ scheduler overhead 688

Thread switch w/ scheduler and accounting overhead 976

Brand made, upcall not immediately executed 391

Brand made, upcall immediately executed 3442

Upcall dispatch latency 1768

Upcall terminates and executes a pending event 804

Upcall immediately executed w/ scheduler invocations 9410

Upcall dispatch latency w/ scheduler invocation 5468

Uncontended scheduler lock/release 26

Table 4. Composite measurements.

A fundamental communication primitive in Composite is
a synchronous invocation between components. Currently,
this operation is of comparable efficiency to other systems
with a focus on IPC efficiency such as L4 [30]. We believe
that optimizing the fast-path in Composite by writing it in
assembly can further reduce latency. Certainly, the perfor-
mance in Composite is an order of magnitude faster than
RPC in Linux (as shown in Table 4).

As scheduling in Composite is done at user-level to ease
customization and increase reliability, it is imperative that
the primitive operation of switching between threads is not
prohibitive. The kernel overhead of thread switching when
accounting information is not recorded by the kernel is 0.22
microseconds. This is the lower bound for scheduling effi-
ciency in Composite. If an actual fixed-priority scheduler is
used to switch between threads which includes manipulat-
ing run-queues, taking and releasing the scheduler lock, and
parsing event structures, the overhead is increased to 0.28
microseconds. Further, if the kernel maintains accounting
information regarding thread run-times, and passes this in-
formation to the schedulers, overhead increases to 0.40 mi-
croseconds. The actual assembly instruction to read the
time-stamp counter (rdtsc) contributes 80 cycles to the
overhead, while locating and updating event structures pro-
vides the rest. We found that enabling kernel account-
ing made programming user-schedulers significantly easier.
Even in this form, the thread switch latency is comparable
to user-level threading packages that do not need to invoke
the kernel, as reported in previous research [33], and is al-
most a factor of two faster than in Linux.

The overhead and latency of event notifications in the
form of brands and upcalls is important when consider-
ing the execution of interrupt triggered events. Here we
measure overheads of upcalls made under different condi-
tions. First, when an upcall is attempted, but its urgency
is not greater than the current thread, or if there are no in-
active upcalls, the overhead is 0.16 microseconds. Second,
when an upcall occurs with greater urgency than the cur-
rent thread, the cost is 1.43 microseconds (assuming the up-
call immediately returns). This includes switching threads

twice, two user→ kernel round-trips, and two protection
domain switches. The time to begin executing an upcall,
which acts as a lower-bound on event dispatch latency, is
0.73 microseconds. This is less than a thread switch in the
same process in Linux. Third, when an upcall finishes, and
there is a pending event, it immediately executes as a new
upcall. This operation takes .33 microseconds.

A feature of Composite is the avoidance of scheduler in-
vocations before and after every upcall. Calling the sched-
uler both before and after an upcall (that immediately re-
turns) is 3.92 microseconds. By comparison, avoiding
scheduler invocations, using Composite event structures,re-
duces the cost to 1.43 microseconds. The dispatch latency
of the upcall is 2.27 microseconds when the scheduler is in-
voked, whereas it reduces to 0.73 microseconds using the
shared event structures. It is clear that utilizing shared com-
munication regions between the kernel and the schedulers
yields a significant performance improvement.

Lastly, we compare the cost of the synchronization
mechanism introduced in Section 2.4 against futexes. In
Composite, this operation is barely the cost of two function
calls, or 26 cycles, compared to 411 cycles with futexes.
An illustration of the importance of this difference is that
the cost of switching threads, which includes taking and re-
leasing the scheduler lock, would increase in cost by 42% if
futexes were used. The additional cost would rise as more
event structures are processed using atomic instructions.As
thread switch costs bound the ability of the system to real-
istically allow user-level scheduling, the cost savings issig-
nificant.

3.2 Case Study: Predictable Interrupt Scheduling

In the experiments in this section, we use network packet
arrivals as our source of interrupts, and demultiplex the in-
terrupts based on packet contents [18]. The demultiplexing
operation is performed predictably, with a fixed overhead,
by carefully choosing the packet parsing method [20].

To demonstrate the configurability of the Composite
scheduling mechanisms, we implement a variety of inter-
rupt management and scheduling schemes, and contrast
their behavior. A component graph similar to that shown
is Figure 1 is used throughout our experiments. In this fig-
ure, all shaded components are implemented in the kernel.
The scheduling hierarchies under comparison are shown in
Figure 5. Italic nodes in the trees are schedulers:HW is the
hardware scheduler giving priority to interrupts,FP RRis a
fixed priority round-robin scheduler, andDS is a deferrable
server with a given execution time and period. All such con-
figurations include some execution at interrupt time labeled
thelevel 0 interrupthandling. This is the interrupt execution
that occurs before the upcall executes, and in our specific
case involves network driver execution. The children below
a scheduler are ordered from top to bottom, from higher to



lower priority. Additionally, dotted lines signify dependen-
cies between execution entities in the system. The timer
interrupt is not depicted, but theFP RRis dependent on it.
Task 3 is simply a CPU-bound background task.
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Figure 5. Scheduling hierarchies imple-
mented in Composite.
Figure 5(a) depicts a system in which all interrupt han-

dling is executed with the highest priority. Ignoring ad-hoc
mechanisms for deferring interrupts given overload (such
assoftirqd in Linux), this hierarchy models the default
Linux behavior. Figure 5(b) depicts a system whereby the
processing of the interrupts is still done at highest prior-
ity, but is constrained by a deferrable server [31]. The use
of a deferrable server allows for fixed priority schedulabil-
ity analysis to be performed, but does not differentiate be-
tween interrupts destined for different tasks. Figure 5(c)
depicts a system whereby the interrupts are demultiplexed
into threads of different priority depending on the priority of
the normal threads that depend on them. This ensures that
high priority tasks and their interrupts will be serviced be-
fore the lower-priority tasks and their interrupts, encourag-
ing behavior more in line with the fixed priority discipline.
The interrupts are processed with higher priority than the
tasks, as minimizing interrupt response time is often use-
ful (e.g., to compute accurate TCP round-trip-times, and
to ensure that the buffers of the networking card do not
overflow, possibly dropping packets for the higher-priority
task). Figure 5(d) depicts a system where interrupts for each
task are assigned different priorities (and, correspondingly,
brands). Each such interrupt is handled in the context of an
upcall, scheduled as a deferrable server. These deferrable
servers not only allow the system to be analyzed in terms of
their schedulability, but also prevent interrupts for the cor-
responding tasks from causing livelock [19].

Streams of packets are sent to a target system from two
remote machines, via Gigabit Ethernet. The packets arrive
at the host, triggering interrupts, which execute through the
device driver, and are then handed off to the Composite sys-
tem. Here, a demultiplexing component in the kernel maps
the execution to the appropriate upcall thread. From that
point on, execution of the interrupt is conducted in a net-
working component in Composite, to perform packet pro-

cessing. This takes 14000 cycles (a value taken from mea-
surements of Linux network bottom halves [13]). When this
processing has completed, a notification of packet arrival is
placed into a mailbox, waking an application task if one is
waiting. The tasks pull packets out of the mailbox queues,
and processes them for 30000 cycles.

Figure 6(a) depicts the system when the interrupts have
the highest priority (NB: lower numerical priority values
equate to higher priority, or greater precedence). Packets
arriving at sufficient rate cause livelock on the application
tasks. The behavior of the system is not consistent or pre-
dictable across different interrupt loads. Figure 6(b) shows
the system configured where the interrupts are branded onto
a thread of higher precedence than the corresponding task
requesting I/O. In this case, there is more isolation between
tasks as the interrupts for Task 2 do not have as much impact
on Task 1. Task 1 processes more packets at its peak and
performs useful work for longer. Regardless, as the number
of received packets increases for each stream, livelock still
occurs preventing task and system progress.

Figure 6(c) depicts a system that utilizes a deferrable
server to execute all interrupts. Here, the deferrable server
is chosen to receive 7 out of 20 quanta. These numbers are
derived from the relative costs of interrupt to task process-
ing, leading to a situation in which the system is marginally
overloaded. An analysis of a system with real-time or QoS
constraints could derive appropriate rate-limits in a compa-
rable fashion. In this graph, the interrupts for both tasks
share the same deferrable server and packet queue. Given
that half of the packets in the queue are from each task,
it follows that even though the system wishes one task to
have preference (Task 1), they both process equal amounts
of packets. Though there is no notion of differentiated ser-
vice based on Task priorities, the system is able to avoid
livelock, and thus process packets across a wide variety of
packet arrival rates.

Figure 6(d) differentiates interrupts executing for the dif-
ferent tasks by their priority, and also processes the inter-
rupts on two separate deferrable servers. This enables inter-
rupts to be handled in a fixed priority framework, in a man-
ner that bounds their interference rate on other tasks. Here,
the high priority task consistently processes more packets
than the lower-priority task, and the deferrable servers guar-
antee that the tasks are isolated from livelock. The cumula-
tive packets processed for Task 1 and 2, and the total of both
are plotted in Figure 7(c). Both approaches that prevent
livelock, by using deferrable servers, maintain high packets
processing throughput. However, the differentiated service
approach is the only one that both achieves high through-
put, and predictable packet processing (with a 5 to 2 ratio
for Tasks 1 and 2).

Figure 7 further investigates the behaviors of the two ap-
proaches using deferrable servers. Specifically, we wish to
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Figure 6. Packets processed for two streams and two system ta sks.

study the ability of the system to maintain predictably dif-
ferentiated service between the two tasks, given varying in-
terrupt arrival rates. In this case, Task 1 is sent a constant
stream of 24100 packets per second in Figure 7(a) and (b),
and 488000 in Figure 7(d) and (e). The amount of pack-
ets per second sent to Task 2 varies along the x-axis. The
results for both receive rates demonstrate that when all in-
terrupts share the same deferrable server, allocation of pro-
cessed packets to tasks is mainly dependent on the ratio of
packets sent to Task 1 and Task 2. Separating interrupt pro-
cessing into two different deferrable servers, on the other
hand, enables the system to differentiate service between
tasks, according to QoS requirements.

Figure 7(f) plots the total amounts of packets processed
for the tasks in the system under the different hierarchies
and constant packet receive rates. The differentiated ser-
vice approach maintains a predictable allocation of pro-
cessing time to the tasks consistent with their relative de-
ferrable server settings. Using only a single deferrable
server and therefore ignoring the task dependencies on in-
terrupts, yields processing time allocations that are heavily
skewed towards the task of lesser importance when it has
more packets arrivals.

4 Related Work

Past research has put forth mechanisms to implement
hierarchically structured user-level schedulers [11, 30].

Additionally, others have made the argument that user-
level scheduling is useful for real-time systems, and have
provided methods accommodating it in a middleware set-
ting [4]. None of these works attempt to remove all notions
of blocking and scheduling from the kernel. Additionally,
these approaches, do not provide a mechanism for schedul-
ing and accounting asynchronous events (e.g., interrupts)
without recourse to costly scheduler invocations. We use
this feature to achieve significantly lower event response
times required for a predictable system, essentially by cap-
turing scheduling semantics in event structures shared be-
tween user-space and the kernel.

The early demultiplexing of events [32, 18], and assign-
ing interrupt execution to higher-level thread contexts [8,
9, 34] have been studied before. However, our approach of
constructing a hierarchy of user-level schedulers for bothin-
terrupt and conventional thread scheduling in a component-
based framework is novel. Our approach supports the con-
struction of separate policies within each component in the
hierarchy, along with corresponding isolation between com-
ponents and the kernel itself. Thus, we offer a solution to
the design of application-specific service policies in a low-
cost, dependable and predictable (extensible) system.

Significant effort has been made to analytically study the
compositional feasibility of constructing specific schedul-
ing hierarchies [28, 24]. Others have investigated how to
map abstract application QoS specifications into component
schedulers to provide service guarantees [14]. Both of these



 0

 20000

 40000

 60000

 80000

 100000

 0  50000  100000  150000  200000  250000  300000

P
ac

ke
ts

 P
ro

ce
ss

ed

Packets/Sec in Stream 2 Sent, Stream 1 Constant at 24100

Task 1 & 2 interrupts (prio 0, ds 7/20)
Task 1 processing (prio 1)
Task 2 processing (prio 2)

(a)

 0

 20000

 40000

 60000

 80000

 100000

 0  50000  100000  150000  200000  250000  300000

P
ac

ke
ts

 P
ro

ce
ss

ed

Packets/Sec in Stream 2 Sent, Stream 1 Constant at 24100

Task 1 interrupts (prio 0, ds 5/20)
Task 1 processing (prio 1)

Task 2 interrupt (prio 2, ds 2/20)
Task 2 processing (prio 3)

(b)

0

2

4

6

8

10

12

14

16

Highest Priority
Interrupts

Interrupt Thread Per-Task
Prioritized
Interrupts

Differentiated
Service

C
um

ul
at

iv
e 

P
ac

ke
ts

 P
ro

ce
ss

ed
 (

x1
0e

9) Task 1 (higher prio.)
Task 2 (lower prio.)
Total

(c) Total Packets Processed (for Figure 6)

 0

 20000

 40000

 60000

 80000

 100000

 0  50000  100000  150000  200000  250000  300000

P
ac

ke
ts

 P
ro

ce
ss

ed

Packets/Sec in Stream 2 Sent, Stream 1 Constant at 48800

Task 1 & 2 interrupts (prio 0, ds 7/20)
Task 1 processing (prio 1)
Task 2 processing (prio 2)

(d)

 0

 20000

 40000

 60000

 80000

 100000

 0  50000  100000  150000  200000  250000  300000

P
ac

ke
ts

 P
ro

ce
ss

ed

Packets/Sec in Stream 2 Sent, Stream 1 Constant at 48800

Task 1 interrupts (prio 0, ds 5/20)
Task 1 processing (prio 1)

Task 2 interrupt (prio 2, ds 2/20)
Task 2 processing (prio 3)

(e)

0

5

10

15

20

Interrupt Thread
(24100)

Differentiated
Service (24100)

Interrupt Thread
(48800)

Differentiated
Service (48800)

C
um

ul
at

iv
e 

P
ac

ke
ts

 P
ro

ce
ss

ed
 (

x1
0e

9)

Task 1 (higher prio.)
Task 2 (lower prio.)
Total

(f) Total Packets Processed (for Figure 7)

Figure 7. Packets processed for two streams, one with consta nt rate.

techniques are complementary to our work, and can be used
to refine or verify a given hierarchy of user-level schedulers.
Application-specific scheduling methods that take into ac-
count application constraints, and alter behavior based on
system dynamics [23, 25] promise to lessen the semantic
gap by offering a tighter coupling between application and
scheduler.

5 Conclusions and Future Work
This paper presents the design of user-level schedul-

ing hierarchies in the Composite component-based system.
By providing support for user-defined component services
that are separated from the kernel, untrusted or malicious
software is prevented from jeopardizing the kernel. More-
over, component services themselves may be isolated from
one another, thereby avoiding potentially adverse interac-
tions. Collectively, this arrangement serves to provide a
system framework that is both extensible and dependable.
However, to ensure sufficient predictability for use in real-
time domains, Composite features a series of low-overhead
mechanisms, having bounded costs that are on par or better
than competing systems such as Linux. Microbenchmarks
show that Composite incurs low overhead in its various
mechanisms to communicate between and schedule com-
ponent services.

We describe a novel method of branding upcall execu-
tion to higher-level thread contexts. We also discuss the
Composite approach to avoid direct scheduler invocation
while still allowing full user-level control of schedulingde-
cisions. Additionally, a lightweight technique to implement
non-blocking synchronization at user-level, essential for the
manipulation of scheduling queues, is also described. This

is similar to futexes but does not require atomic instructions,
instead relying on “restartable atomic sequences”.

We demonstrate the effectiveness of these techniques
by implementing different scheduling hierarchies, featuring
various alternative policies, and show that it is possible to
implement differentiated service guarantees. Experiments
show that by using separate deferrable servers to handle and
account for interrupts, a system is able to behave according
to specific service constraints, without suffering livelock.

Future work includes porting more sophisticated
scheduling policies to Composite. In doing so, we wish
to provide a significant library of policies which applica-
tions and systems can compose into hierarchies as they see
fit. Additionally, we will consider incorporating frame-
works for more easily writing schedulers [5]. NB: Com-
posite source code is available upon request.
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