Comments on Window-Constrained Scheduling

Richard West Member, IEEE and Yuting Zhang

Abstract

This short report clarifies the behavior of DWCS with respect to Theorem 3 in our previously published paper [1], and describes an alternative approach to make guarantees for arbitrary window-constraints.

Index Terms - Real-time systems, multimedia, window-constraints, scheduling.

1 Introduction

In our previously published paper [1], Theorem 3 implies that the DWCS algorithm holds for all possible window-constraints. DWCS can satisfy Theorem 3 under certain conditions and the proof shows a particular case, when there are two classes of window-constraints x_{i} / y_{i} and x_{j} / y_{j}, such that $x_{i}=y_{i}-1, x_{j}=y_{j}-1$, and $x_{j} / y_{j}<x_{i} / y_{i}$. While DWCS can be shown to satisfy Theorem 3 when each stream (or, equivalently, job) J_{i} has a window-numerator $x_{i}=y_{i}-1$, regardless of the value of y_{i}, the algorithm can fail to produce a feasible schedule for certain other window-constraints.

Without loss of generality we define a window-constraint on J_{i} as requiring " m_{i} out of k_{i} deadlines to be met", as opposed to allowing " x_{i} out of y_{i} deadlines to be missed" in non-overlapping windows of k_{i} deadlines (such that $k_{i}=y_{i}$ and $m_{i}=y_{i}-x_{i}$). Algorithms such as DWCS update the current window-constraint $m_{i}^{\prime} / k_{i}^{\prime}$ of each job J_{i} by reducing m_{i}^{\prime} by one each time a job is serviced in its current period, T_{i}, and also by reducing k_{i}^{\prime} by one each time a new period starts. Further details regarding window-constraint adjustments can be found in our earlier work on DWCS [1]. We can now state the following theorem to show how it affects feasibility of DWCS for general window-constraints.

Theorem 1. With respect to Theorem 3 in our original paper and given that we have arbitrary initial window-constraints: In each non-overlapping window of size q in the hyper-period, H, there can be more than q jobs out of n with current window-constraint $m_{i}^{\prime} / k_{i}^{\prime}=1$ at any time, when $U_{\min }=\sum_{i=1}^{n} \frac{m_{i} C_{i}}{k_{i} T_{i}} \leq$ $1\left(C_{i}=1, T_{i}=q, \forall i\right)$.

Proof. Suppose there are n jobs queued for service at time $t=0$. Suppose also at time $a q$ ($a<$ $\min _{i}\left(k_{i}\right), q<n$), there are $q+1$ jobs each with $m_{i}^{\prime}=k_{i}^{\prime} \neq 0$. Let Γ_{j} be the set of jobs that have been serviced for j instances in period $[0, a q)$, such that $\left|\Gamma_{j}\right|=n_{j}$. Out of each set Γ_{j} let $\overline{n_{j}}$ be the number of jobs whose current window-constraints are $m_{i}^{\prime}=k_{i}^{\prime}>0$. Finally, let $m_{i j} / k_{i j}$ be the initial window-constraint of each job J_{i} in Γ_{j}.

In the interval $[0, a q)$, each of the n_{j} jobs in $\Gamma_{j} \mid 0 \leq j \leq a$ changes its window-constraint as follows:

$$
\begin{aligned}
& n_{0}:\left(m_{i 0}, k_{i 0}\right) \xrightarrow{(0, a q)}\left(m_{i 0}, k_{i 0}-a\right) \vdash \overline{n_{0}}: m_{i 0}=k_{i 0}-a>0 \\
& n_{1}:\left(m_{i 1}, k_{i 1}\right) \xrightarrow{(1, a q)}\left(m_{i 1}-1, k_{i 1}-a\right) \vdash \overline{n_{1}}: m_{i 1}-1=k_{i 1}-a>0 \\
& n_{a}:\left(m_{i a}, k_{i a}\right) \xrightarrow{(a, a q)}\left(m_{i a}-a, k_{i a}-a\right) \vdash \overline{n_{a}}: m_{i a}-a=k_{i a}-a>0
\end{aligned}
$$

where, $\quad \sum_{j=0}^{a} n_{j}=n ; \quad \sum_{j=0}^{a} \overline{n_{j}}=q+1, \quad \sum_{j=0}^{a} j n_{j} \leq a q$.
Now, consider the following case: $n_{0}=\overline{n_{0}}=q+1, \overline{n_{1}}=\overline{n_{2}}=\cdots=\overline{n_{a}}=0$. Then, for any job J_{i}, there must exist a value $b_{j} \mid b_{j}<a$, such that the j th instance of J_{i} is serviced in the interval $\left[b_{j} q,\left(b_{j}+1\right) q\right)$. Therefore, we have

$$
\begin{array}{r}
\frac{m_{i j}-(j-1)}{k_{i j}-b_{j}} \geq \frac{m_{i 0}}{k_{i 0}-b_{j}}=\frac{k_{i 0}-a}{k_{i 0}-b_{j}} \\
\Rightarrow \frac{m_{i j}}{k_{i j}} \geq \frac{\left(k_{i 0}-a\right)\left(k_{i j}-b\right)+\left(k_{i 0}-b_{j}\right)(j-1)}{\left(k_{i 0}-b_{j}\right) k_{i j}} \\
U_{\min }=\frac{k_{i 0}-a}{k_{i 0} q}(q+1)+\sum_{j=1}^{a} \sum_{i=0}^{n_{j}} \frac{m_{i j}}{k_{i j} q} \leq 1, \quad \sum_{j=0}^{a} j n_{j} \leq a q
\end{array}
$$

Given that a solution to the above inequalities exists (e.g., $a=2, n_{1}=0, b_{2}=1, q=4, k_{i 0}=$ $3, m_{i 0}=1, n_{0}=5, n_{2}=4, m_{i 2}=35, k_{i 2}=64$), it must be that the theorem holds.

2 Pfair-based Virtual Deadline Scheduling (PVDS)

To satisfy Theorem 3 in our original paper [1] for arbitrary window-constraints, and hence show a feasible schedule is possible for 100% resource utilization (when $C_{i}=1, T_{i}=q, \forall i$, we propose an approach called PVDS. First, we define the virtual deadline, $V d_{i}(t)$, of a job J_{i} at any time t such that:

$$
V d_{i}(t)=t_{s_{i}}+\left(l_{i}+1\right) \frac{k_{i} T_{i}}{m_{i}}\left(l_{i}=0,1, \ldots, m_{i}-1\right)
$$

where $t_{s_{i}}$ is the start time of the current window of size $k_{i} T_{i}$, which is $\left\lfloor\frac{t}{k_{i} T_{i}}\right\rfloor k_{i} T_{i} . l_{i}$ is the number of job instances that have already met their deadlines in the current window before t. In ordering jobs for service, the one with the earliest virtual deadline at time t has highest priority. If an instance of J_{i} is not serviced in its request period, T_{i}, its virtual deadline stays the same, whereas if a job instance is serviced, its virtual deadline increases by $\frac{k_{i} T_{i}}{m_{i}}$. If m_{i} instances of J_{i} are serviced in the current window, J_{i} is ineligible for service until the start of its next window, unless all other jobs have received their minimum service requirements.

Lemma 1. There is no idle time before the failure of a synchronized job set where $U_{\min }=\sum_{i=1}^{n} \frac{m_{i} C_{i}}{k_{i} T_{i}}=$ $1\left(C_{i}=1, T_{i}=q, \forall i\right)$, under pfair-based virtual deadline scheduling.

Proof. Observe that a synchronized job set is one in which all the jobs in the set are queued for service at the same time. For simplicity, we can assume these jobs are all ready for service at time $t=0$. Now, suppose $[t, t+a)$ is the first idle period before at least one of the jobs in the set fails to meet its service constraints. According to the algorithm, if there is idle time, each job J_{i} has either satisfied its windowconstraint in the current window, or has finished service in the current period, $T_{i}=q$. Henceforth, let us define two sets of jobs: (1) Γ_{0} is the set of jobs that have satisfied their window-constraints in the current window, by the start of the current period, and, (2) Γ_{1} is the set of jobs that each have been serviced $l_{i} \mid\left(l_{i} \leq m_{i}\right)$ times in the current window, with the l_{i} th instance of J_{i} serviced in the current period.

Let $J_{i_{k}}$ be the job J_{i} in the set Γ_{k}. For each and every job $J_{i_{0}}$ in Γ_{0}, its virtual deadline (or start time of its next non-overlapping window) at time, t, satisfies the constraint $\left\lceil\frac{t}{k_{i_{0}} T_{i_{0}}}\right\rceil k_{i_{0}} T_{i_{0}} \geq t+a$. Similarly, since each and every job in Γ_{0} has been serviced by the start of the current period, the previous virtual deadline of each job $J_{i_{0}}$ must be less than the previous virtual deadline of each and every job, $J_{i_{1}}$, in Γ_{1}. In what follows, let $\left|\Gamma_{0}\right|=n_{0},\left|\Gamma_{1}\right|=n_{1}$, and $l_{i_{1}}$ be the number of instances of each job $J_{i_{1}}$ in Γ_{1}. Therefore,

$$
\begin{align*}
\forall i_{0}, i_{1} \quad & \left\lfloor\frac{t}{k_{i_{1}} T_{i_{1}}}\right\rfloor k_{i_{1}} T_{i_{1}}+\frac{k_{i_{1}} T_{i_{1}}}{m_{i_{1}}} l_{i_{1}} \geq\left\lceil\frac{t}{k_{i_{0}} T_{i_{0}}}\right\rceil k_{i_{0}} T_{i_{0}} \\
& \text { Let }\left\lceil\frac{t}{k_{p} T_{p}}\right\rceil k_{p} T_{p}=\max _{i_{0}}\left(\left\lceil\frac{t}{k_{i_{0}} T_{i_{0}}}\right\rceil k_{i_{0}} T_{i_{0}}\right) \\
\Rightarrow \forall i_{1}, \quad & \left\lfloor\frac{t}{k_{i_{1} T_{i_{1}}}}\right\rfloor k_{i_{1}} T_{i_{1}}+\frac{k_{i_{1}} T_{i_{1}}}{m_{i_{1}}} l_{i_{1}} \geq\left\lceil\frac{t}{k_{p} T_{p}}\right\rceil k_{p} T_{p} \\
& \Rightarrow\left\lfloor\frac{t}{k_{i_{1} T_{i_{1}}}}\right\rfloor m_{i_{1}}+l_{i_{1}} \geq\left\lceil\frac{t}{k_{p} T_{p}}\right\rceil k_{p} T_{p} \frac{m_{i_{1}}}{k_{i_{1}} T_{i_{1}}} \tag{1}
\end{align*}
$$

$$
\begin{array}{r}
\forall i_{0},\left\lceil\frac{t}{k_{i_{0}} T_{i_{0}}}\right\rceil k_{i_{0}} T_{i_{0}} \geq t+a>t \\
t=\sum_{i=1}^{n_{0}}\left(\left\lceil\frac{t}{k_{i_{0}} T_{i_{0}}}\right\rceil m_{i_{0}}\right)+\sum_{j=n_{0}+1}^{n}\left(\left\lfloor\frac{t}{k_{i_{1}} T_{i_{1}}}\right\rfloor m_{i_{1}}+l_{i_{1}}\right) \tag{2}\\
\text { From }(1),(2) \Rightarrow t>\sum_{i=1}^{n_{0}}\left(\frac{t}{k_{i_{0}} T_{i_{0}}} m_{i_{0}}\right)+\sum_{j=n_{0}+1}^{n}\left(\left\lceil\frac{t}{k_{p} T_{p}}\right\rceil k_{p} T_{p} \frac{m_{i_{1}}}{k_{i_{1}} T_{i_{1}}}\right) \\
>\sum_{i=1}^{n_{0}}\left(\frac{t}{k_{i_{0}} T_{i_{0}}} m_{i_{0}}\right)+\sum_{j=n_{0}+1}^{n} t \frac{m_{i_{1}}}{k_{i_{1}} T_{i_{1}}}=t\left(\sum_{i=1}^{n} \frac{m_{i}}{k_{i} T_{i}}\right)=t
\end{array}
$$

This implies $t>t$ which is impossible, thereby yielding a contradiction to the supposition there is idle time before a failure.

Lemma 2. A job set is schedulable by pfair-based virtual deadline scheduling when $U_{\text {min }}=\sum_{i=1}^{n} \frac{m_{i} C_{i}}{k_{i} T_{i}}=$ $1\left(C_{i}=1, T_{i}=q, \forall i\right)$.

Proof. Assume a schedule fails at time t for job J_{i}, where $t=a k_{i} T_{i}+b T_{i}\left(0 \leq b<k_{i}, a \geq 0\right)$. Let l_{i} be the number of instances of job J_{i} serviced in the current window before t, so that $m_{i}-l_{i}-1=k_{i}-b$. Therefore,

$$
\begin{align*}
\left\lfloor\frac{t}{k_{i} T_{i}}\right\rfloor k_{i} T_{i} & +\frac{k_{i} T_{i}}{m_{i}}\left(l_{i}+1\right)-t=a k_{i} T_{i}+\frac{k_{i} T_{i}}{m_{i}}\left(m-k_{i}+b\right)-a k_{i} T_{i}-b T_{i} \\
& =\frac{k_{i} T_{i}}{m_{i}}\left(m_{i}-k_{i}+b-\frac{m_{i}}{k_{i}} b\right)=\frac{k_{i} T_{i}}{m_{i}}\left(k_{i}\left(\frac{m_{i}}{k_{i}}-1\right)+b\left(1-\frac{m_{i}}{k_{i}}\right)\right) \\
& =\frac{k_{i} T_{i}}{m_{i}}\left(1-\frac{m_{i}}{k_{i}}\right)\left(b-k_{i}\right) \leq 0 \Rightarrow\left\lfloor\frac{t}{k_{i} T_{i}}\right\rfloor k_{i} T_{i}+\frac{k_{i} T_{i}}{m_{i}}\left(l_{i}+1\right) \leq t \tag{3}
\end{align*}
$$

Since job J_{i} fails at time t, and its virtual deadline is less than t, J_{i} is not serviced in the interval $\left[t-T_{i}, t\right)$. Now, let l_{j} be the number of instances of job J_{j} serviced in the current window before t. It follows that $T_{i}=q$ jobs other than J_{i} will be served in the interval $\left[t-T_{i}, t\right)$. Each of these other jobs, J_{j}, has its most recent virtual deadline at $\left\lfloor\frac{t}{k_{j} T_{j}}\right\rfloor k_{j} T_{j}+l_{j} \frac{k_{j} T_{j}}{m_{j}}$, which is less than or equal to job J_{i} 's current virtual deadline at $\left\lfloor\frac{t}{k_{i} T_{i}}\right\rfloor k_{i} T_{i}+\left(l_{i}+1\right) \frac{k_{i} T_{i}}{m_{i}}$. Moreover, all jobs other than J_{i} must have most recent virtual deadlines that are less than or equal to J_{i} 's current virtual deadline. If this were not the case, J_{i} would be able to service $l_{i}+1$ instances before t. Therefore,

$$
\begin{align*}
\forall j \neq i & \left\lfloor\left\lfloor\frac{t}{k_{j} T_{j}}\right\rfloor k_{j} T_{j}+l_{j} \frac{k_{j} T_{j}}{m_{j}} \leq\left\lfloor\frac{t}{k_{i} T_{i}}\right\rfloor k_{i} T_{i}+\left(l_{i}+1\right) \frac{k_{i} T_{i}}{m_{i}}\right. \\
& \Rightarrow\left\lfloor\frac{t}{k_{j} T_{j}}\right\rfloor m_{j}+l_{j} \leq\left(\left\lfloor\frac{t}{k_{i} T_{i}}\right\rfloor k_{i} T_{i}+\left(l_{i}+1\right) \frac{k_{i} T_{i}}{m_{i}}\right) \frac{m_{j}}{k_{j} T_{j}} \tag{4}
\end{align*}
$$

From Lemma1, we know there is no idle before the first failure at time t. Therefore,

$$
\begin{array}{r}
t=\left\lfloor\frac{t}{k_{i} T_{i}}\right\rfloor m_{i}+l_{i}+\sum_{j \neq i}\left(\left\lfloor\frac{t}{k_{j} T_{j}}\right\rfloor m_{j}+l_{j}\right) \\
\text { From (4), (5) } \Rightarrow t \leq\left\lfloor\frac{t}{k_{i} T_{i}}\right\rfloor m_{i}+l_{i}+\sum_{j \neq i}\left(\left(\left\lfloor\frac{t}{k_{i} T_{i}}\right\rfloor k_{i} T_{i}+\left(l_{i}+1\right) \frac{k_{i} T_{i}}{m_{i}}\right) \frac{m_{j}}{k_{j} T_{j}}\right) \\
\Rightarrow t \leq\left\lfloor\frac{t}{k_{i} T_{i}}\right\rfloor m_{i}+l_{i}+\left(\left\lfloor\frac{t}{k_{i} T_{i}}\right\rfloor k_{i} T_{i}+\left(l_{i}+1\right) \frac{k_{i} T_{i}}{m_{i}}\right) \sum_{j \neq i} \frac{m_{j}}{k_{j} T_{j}} \\
\Rightarrow t \leq\left\lfloor\frac{t}{k_{i} T_{i}}\right\rfloor m_{i}+l_{i}+\left(\left\lfloor\frac{t}{k_{i} T_{i}}\right\rfloor k_{i} T_{i}+\left(l_{i}+1\right) \frac{k_{i} T_{i}}{m_{i}}\right)\left(1-\frac{m_{i}}{k_{i} T_{i}}\right) \\
\Rightarrow t \leq\left\lfloor\frac{t}{k_{i} T_{i}}\right\rfloor k_{i} T_{i}+\frac{k_{i} T_{i}}{m_{i}}\left(l_{i}+1\right)-1 \tag{6}
\end{array}
$$

Equations (3) and (6) imply that $t+1 \leq t$, which is impossible, so the assumption that a schedule fails at time t cannot hold.

Extending the previous lemma, the following Theorem can be shown to hold (although we omit the proof for brevity):

Theorem 2. There exists a feasible pfair-based virtual deadline schedule for a synchronized job set Γ, where $U_{\text {min }}=\sum_{i=1}^{n} \frac{m_{i} C_{i}}{k_{i} T_{i}} \leq 1\left(C_{i}=1, T_{i}=q, \forall i\right)$.

References

[1] R. West, Y. Zhang, K. Schwan, and C. Poellabauer. Dynamic window-constrained scheduling of real-time streams in media servers. IEEE Transactions on Computers, 53(6):744-759, June 2004.

