
On Network CoProcessors for
Scalable, Predictable Media Services

Raj Krishnamurthy, Student Member, IEEE, Karsten Schwan, Senior Member, IEEE,

Richard West, and Marcel-Catalin Rosu

Abstract—This paper presents the embedded realization and experimental evaluation of a media stream scheduler on Network

Interface (NI) CoProcessor boards. When using media frames as scheduling units, the scheduler is able to operate in real-time on

streams traversing the CoProcessor, resulting in its ability to stream video to remote clients at real-time rates. The contributions of this

paper are its detailed evaluation of the effects of placing application or kernel-level functionality, like packet scheduling on NIs, rather

than the host machines to which they are attached. The main benefits of such placement are 1) that traffic is eliminated from the host

bus and memory subsystem, thereby allowing increased host CPU utilization for other tasks, and 2) that NI-based scheduling is

immune to host-CPU loading, unlike host-based media schedulers that are easily affected even by transient load conditions. An

outcome of this work is a proposed cluster architecture for building scalable media servers by distributing schedulers and media stream

producers across the multiple NIs used by a single server and by clustering a number of such servers using commodity network

hardware and software.

Index Terms—Cluster machines, multimedia services, embedded systems, quality of service, operating systems, real-time systems,

data streaming, packet scheduling.

æ

1 INTRODUCTION

1.1 Background

THE scalable delivery of media and Web services to end
users is a well-recognized problem. At the network

level, researchers have developed multicast techniques [4],
media caching or proxy servers [2], reservation-based
communication services [16], and specialized media trans-
mission protocols [25]. For server hardware, scalability is
sought by using extensible SMP and cluster machines [5],
[11]. Scalability for server software is attained by using
dynamic load balancing across parallel/distributed server
resources [50], and by using admission control and online
request scheduling [51], [66] for CPUs [41], [9], [24],
network links [63], [62], [66], and disks [11]. Complemen-
tary to such work are application-level or end-to-end
solutions [35], [46] that adapt server and/or client behavior
in response to changes in users’ Quality of Service (QoS)
needs and in resource availability [59], [47].

1.2 Scalable Cluster Services

This paper addresses the scalability of media servers. Its
approach utilizes servers constructed as clusters of
processor/storage nodes, each of which has a network
interface processor (NI) linking it to the cluster’s high
performance system area network [60]. A unique aspect

of the approach is that each NI has a programmable
CoProcessor with local memory, direct access to devices,
and the ability to perform both basic protocol processing
and certain application-specific tasks. The CoProcessors
explored to date include ATM FORE [49], Myrinet [60],
I2O-compliant network interface boards [22], [38], [21],
and, most recently, gigabit Ethernet attached to IXP1200
[55], [52], [18], [68] boards. We have also explored Xilinx
FPGA CoProcessor boards [65] in servers with gigabit
links and the ability of the FPGA CoProcessor to meet the
packet-time requirements of 10Gbps links [30]. The server
hardware configuration used in this paper is from a
generation of CoProcessors (developed for the I2O
standard) equipped with the i960RD CoProcessor (our
systems software does not use any I2O standard-style
driver partitioning or any of the hardware registers in the
I2O hardware units). This research simply uses the
i960RD processor on the NI with associated PCI bridge
chipsets, as a i960RD CoProcessor. These NIs have two
100Mbps Ethernet links, a PCI interface to the host
CPU and two SCSI interfaces directly attached to disk
devices. These CoProcessors are attached to a prototypical
server system comprised of 16 quad Pentium Pro nodes,
where host-to-host communications are supported by
VxWorks TCP/IP stack protocols (like TCP and UDP)
and where media streams may flow from server disks to
clients via host CPUs or directly via the i960RD boards
[38], [21].

The approach to server organization we advocate is one
that views a server like the one depicted in Fig. 1, as an
information processing, storage, and delivery engine that is
programmed at two levels of abstraction, reflecting the
hardware configuration being employed:

1. Low-level services execute on the CoProcessors
(NIs), as demonstrated in Fig. 1, for the concrete

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 7, JULY 2003 655

. R. Krishnamurthy and K. Schwan are with the Center for Experimental
Research in Computer Systems, Georgia Institute of Technology, Atlanta,
GA 30332. E-mail: {rk, schwan}@cc.gatech.edu.

. R. West is with the Department of Computer Science, Boston University,
111 Cummington Street, Boston, MA 02215. E-mail: richwest@cs.bu.edu.

. M.-C. Rosu is with the IBM T.J. Watson Research Center, PO Box 704,
Yorktown Heights, NY 10598. E-mail: mrosu@watson.ibm.com.

Manuscript received 13 Nov. 2001; revised 24 Oct. 2002; accepted 14 Jan.
2003.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 115364.

1045-9219/03/$17.00 ß 2003 IEEE Published by the IEEE Computer Society

examples of frame scheduling and predictable frame
delivery for streaming media services. Whether
executed synchronously or asynchronously with
application programs’ communications, these ser-
vices may be viewed as application-specific exten-
sions supported by a runtime resident on the NI.

2. Higher level services run on host nodes, but they
may utilize CoProcessor services like media sche-
duling via an explicit NI-provided interface. Fig. 1
shows sample media service tasks that are run on
host CPUs, with predictable frame delivery dedi-
cated to run on NIs.

1.3 Contributions

Our approach to improving the scalability of media servers

is to amplify their capabilities by extension of their

communication CoProcessors with application-specific

functionality. The intent is to use cluster nodes with their

complete OS functionality, large memories, and deep cache

hierarchies for the computational and data management

tasks for which they are well suited, while using NIs for

communication-centric tasks like packet scheduling. The

following insights are gained by this experimental research:

1. Efficient execution on standard NIs. Even NIs like Intel’s
i960RD-based boards [38], [21] are feasible platforms
on which to run application-specific extensions of
communication functionality. Specifically, perfor-
mance-critical communication extensions can be
executed with high performance on such COTS
(Commercial Off-The-Shelf) CoProcessors running

with standard operating system software (e.g.,
VxWorks [64]). This is encouraging, given the fast-
moving nature of NI hardware development and the
onerous task of porting and reporting the specialized
runtime software used in previous work [45], [17].

2. Improved predictability for NI-based streaming services.
On host CPUs, the time-critical execution of services
is easily jeopardized by the need to run a mix of
applications. Specifically, streaming services like
media schedulers running on host-CPUs are easily
affected even by transient loading conditions,
whereas media schedulers running directly on NIs
are immune to such host-CPU loading. The key
result is that CoProcessor-based scheduling substan-
tially improves the jitter experienced by streaming
services. Such improvements are particularly im-
portant for real-time media services like remote
surveillance or telepresence [56], [33].

3. Improved server scalability by use of extended NIs.
Services that frequently execute device or network-
near functions are known to run faster on CoPro-
cessors because their execution does not involve I/O
busses, host memory, and host CPUs. This paper
presents results that better quantify the load re-
ductions—termed traffic elimination—on such node
resources derived from NI-based service execution,
thus freeing up these resources for use by other
server tasks. Traffic elimination is attained by
implementing stream-selective lossiness in overload
conditions via window and time-constrained sche-
duling of MPEG video frames, employing the DWCS

656 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 7, JULY 2003

Fig. 1. Cluster hardware: Host CPU, NI CoProcessor, and interconnect. (a) Multiservice servers and (b) single-service servers.

(Dynamic Window Constrained Scheduling) algo-
rithm [63], [62]. Packet scheduling also serves to
guarantee differential packet rates and deadlines to
meet clients’ individual QoS needs and to eliminate
traffic.

1.4 Summary of Experimental Results

A DWCS-based media scheduler can run almost as fast on a
relatively slow CoProcessor as its corresponding imple-
mentation on a standard workstation platform. Specifically,
the scheduling latency of the host-based implementation of
DWCS reported in [63], [62] is � 50�s on an Ultra Sparc
CPU (300 MHz) with quiescent load. In comparison, the
scheduler’s execution on a 66 MHz i960RD CoProcessor is
� 67�s, despite the fact that the i960RD is roughly four
times slower than the Ultra Sparc host CPU. Reasons for
high scheduler performance on the CoProcessor are
presented in Section 3.2.

Performing packet scheduling on the NI rather than the
host reduces load on the server’s I/O busses, CPU, and
memory resources. In one experiment described in
Section 3.3, media content are sent directly from the NI to
a remote host, thus eliminating � 132 MB/sec of data load
from PCI bus and memory of the host node for a 32-bit wide
bus running at 33 MHz. With multiple media streams, the
load eliminated consumes a substantial fraction of the
machine’s available PCI bandwidth. The importance of
reducing PCI load is evident when considering that a media
stream that fully utilizes 1Gbps links would consume
25 percent of the capacity of a 64bit/66MHz PCI interface,
which shows that multigigabit interconnects (e.g., 10Gbps
Ethernet) would consume more than the capacity of the
fastest currently available 64bit/66MHz PCI interfaces.

Section 3.4 demonstrates the comparatively high pre-
dictability of CoProcessor versus host-based media services,
by showing that transient loads can substantially affect
host-CPU based schedulers, observing performance degra-
dation for media scheduling even for relatively low CPU
utilizations (i.e., 45 percent) and severe degradation for high
CPU utilizations (i.e., over 60 percent).

1.5 Previous Work

Earlier work conducted by our group did not address
scalable cluster media services. Further, rather than using
standard host-CoProcessor interfaces, we developed and
experimented with zero-copy interfaces and with a software
architecture for realizing a rich set of communication
instructions on NIs, termed a (Distributed) Virtual Commu-
nication Machine (DVCM [45]). The idea was to permit
application programs to dynamically extend the current set
of communication instructions resident on the NI to
support their specific needs [45], [48], as subsequently also
done in the SPINE project [17]. As with SPINE and other
prior work on dynamically extending operating system
kernels [14], [8], the services implemented by the DVCM
can vary over time, in keeping with the needs of current
cluster applications. The prototype described in this paper
does not reimplement all of DVCM. Instead, our goals are
1) to gain an understanding of how to build a scalable
media server from clustered node-NI pairs, 2) to evaluate,
in detail, an NI’s ability to support multimedia scheduling

services, and 3) to compare NI versus host-based schedul-
ing service realizations. Furthermore, while an earlier
publication by our group already demonstrated the basic
ability of a CoProcessor to perform media scheduling [29],
this paper provides basic insights into the benefits of using
CoProcessors or hosts, including an analysis of the over-
heads and trade offs concerning media scheduling with
respect to locating media schedulers on CoProcessors
versus hosts, using multiple versus single CoProcessors.
In addition, we evaluate the utility of certain CoProcessor
hardware, such as the benefits derived from caches,
software floating-point, and specialized scheduler hard-
ware units.

2 NETWORK COPROCESSOR-BASED MEDIA

SCHEDULING

2.1 Software Architecture of NI-Based Application
Services

Our NI-based support for application-specific services is
structured as three sets of software modules: host interface,
runtime support, and application-specific extensions.

2.1.1 Host Interface

The interface functions exported by the NI to the host make
NI-resident communication services appear to application
programs as specialized “communication instructions.”
These instructions are accessible via memory-mapped
pages shared by a host-resident application and the NI-
resident media scheduling service. Pages contain control
information as well as the communication buffers used for
message transfers from NI to host and vice versa, much like
the efficient message interfaces used in high performance
messaging systems like FM [40].

With this interface, media frame producers running as
application threads may stream frames to remote clients
using the NI-resident scheduler. Remote consumers may
forward frames to other consumers or buffer frames for
display or storage, where frames are scheduled for delivery
by the NI-resident scheduler.

2.1.2 Runtime

This set of NI-based modules supports the implementation
of application-specific NI functionality. Using the VxWorks
real-time operating system [64] as a basis, additional
functionality to exploit this NI’s specific hardware and to
implement efficient media scheduling include a fixed-point
library for efficient implementation of certain scheduling
computations, driver front-ends to initialize controllers/
storage, timestamp counter rollover management, and
circular queues and heaps as the buffer structures used
for media frames.

2.1.3 Extensions

NI extensions support specific applications’ needs. Exam-
ples evaluated in our previous work include atomic read
and write operations for remote NIs and efficient imple-
mentations of cluster-wide synchronization operations [45],
[48]. This paper implements and evaluates the DWCS
scheduler for streaming media on the i960RD cards.

KRISHNAMURTHY ET AL.: ON NETWORK COPROCESSORS FOR SCALABLE, PREDICTABLE MEDIA SERVICES 657

2.2 A CoProcessor-Based Media
Scheduling Service

2.2.1 Alternative Service Configurations and Basic

Performance Factors

The performance of a media scheduling service is strongly
affected by the distribution of streams and schedulers
across the underlying cluster node/NI pairs. Alternative
stream and scheduler configurations are depicted in Fig. 2,
where multiple NIs (in this case, i960RD cards) are present
on each cluster node’s I/O bus. One or more of these NIs
may run the media scheduler and also support disks
directly attached to them. This results in three possible
paths traversed by the media frames being scheduled,
shown in Fig. 2, as Paths A, B, and C.

Path A represents the case where media scheduling is
performed only on host CPUs, which also implies that all
media streams must touch upon hosts. As a result, frames
sent to clients by the server are transferred from a server
disk attached to an SCSI controller card, to server host
memory (via a PCI interconnect), then again transferred via
the PCI interconnect to a non-i960RD NI and, finally, sent
via the network to whichever clients requested the media
stream. Stated in more detail, the server’s node OS transfers
the MPEG file from disk to its filesystem buffer cache, then
to the application-level thread that has opened the MPEG
file for reading. This involves at least two memory copies as
well as the traversal of memory hierarchies and of bus
domains (i.e., I/O bus to system bus). After having been
scheduled, the second part of Path A involves the transfer of
frames from host CPU memory to the network via the NI,
again involving multiple memory hierarchy and bus
traversals.

Path B depicts a configuration in which a media stream
originates either on another machine or on disks directly
attached to an i960RD card (I1) and is then sent to some
client via a second i960RD card (I2) running the media
scheduler. This path represents the general case of NI-based

media stream scheduling, involving multiple NIs attached
to one server node, with each NI specialized to perform
certain tasks. This path involves the I/O bus, but
completely eliminates the uses of host CPU or memory.

Finally, the “best” case in terms of host node resource
usage is depicted in Path C, where a single NI acts as both
the source of the media stream using a disk attached to it
and also executes the media scheduler. Compared to Path A,
this path eliminates uses of the I/O bus, host CPU, and
memory. While imposing additional load onto the NI, one
potential advantage of this configuration is the relative
“closeness” of the media scheduler to the network, which
facilitates rapid configuration in response to changes in
network behavior. A sample dynamic reconfiguration is one
that adjusts the scheduler’s degree of lossiness in response
to observing changes in the number of packet retransmis-
sions currently experienced for this media stream. Another
possible advantage of this configuration is the ability to
share a single set of buffers between the NI’s disk and
network interface, thereby avoiding additional memory
copies [39].

Summarizing the performance characteristics of different
service configurations:

1. Performance is impacted both by the speed of
scheduling actions and by the total percentage of a
media stream’s data that traverses a cluster node’s
memory hierarchies.

2. It is affected by the total protocol processing over-
heads experienced on NI and/or nodes and by the
disk access overheads experienced for media
streams originating at or destined to storage devices.

3. It also depends on the number of bus-domain
traversals (system bus to PCI bus and vice versa)
experienced by streams.

4. Scheduling and streaming performance are also
affected by the presence of other programs executing
on nodes and NIs, measurable not only as changes in
throughput, but also in terms of the delay-jitter and
loss experienced for media streams and scheduling
actions.

2.2.2 Host-Based Scheduler Implementation

Our media scheduler is based on the DWCS (Dynamic
Window-Constrained Scheduling) algorithm described and
evaluated in [63], [62]. While shown to be a highly efficient
algorithm, most important to this paper are the ways in
which the performance of this scheduling service is affected
by alternative implementation choices for its host versus
NI-based realizations. Factors governing performance in-
clude the respective hardware and operating system plat-
forms, certain hardware features, and memory structures.
This large variety of factors precludes analytical compar-
isons of scheduling performance based on the alternative
paths shown in Fig. 2. For instance, the media scheduler’s
implementation on the host CPU running SUN’s Solaris
operating system is embedded into a separate scheduling
process. By presenting a shared memory-based API (using
System V shared memory) to processes that generate media
content, this media scheduler is made independent of the
source of media data (e.g., from host-attached disks or from
remote nodes), many media streams can be scheduled by a

658 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 7, JULY 2003

Fig. 2. Frame transfer paths.

single host-resident scheduler, and packets in any stream
may be enqueued in scheduler data structures, concurrent
with scheduling analysis and dispatch of previously
enqueued packets. Additional scalability in scheduler
operation with respect to number of packet streams, stream
rates, and “tightness” of deadlines and loss-tolerance is
achieved by varying the rates of scheduler actions [63], [62].

2.2.3 The NI-Based Scheduler Implementation

The comparatively lighter-weight NI-embedded implemen-
tation of the DWCS scheduler is shown in Fig. 3. It is
layered on top of the NI’s VxWorks real-time operating
system. It runs as a single VxWorks thread, uses pinned
memory for disk and/or network buffers and to interact
with other NI-resident threads. Its host interface maps some
of its memory to the host via the PCI device. Compact data
structures (scheduler attributes or scheduler frame descrip-
tors) for packet schedule representation minimize the use of
NI memory and memory usage is reduced further by not
copying frames, whenever possible. These implementation
choices attempt to compensate for the relative resource
paucity on the NI. In addition, the NI-based scheduler takes
advantage of certain hardware features existing on the
i960RD card. First, the code used for scheduling analysis is
decoupled from the schedule representations (i.e., schedul-
ing data structures). The intent is to evaluate the perfor-
mance effects of using alternative representations, including
those that use the i960RD’s hardware-supported FCFS
circular buffer queues. This is important because, with
DWCS scheduling, packets in a given stream (at the same
priority level) may be scheduled based on a service tag
associated with each packet. Second, by using one thread
for both packet scheduling and dispatch, a single data
structure can hold all frame descriptors (or the attributes
describing them), thus conserving memory. Also, packets
will not experience additional queuing delay and jitter in
dispatch queues [63], [62].

The NI-based scheduler operates as follows: It is booted
in conjunction with the VxWorks Operating System, from
flash-ROM on the i960RD NI card. Initialization code in the

kernel spawns the scheduler thread. Any media frames
received by the NI-based scheduler are temporarily stored
on the NI, using the i960RD NI’s 4MB of on-board memory,
which may expanded to 36MB. To conserve memory, only a
single copy of “to-be-scheduled” frames is kept in NI
memory and scheduling analysis and dispatch directly
manipulate addresses of frames. Frames are stored on a per-
stream basis. Head-of-line packets in each stream form loss-
tolerance and deadline heaps and encode stream priority
values. The scheduler must pick the stream with the highest
priority according to rules described in [63], [62].

Storing frames directly in NI memory (rather than in host
memory) reduces the overall scheduling analysis and
dispatch latency for each frame and the jitter experienced
by a sequence of frames. It also reduces mean frame
queuing delay since frames need not be “pulled” from host
memory. A detailed analysis of the performance effects of
locating various data structures on NIs versus hosts appears
elsewhere [45].

As shown in Fig. 3, a circular buffer is maintained for
each stream, with separate head and tail pointers. Frame
producers inject frames into the scheduler using the tail
pointer and the scheduler reads frames using the head
pointer. This eliminates any explicit synchronization needs
between readers and writers. A deeper understanding of
the scheduler’s operation requires knowledge of the
algorithm it executes, which is outlined next.

2.2.4 Some Details about the DWCS

Scheduling Algorithm

DWCS is designed to maximize network bandwidth usage
in the presence of multiple packets that have individual
delay constraints and loss-tolerances. The per-packet delay
and loss-tolerance attributes are derived from higher-level
application constraints:

. Deadline—This is the latest time a packet can
commence service. It is determined from a specifica-
tion of the maximum allowable time between
servicing consecutive packets in the same stream.

KRISHNAMURTHY ET AL.: ON NETWORK COPROCESSORS FOR SCALABLE, PREDICTABLE MEDIA SERVICES 659

Fig. 3. (a) The NI implementation of DWCS uses two heaps: one for deadlines and another for loss-tolerances. (b) Using a circular queue for each

stream eliminates the need for synchronization between the scheduler that selects the next packet for service and the server that queues packets to

be scheduled.

. Loss-tolerance—This is specified as a value xi=yi,
where xi is the number of packets that can be lost or
transmitted late for every window, yi, of consecutive
packet arrivals in the same stream, i. For every yi
packet arrivals in stream i, a minimum of yi ÿ xi
packets must be scheduled on time, while at most xi
packets can miss their deadlines and be either
dropped or transmitted late, depending on whether
or not the attribute-based QoS for the stream allows
some packets to be lost.

At any time, all packets in the same stream have the same
loss-tolerance, while successive packets in the same stream
have deadlines that are offset by fixed amounts from their
predecessors.

Using these attributes, DWCS has the following abilities:

1. It can limit the number of late packets over finite
numbers of consecutive packets in loss-tolerant or
delay-constrained, heterogeneous traffic streams.

2. It does not require a priori knowledge of the worst-
case loading from multiple streams to establish the
bandwidth allocations necessary to meet per-stream
delay and loss-constraints.

3. It can safely drop late packets in lossy streams
without unnecessarily transmitting them, thereby
avoiding needless bandwidth consumption.

4. It exhibits both fairness and unfairness properties
when necessary.

Proofs of these properties and additional detail about
DWCS appear in [63], [62]. West and Poellabauer [61]
describe an approach where deadlines are compared before
window-constraints. This approach was intended to pro-
vide hard guarantees on loss constraints. The slight
variations of the DWCS algorithm in [61] currently being
investigated do not concern its running time or perfor-
mance and are therefore not relevant to this paper’s
contents, which is based on the original version of DWCS
[63], [62].

2.2.5 Discussion

One property of DWCS (and of other media schedulers) is
the fact that packets are dropped under certain conditions.
This means that a scheduler operating on the NI will
typically not forward all packets to the host and/or to other
recipients. The resulting reduction in node resource usage is
one motivation for placing scheduling onto the NI. Another
motivation is the network-near nature of an NI-resident
media scheduler, which enables it to rapidly change its
operation in response to changes in network conditions. In
previous work, we have demonstrated performance ad-
vantages due to such network nearness for other NI-
resident communication services [48]. Furthermore, in
previous and ongoing research, we are demonstrating the
advantages derived from traffic filtering when placing
computations other than media scheduling onto NIs, such
as the downsampling of media of scientific data [42], [23],
both of which use application-level header information to
eliminate certain packets from a data stream. Other
methods for data stream downsampling, however, like
image or sensor data conversion [67], require levels of
processing power not offered by NIs like the i960RD boards
used in this paper. They require additional processing
power, for which we are experimenting 1) with FPGA

devices attached to NIs [26], [27], [30] and 2) with network
processing microengines on IXP boards [68].

3 INSIGHTS AND EXPERIMENTAL EVALUATION

In addition to validating the feasibility of DWCS-based
media scheduling on NIs, this section also demonstrates
performance advantages derived from this approach.

3.1 Experimental Setup

Experiments use a typical PC-based server platform, in our
case a Quad Pentium Pro server (4 X 200MHz CPUs) running
Solaris 2.5.1 X86 with 128 MB of memory. Three NI cards are
placed into separate PCI slots on the same bus segment. One
NI hosts the scheduler and scheduler data structures. The
other two cards serve as stream sources for MPEG traffic.
Disks used as stream sources are directly attached to the NIs
and to hosts. An MPEG segmentation program [63], [62] is
used to partition an MPEG-encoded file into I, P, and B
frames, thereby emulating the MPEG file segmentation
process in an MPEG player. The MPEG segmentation process
may be run on the host CPUs or the NIs. MPEG stream
producers on the host or NIs inject frames into the scheduler
queues on the scheduler NI using PCI bus transfers. The
scheduler picks frames based on scheduling criteria and
dispatches them to the network. Client machines running
MPEG players may attach to the scheduler card for MPEG
stream delivery. Built-in monitoring mechanisms measure
desired performance parameters at the scheduler card or at
the remote client end. Remote client machines connect to the
scheduler NI using a 100Mbps Ethernet switched intercon-
nect [63], [62], [21], [38], [64].

3.2 Scheduling on NIs: Basic Capabilities

3.2.1 Microbenchmark Definition

Microbenchmarks measure the basic performance of alter-
native scheduler implementations and placements. In all
such benchmarks, the scheduler is started only after all
frames have been written into its circular buffer, which then
contains the addresses of frame descriptors. “Total Sched
Time” is the time to schedule all of the frames denoted by
these addresses and to dispatch them to the network. “Avg
Frame Sched Time” is the average time to schedule a single
frame on the network. “Total time w/o Scheduler” is the
cumulative time to transmit all frames on the network
without the scheduler. These measurements are attained by
rerouting execution in the code to a point where the address
of the frame to be dispatched is readily available and does
not need scheduler rules. “Avg Frame Time w/o Schedu-
ler” is the average time to transmit a single frame without
the scheduler.

3.2.2 NI-Based Scheduling is Feasible

Scheduling overhead on the i960RD NIs is experimentally
shown to be � 67�s. This compares favorably with the
scheduling latency of the host-based scheduler reported in
[63], [62] as � 50�s. It also corresponds to about half an
Ethernet frame time (� 120�s) on a 100Mbps link, thus
indicating that it is viable to schedule multipacket MPEG
frames at network speeds. It also suggests, however, that
finer-grain (e.g., per packet) scheduling would consume too
much of the NI’s CPU cycles and, thus, require processing
resources beyond those available on this and, likely, on
other NIs.

660 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 7, JULY 2003

3.2.3 NI-Based Scheduling Requires Tuning

Table 1 records microbenchmarks for both a software
floating-point version and a fixed-point version of the
DWCS scheduler. The table also shows that efficient
scheduler operation on the relatively slower NIs requires
some degree of tuning. For example, floating-point compu-
tations are used in loss ratio computations performed in
DWCS. However, like other NIs, the i960RD does not have a
floating-point unit. Wind River Systems (see [64]) has
provided a software floating-point (FP) library that may be
configured into the VxWorks kernel. Measurements de-
picted in Table 1 show that software floating-point
computation results in undue scheduling overheads. We
address this issue by development of a DWCS-specific
fixed-point version of the library, where arguments are
simply stored as fractions with numerator and denomi-
nator, with divisions implemented as shifts. This reduces
computation latency by 20�s, resulting in a latency of
� 78�s for a DWCS scheduling decision (i.e., the difference
between “Average frame Sched time with scheduler” and
“Average frame Sched time without the scheduler”) for the
case of fixed-point computation. The quality of scheduling,
expressed in terms of parameters like delay-jitter, loss, and
throughput, is not affected because the explicit representa-
tion and manipulation of numerators and denominators
have the numerical accuracy required by the scheduler’s
operation.

Additional reductions in scheduling latency on the NI
demand that the data cache on-chip be enabled.1 Table 1
shows that the presence of the data cache improves average
frame scheduling time for both the software FP and the
fixed point implementations of DWCS by � 11�s. These
improvements are due to the caching of scheduler data
structures, specifically, of the stream priority values and
descriptor addresses, which are updated every scheduler
cycle. As scheduling decisions are made on a frame-by-
frame basis, data caching has the effect of reducing the
“Total Scheduling time” by � 2182�s and � 2130�s,
respectively, for the software FP and fixed-point imple-
mentations. Scheduler decision latency is � 67�s (i.e., the
difference between “Average frame Sched time” and
“Average frame time without the scheduler”) for the
fixed-point version.

3.2.4 Runtime NI Extension Is Important

Data caching is one reason for using multiple NIs with each
cluster node. By dedicating an NI to a specific task (i.e.,
scheduling versus disk access) and thereby separating the
NIs that produce media streams resident on attached disks
from NIs that schedule such streams, scarce NI resources
can be specialized to perform these tasks efficiently. For the
i960RD NIs, this means that the scheduler thread can
benefit from data caching without being limited by the disk
driver that disables the data cache [63], [62], [21], [38], [64].
More generally, this fact indicates that the software
architecture of NIs must permit the runtime extension of
NI functionality so that NIs can be dynamically specialized
for the diverse tasks they must perform on behalf of
applications running on the host nodes they are connecting
[21]. A simple extension interface for an NI is described in
[45]. Our ongoing work is generalizing this interface to
dynamically configure the NI’s software and its attached
FPGA or other specialized stream processing hardware.

3.2.5 Hardware Queuing Is of Limited Utility

The i960RD cards provide a number of hardware resources
for device operation. These include outbound and inbound
circular queues and index registers. The “Hardware
Queues” on the i960RD card are a set of 1,004 32-bit
memory-mapped registers in local card address space.
Accesses to the memory-mapped registers do not generate
any external bus cycles (off-processor core). To investigate
whether indexing into a circular buffer of frame descriptors
may be done faster if their addresses reside in memory-
mapped register space, we implemented a circular buffer
where each 32-bit register holds the descriptor (with
address and other attributes) of an MPEG frame. Measure-
ments similar to Table 1 were completed. The results
described in [28] indicate no additional performance
advantages derived from hardware-based descriptor
queues and, more generally, they again demonstrate the
relative paucity of NI-based hardware resources suitable for
wide ranges of application-specific computations. We
derive from this paucity the need for dynamic specializa-
tion and tuning of application-specific computations when
they are mapped to NIs. We have had similar experiences
with more modern NIs, like Alteon’s gigabit Ethernet
boards [55], and even with “richer” boards, such as Intel’s
IXP 1200 router boards [52], [18], [68].

3.2.6 Future NIs Can Schedule Media Frames for

Gigabit Links

We have demonstrated that card-to-card PCI transfers may
be completed without host involvement, thereby making
the use of multiple NIs on a single host advantageous and

KRISHNAMURTHY ET AL.: ON NETWORK COPROCESSORS FOR SCALABLE, PREDICTABLE MEDIA SERVICES 661

1. Data caching has to be explicitly enabled on our i960RD NI because the
VxWorks disk driver currently supports disk accesses only with data cache
disabled (the disk driver disables the data cache automatically on reboot).
Therefore, for the measurements in Table 1, we first read the MPEG file
from the NI-attached disk and populate the NI-resident circular buffer.
After this, we enable the data cache, since further accesses to the locally
attached disk are not required.

TABLE 1
Scheduler Microbenchmarks (Data Cache Effects)

also leaving the host CPU free to do other tasks [63], [62],
[64]. We have established that it is feasible to offload
scheduling functionality from the host to NIs while still
meeting the frame-time requirements of MPEG frames. In
general, for a scheduling discipline to schedule packets at
wire-speeds and to achieve full-link utilization, decisions
must be completed within Ethernet frame times. Results
from this section show that even on a 66 MHz i960RD
processor, the scheduler can pick winner-entities in � 65�s,
which is within an Ethernet frame time of 120�s at 100Mbps
for a 1,500 byte frame.

For full (max MTU) Ethernet frames, the i960-based
CoProcessors can handle per-frame scheduling for up to
100Mbps Ethernet links. Furthermore, larger scheduling
units like MPEG-I frames (each comprised of multiple
Ethernet frames) may be schedulable even for gigabit
Ethernet links.

A number of vendors are including faster and richer
CoProcessors on NI boards. Alteon [55] AceNic includes
two MIPS cores, and the IXP1200 [52] from Intel has a
StrongArm core and six hardware RISC microengines
clocked at 200MHz. With substantially faster processors, it
is likely that media schedulers running on these boards can
meet the packet-time requirements of Ethernet frames at
gigabit link speeds, as indicated by initial results described
in [68] and Table 2.

Table 2 shows the results from running the packet
scheduler (similar conditions as in Table 1, i.e., with data-
cache support and integer version of the packet scheduling
algorithm) on a StrongArm simulator (evaluation version 1.1
from ARM) for two different configurations. Both config-
urations have compiled code (ARM gcc compiler flag -O1)
being run directly by the simulator without any operating
system (no external interrupts but with memory manage-
ment). These configurations are similar to code running
directly on the IXP1200 RISC microengines (without
operating system support). Results from the original i960
configuration are shown in Table 2 for comparison (with
VxWorks support). A StrongArm SA-110 configuration
with processor and memory speeds similar to the i960
configuration yields a scheduler latency of � 17:48�s,
which is substantially lower than the i960 scheduler latency.
The third configuration is similar to the IXP1200 RISC
microengines (clocked at 200MHz without any OS support)

at 287 MHz and with a memory bus speed of 95.7 MHz.
This shows a scheduler latency of � 5:21�s, thereby capable
of scheduling at least 1,500-byte frames at gigabit link rates.
We expect to be able to lower this with careful optimization
of code and compiler-assisted data placement in cache (also
see [68]). We conclude from these measurements that
software versions of the DWCS packet scheduler hold great
promise in supporting gigabit link scheduling using
modern processor chips.

3.2.7 Multiple Gigabit Links or 10Gbps Links Require

Custom Packet Scheduling Hardware

Current servers already support two to three 1-Gbps
interfaces to match the backplane bandwidth of the internal
PCI backplane interconnect (4.2Gbps). With the arrival of
10Gbps Infiniband and 10Gbps Ethernet hardware ([3]), the
software solutions for packet scheduling explored in this
paper are unlikely to scale to large numbers of packet
streams. A follow-up research effort has completed con-
struction of a custom hardware scheduler for 10Gbps links.
The ShareStreams hardware prototype consists of a Xilinx
Virtex I/Virtex II CoProcessor for real-time streaming
under host processor systems software control [30]. We
refer the reader to [30] for details regarding the systems and
hardware architecture and results attained for the Virtex II
FPGA chip. Insights depicted in Table 3 demonstrate that
custom hardware support is needed for scalability. With
such custom hardware, even for 1,024 streams, the
scheduler latency can approach 1,500-byte packet-times
for 10Gbps links (1:2�s).

An issue for custom scheduling CoProcessors not yet
addressed in this paper is that considerable input band-
width is required to the packet scheduling hardware unit as
arrival-times for packets must be provided to the scheduler
hardware unit (32-bit values) every 1:2�s. PCI-66MHz
(4.2Gbps peak) buses and PCIX-133MHz (8.5Gbps peak)
buses do not have the backplane bandwidth to support
10Gbps links. We expect upcoming Infiniband intracompu-
ter (system internal) interconnects to provide the internal
bandwidth to support 10Gbps NIs [7]. For current Gbps NIs
however, enough internal bandwidth exists with PCI and
PCI-X to support multi-Gbps cross-traffic and transmission
of packet-arrival times to a specialized scheduler hardware
unit.

662 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 7, JULY 2003

TABLE 2
Scheduler Latency for Different Processor Configurations

TABLE 3
Scheduler Latency with Virtex II FPGA Hardware

3.3 Media Scheduling and Streaming on NIs:
Opportunities and Advantages

CoProcessors can affect media scheduling in ways other
than filtering frames in real-time and the consequent
removal of load from cluster nodes’ I/O infrastructures,
CPUs, and memories. Next, we evaluate the ability of NIs to
perform more complex tasks, such as the retrieval of media
content from disks directly attached to them. We also
demonstrate that media scheduling on a CoProcessor is not
subject to perturbation caused by system overloads. An
intuitive reason for this fact is the relatively simpler nature
of NIs compared to host hardware and software. This fact,
coupled with the smaller, only slowly changing set of tasks
a typical NI performs, makes it easier to add functionality to
the NI without perturbing its other tasks or, at minimum, it
makes it easier to diagnose the degree of perturbation such
tasks will experience. This is not true for host CPUs, even
when they are multiprocessors like the quad Pentium Pro
machines used in this research, when processors are
dedicated to run stream schedulers and when using all
means possible to separate host-resident stream schedulers
from other host tasks. Experimental results validating this
claim appear later in this section.

3.3.1 There Are Multiple Alternatives in Media

Streaming from NI-Attached Disks

One promise of server-attached I/O CoProcessors is that
simple tasks can be performed entirely independently of
host CPUs, thus freeing them for other duties and/or
creating a more scalable server system comprised of the
host and a number of relatively low-cost I/O CoProcessors.
For high performance applications, researchers have de-
rived benefits from the concurrency and asynchrony of
execution of host versus NI tasks and from the low-latency
access most NIs have to the actual network transceiver [45],
[48], [37]. For media scheduling, we next evaluate the ability
of CoProcessors to independently stream media frames to
clients once the host CPU has identified the appropriate
media files and their storage or remote sources. The
experiments shown below evaluate 1) whether a single NI
can be both a data source and perform media scheduling,
2) how two NIs, one acting as the data source, the other
performing scheduling, compare in performance to the first
configuration and, finally, 3) whether the high levels of
performance offered by host-resident file systems can be
matched by NI-attached disks and their file system support.
Option 1) is feasible for our NIs because each i960RD card
has two SCSI ports and two 100 Mbps Ethernet ports, as
shown in Fig. 1. Disks may be attached to the card’s
SCSI ports and media may be streamed directly to the
network using the card’s 100 Mbps Ethernet port. We also

investigate Option 2) because, for other NIs, we can assume
the presence of peer-to-peer PCI support and an ability to
change firmware to accommodate media scheduling, but
disk accesses may have to be performed either via network-
attached disk devices (i.e., media data is streamed to the NI
via a network link) or from an intelligent disk controller [1].
Our experience is that, for buses like PCI with multi-
transaction timers and interdevice addressing capabilities,
peer-to-peer transfers can be performed in an efficient
manner. We note that both for Options 1) and 2), host CPUs
like UltraSparcs and Pentium IIs are insulated from the I/O
bus transfers involved through the UltraSparc Data buffer
(UDB) and the PCIset, respectively.

3.3.2 NIs Can Stream Data from Their Attached Disks

with Performance Comparable to that Achieved

by Hosts

This statement is validated experimentally in the remainder
of this section. Specifically, consider a host CPU-based
scheduler that uses host filesystem buffers to store media
frames, consumes I/O and system bus bandwidth, host
memory, and kernel/user space buffers for dispatching
frames to the network. An MPEG file resident on disk must
be transferred to the host’s filesystem buffers by the disk
controller via the I/O bus. This is shown as Path A in Fig. 2.
In comparison, a network interface card with an attached
disk acting as a media source can use peer-to-peer PCI
transfers to move data from disk, to scheduler input queues,
to the network, thereby eliminating the use of host-based
resources, including the host system bus. This is shown as
Path B in Fig. 2. Path C streams frames from a disk directly
attached to the NI through to the network, eliminating PCI
I/O bus bandwidth consumption, host-bus bandwidth, and
host-memory resources in Fig. 2.

Next, we present results from critical path benchmarks
recorded for three different configurations of frame
transfers. All benchmarks measure the latency of a 1,000
byte frame transfer from disk to remote client (over an
Ethernet network) averaged over 1,000 transfers. The same
physical disk device is used in all experiments. The
measurements in Table 4 record the latency of a single
frame transfer.

NI-attached disks approximate the performance of fast

host I/O systems. Consider Experiment I in Table 4,
represented by Path A in Fig. 2. An MPEG file on an
internal system disk attached to a disk controller on the PCI
bus is streamed to a remote client. The system disk is
attached to an SCSI controller card on the PCI bus. The
results, shown in Table 4, Experiment I, show a total frame
transfer time via the network of 8 ms (including disk access

KRISHNAMURTHY ET AL.: ON NETWORK COPROCESSORS FOR SCALABLE, PREDICTABLE MEDIA SERVICES 663

TABLE 4
Critical Path Benchmarks

latency) when using the VxWorks filesystem on the Solaris
host. This compares unfavorably with the results in Table 4,
Experiment II, where a total of 5.4 ms is required to perform
the same action for a file already resident on the NI’s
attached disk (Path C in Fig. 2). It does indicate, however,
that scalability in the number of media streams serviced by
a single host can be improved by the addition of low-cost
I/O CoProcessors directly attached to the network. These
results for Experiment I were obtained on Solaris 2.5.1 with
an Intel 82557-based NI, which has the same Ethernet
transceiver chipset as the i960RD CoProcessor. The system
disk attached to the disk controller was used to serve frames
using the Intel NI. The VxWorks filesystem is a DOS-based
filesystem and this was mounted on the Solaris host in
order to mitigate the effects of variations in file system
performance and disk layout. Thus, the latency component
common to Experiments I, II, and III is the disk access time,
which is � 4:2ms for a single frame (see the value “4.2 disk”
in Table 4).

The advantages of NI-attached disks are reduced
substantially when using the faster Solaris UFS filesystem
on the host. In this configuration, Experiment I experiences
a disk frame latency of only 1 ms due to the larger logical
block size (8K) used by UFS and its disk block caching and
prefetching enabled by the host’s large main memory.
VxWorks does not support the UFS filesystem so that we
were unable to mount it on the NIs for Experiments II and
III [13], [38], but we hypothesize that its use would improve
the performance of Experiments II and III substantially if
the NIs have large disk buffer caches. While this is one
strong recommendation we derive from this research for
NI-based media access, we also note that the host-based
performance advantages gained from buffering do not
extend to live media (i.e., media captured and distributed in
real-time). Also, the NI CoProcessor can be allowed access
to the filesystem disk block buffer cache on the host so that
frames can be accessed directly by the CoProcessor and
streamed to the network using I/O bus DMAs. The NI
CoProcessor can use the host filesystem buffer cache directly
and leverage the more efficient host filesystem for bulk data
transfers. This can help alleviate the shortcomings of the NI
attached filesystem in a substantial way.

It is advantageous to use multiple NIs, each with

specialized tasks. A property of CoProcessors is that the
richer their functionality, the larger the latencies of their
message transfers and, possibly, the smaller the total
message throughput they support (see Section 3.2) [54],
[37]. Our approach to this problem is to specialize NIs such
that each NI only performs a limited number of tasks. In the
case of media streams, this means that one NI has an
attached disk; the other acts as a media scheduler and
network gateway. Only small additional overheads are
experienced by this NI configuration (also see Path B in
Fig. 2). Specifically, for a single media frame, the required
peer-to-peer PCI transfers add only about 15�s to the total
time of accessing a frame, scheduling it, and dispatching it
to the network (we used DMA writes from card-to-card to
achieve this). We achieved transfers of 66.27 MB/s along
with PIO read and write latencies of 3:6�s and 3:1�s on a
32-bit 33MHz PCI bus.

The experimental results described thus far have
demonstrated the viability of NI-based disk attachment
and media streaming, which effectively removes the host
CPU from the execution of such relatively straightforward
server actions.

NI-based streaming has inherent performance advan-
tages. To generalize our cost arguments concerning NI-based
data streaming and scheduling, consider that the action of
streaming frames involves 1) selecting a stream from a set of
streams (sched), 2) accessing a frame from the selected stream
(access), and 3) transferring the frame to the client (transfer).
Stated more formally, let tsched denote the time to select a
stream and tdelivery denote the time taken to deliver a single
frame from the selected stream to the output link. Let taccess be
the time to access the frame (from storage) and ttransfer denote
the transfer latency to the output link. Then:

tdelivery ¼ taccess þ ttransfer
and

tstream ¼ tsched þ tdelivery;

where tstream is the total time for streaming a single frame.

In the case of host-based streaming, tdelivery involves the

relatively complex Path A shown in Fig. 2, whereas, for a

CoProcessor, tdelivery involves the less complex Paths B or C in

Fig. 2, the latter not involving any host/IO bus domain

traversals. In conditions of low load and extrapolating from

the measurements depicted in Table 4 (assuming the same

storage source and file system capabilities for both CoPro-

cessor and host), tstream for host-based streaming is� 8:050 ms

(host scheduler overhead is � 50�s) and � 5:465ms for

CoProcessor-based streaming for a single 1,000 byte frame.

The advantages of CoProcessor-based streaming are exacer-

bated when there are host-CPU loads, as shown in Section 3.4,

since tstream for a host can experience significant increases

even for transient loads. Further, note that tsched is necessarily

experienced by every frame that requires scheduling, as

stream selection is done on a packet-basis and, therefore,

cannot be pipelined. As a result, if the term tHostLoadstream represents

tstream with host load, then, for a host CPU, tHostLoadstream > tstream.

On the other hand, for an NI CPU, host load will not affect

tstream, as evident in Path C in Fig. 2.

3.4 Perturbation of NI versus Host-Based
Scheduling under Load

3.4.1 NI-Based Scheduling Has Reduced Delay-Jitter

The previous section has already argued that a packet
scheduler running on the host (i.e., see Path A in Fig. 2) uses
the host’s memory, bus, and I/O bus resources. In compar-
ison, NI-based scheduling (see Paths B or C in Fig. 2) may
completely avoid the consumption of I/O bus bandwidth (see
Path C in Fig. 2) and never uses host memory and bus
bandwidth. It will, therefore, be unaffected by host CPU load.
This is in stark contrast to host-based scheduling, which is
easily affected by the host OS’s need to run higher-level
application services, where even a minimal OS installation
runs system daemons and where media servers maintain
meta-information in additional servers or databases. This
section demonstrates experimentally the effects of CPU

664 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 7, JULY 2003

contention on host-based scheduling, where degradation is
measured as a decrease in output bandwidth available for a
stream and as an increase in its frame queuing delay.
Specifically, when the DWCS scheduler receives CPU service
at lower rates because of increased service load, that will lead
to back-logged frames in scheduler input queues, which in
turn causes missed deadlines and loss-tolerance violations.
The resulting packet-dropping leads to lower scheduling
quality. This is particularly important for jitter-sensitive, live-
media traffic, where undue variation of the rate at which the
frame/packet scheduler receives CPU services may further
increase delay-jitter. Additional delay-jitter in frame output is
caused by waits on congested resources, such as the multiple
bus/network scheduling domains (system bus to I/O bus
and then to the network) and memory hierarchies that must
be traversed by host-scheduled streams.

3.4.2 Experimental Demonstration of Perturbation of

Host-Based Scheduling in Loaded Conditions

Experimental Setup. The experimental setup consists of a
Quad Pentium Pro server (4 X 200MHz CPUs) running
Solaris 2.7 x86 with 128 MB of memory. This machine has
two separate PCI bus segments and we place NIs on each of
the PCI bus segments, as shown in Fig. 4.

For host-based scheduling load experiments, Intel 82557
100Mbps transceiver-based NIs are placed in separate slots
on each of the two bus segments (components 3 and 4 in
Fig. 4). For NI-based scheduling load experiments, one of the
Intel 82557 NIs is replaced with a i960RD NI (component 3 in
Fig. 4). The machine runs the Apache Web server version
1.3.12 (with a maximum of 10 server processes and starting
process pool with five server processes) [6]. The Web server is
loaded using “httperf” (version 0.6) [36] run on remote Linux-
based clients. Flexible specification of load from remote
clients is allowed by “httperf,” where Web pages may be
requested at a certain rate by a number of connections, with a
user-specified ceiling on the total number of calls. The

experimental infrastructure is shown in Fig. 4. Placing two
NIs on different PCI bus segments separates Web load and
stream traffic. One of the NIs (with IP address bound to the
Intel 82557-based NI) is used to load the Web server using
“httperf” client traffic, while the other NI (with a different IP
address bound to the NI, 82557-based or i960RD NI) is used to
request and source stream traffic.

Moderate system loads have substantial effects on

host-based scheduling. The first set of experiments
involves the host-based scheduler version of the DWCS
algorithm. For these experiments, two of the CPUs are
brought offline, for a total of two online CPUs. The Apache
Web server in the configuration described above is brought
up and bound to the IP address of one of the NIs. The
DWCS scheduler is initiated and bound to one of the host’s
processors, using the “pbind” Solaris facility [13]. Client
requests are accepted on a separate IP address bound to a
different NI. This allows “httperf” Web clients to connect
and load the Apache Web server using a specific IP address
bound to a specific NI. Similarly, MPEG clients may connect
to a different IP address, again bound to a different NI, for
stream delivery. This experiment involves Components 1, 2,
3, and 4, as shown in Fig. 4, with Component 3 as an Intel
82557 NI. Two MPEG clients shown as Streams s1 and s2 (in
Fig. 5) connect to the system.

These server-load experiments demonstrate that even
moderate server loads can result in substantial variations in
frame bandwidth and delay. Consider, for instance, the
CPU utilization depicted in Fig. 4b (measured using Solaris’
Perfmeter facility) [13], which is the load experienced when
the host-based scheduler is run with and without any load
imposed by the remote Web clients. With no Web load and
peak utilization around 35 percent, with an average
utilization of 15 percent, the corresponding variations in
bandwidth and mean queuing delay experienced for two
streams s1 and s2 appear in Figs. 5a and 5b (see the entries
labeled “no Web load”). In comparison, even a moderate

KRISHNAMURTHY ET AL.: ON NETWORK COPROCESSORS FOR SCALABLE, PREDICTABLE MEDIA SERVICES 665

Fig. 4. (a) Server loading architecture—Web and media traffic. (b) CPU utilization variation with server load.

additional host load, when applying load from Web clients
at the 45 percent utilization level, leads to noticeable
differences in the observed variations in bandwidth and
queuing delay. Specifically, at the 45 percent load level, a
decrease in bandwidth to 200,000 bps is seen at the 15s-20s
time mark and the bandwidth settles at only 230,000 bps
(see Fig. 5). The queuing delay graph in Fig. 5b also shows
the effects of loading, with frames suffering additional
queuing delay of around 2s in the presence of load. A
substantial Web load applied at the 60 percent level results
in what may be considered undue levels of variation. At the
60 percent average load level, severe degradation is seen.
For instance, Fig. 5 shows a decrease in bandwidth to
around 100,000 bps when the CPU utilization is in the
excess of 80 percent (see Fig. 4b) during the period from
40s-80s. The bandwidth settles to less than 125,000 bps—half
of the bandwidth seen in the absence of Web server load
(see Fig. 5). Frames can experience excessive queuing delay
in the presence of load (60 percent average utilization), up
to three times (30,000 ms) than seen in the absence of load
(10,000 ms).

NI-based scheduling is not affected by host loading. The
next set of experiments involves the NI-based scheduler. For
purposes of this experiment, one CPU is brought offline (for a
total of one online CPU), with one 82557-based Intel NI used
for Web server loading and a i960RD-based NI used for

MPEG streaming (DWCS runs on the NI). The i960RD NI is

placed on a separate bus segment and MPEG frames are

streamed to clients by the NI-based scheduler. Loading of the

Web server is done using the other NI placed on a separate

bus segment.
This experiment involves components 1, 3, and 4, with

component 3 as an i960RD NI that directly streams media

content to clients. Initially, streams are played to MPEG

clients in the absence of any Web server load, with

bandwidth variations and queuing delay measured on the

NI-CPU. Next, the system is loaded using the load profile

shown in Fig. 4b (for 60 percent average utilization).
The measurements depicted in Figs. 6a and 6b demon-

strate that the NI-based scheduler is immune to Web server

loading. In addition, no noticeable variations in bandwidth

and queuing delay are experienced (see Figs. 6a and 6b) for

streams s1 and s2, for loaded and unloaded servers). A

settling bandwidth of around 260,000 bps is observed for

stream s1, which is similar to the settling bandwidth

achieved by the host-CPU based scheduler in the absence

of load (250,000 bps in Fig. 5). These results also indicate

that the i960RD NIs have sufficient “horse-power” to stream

scheduled media frames to clients at real-time rates.

666 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 7, JULY 2003

Fig. 5. (a) Bandwidth variation with load. (b) Queuing delay variation with load.

Fig. 6. (a) NI Bandwidth distribution snapshot: unaffected by system load. (b) NI Queuing delay snapshot: unaffected by system load.

4 RELATED WORK

4.1 Communication CoProcessors

A number of NI-based research projects have focused on
providing low-latency message passing over cluster inter-
connects like ATM, Myrinet, FDDI, and HIPPI [15], [40], [58],
[57] by using intelligent NIs equipped with programmable
CoProcessors [10], [21], [38], [45], [49]. In part, such work is
motivated by the presence of programmable CoProcessors in
NIs. More importantly, past research has demonstrated
improved performance derived from NI reprogramming
for control operations that touch multiple machines like
collective communications [53], transactions [48], barriers
[37], [45], and simpler cluster-wide synchronization con-
structs [48]. NIs have also been programmed to provide new
services, like performance monitoring [34] or like the
implementation of portions of protocol stacks on NIs [12].

Newer hardware developments present an interesting
perspective on such research. Namely, with gigabit Ethernet
[55] as with the higher throughput smart port cards being
developed to power the Internet’s switching [32] and routing
infrastructure, programmable CoProcessors (sometimes
even enhanced by configurable hardware like FPGAs [30])
are becoming increasingly common. This trend coupled with
the decreasing costs of processor chips suggests that future NI
or I/O processor hardware will have substantial CPU cycles
and memory with which additional services may be
implemented. One such product is Intel’s IXP 1200 router
board [52], which we have begun to use as an intelligent
CoProcessor for a cluster machine [68], [18].

Our work leverages prior efforts and current hardware
trends by assuming that CoProcessors cannot be enhanced
to provide all desired additional services at all times.
Instead, their relative resource paucity indicates the im-
portance of offering, for CoProcessors, runtime extension
interfaces via which the appropriate functionality can be
placed onto NIs at the right times. One such interface is
described in our prior research with FORE SBA-200
(i960CA) cards [45], another in the SPINE project [17], the
latter also addressing safety issues for such extensions.

The I2O industry consortium defined a specification for
development of I/O hardware and software to allow
portable device driver development by defining a mes-
sage-passing protocol between the host and peer I/O
devices [21], [38], [64]. The focus was on relieving the host
from tasks that may be offloaded to a programmable NI.
Industry efforts included I2O cards for RAID storage
subsystems and off-loading TCP/IP protocol processing to
the NI from the host [21], [38], [64]. While this paper uses
sample I2O cards for the experimental results being
presented, we do not rely on the I2O communication
standard, but instead, simply use the card’s CoProcessor
resources. In contrast, the results presented here could
benefit from the presence of improved CoProcessor-Host
connectivity, as promised by the Infiniband standard [7],
which offers intracomputer (within a system) and inter-
computer (between systems) interconnects at 2.5 Gbps,
10 Gbps, and 30 Gbps. Improved intracomputer bandwidth
using an Infiniband crossbar would help for several
reasons. First, additional bandwidth from the memory
subsystem to the NI would enable us to store packets in
multiple places, including both the host memory subsystem
or NI memory, with sufficient bandwidth available to
stream packets directly from memory to output link(s).

Second, storage controller channel adaptors could provide
stream blocks directly to the NI using the crossbar
interconnect, as the storage controller and the NI would
be peers on the same Infiniband crossbar ports. The high
bandwidth of an Infiniband intercomputer network would
promote scalability by allowing many streams to be
serviced at output link wire-speeds. In general, concerning
intelligent CoProcessors in general, high performance
intraprocessor interconnects like Infiniband help bridge
the “performance wall” between CPU, I/O devices, and the
host processor/memory subsystem. As a result, intelligent
NI-based CoProcessors would be better able to use their
dedicated CPU resources to provide predictable, dedicated
delivery of media streams. Similarly, if the CoProcessor is
simply a scheduling engine with media stream access and
delivery performed by the host, for packet scheduling to be
performed at wire speeds, the host and CoProcessor must
exchange packet-arrival times of streams in every decision
cycle. Even this exchange requires high aggregate band-
width from the memory subsystem, involving 32 bits in the
best case and 1; 023� 32 bits (if 1,023 streams drop their
packets) in the worst-case for 1,024 streams, every 1:2�s (for
10 Gbps links). With RAMBUS [43] memory systems, these
bandwidth requirements are only met for the best case
(4.2GBytes/sec) in current systems. Current PCI-66MHz
and PCIX-133MHz cannot provide the required bandwidth,
whereas Infiniband’s internal crossbars should offer the
capabilities suitable for scaling to future increases in
network link bandwidth.

Analogous to our work with extensible NIs, there has
also been research on extensible I/O CoProcessors, as with
efforts like Active Disks [1] or extensible network-attached
stores [31].

4.2 Media Stream Scheduling

Recent research has put substantial effort into the develop-
ment of efficient scheduling algorithms for media applica-
tions. Given the presence of some underlying bandwidth
reservation scheme, the DWCS algorithm has the ability to
share bandwidth among competing clients in strict propor-
tion to their deadlines and loss tolerances. In comparison,
fair share scheduling algorithms [66], [41] (some of which
are now implemented in hardware [44]) attempt to allocate
1=N of the available bandwidth among N streams or flows.
Any idle time, due to one or more flows using less than
their allocated bandwidth, is divided equally among the
remaining flows. This concept generalizes to weighted
fairness in which bandwidth must be allocated in propor-
tion to the weights associated with individual flows, but
packet deadlines are not taken into account. We, therefore,
consider DWCS preferable for the media streams addressed
by our work.

There has been significant research on the construction of
scalable media servers and services, including recent work on
reservation-based CPU schedulers for media applications
[24]. These results demonstrate the importance of explicit
scheduling to meet the demands of media applications. If
DWCS performed its scheduling actions using a reservation-
based CPU scheduler, it would be able to closely couple its
CPU-bound packet generation and scheduling actions with
the packet transmission actions required for packet streams.
Similarly, DWCS could also take advantage of the stripe-
based disk and machine scheduling methods advocated by

KRISHNAMURTHY ET AL.: ON NETWORK COPROCESSORS FOR SCALABLE, PREDICTABLE MEDIA SERVICES 667

some video servers [11] by using stripes as coarse-grain

“reservations” for which individual packets are scheduled to

stay within the bounds defined by these reservations.

5 CONCLUSIONS AND FUTURE WORK

The vision pursued by our research is one in which

underlying hardware/software platforms, like the commu-

nication CoProcessors used here, are dynamically extended

to better meet the needs of applications. This paper’s

demonstration of our vision realizes a media scheduler on

an embedded NI CoProcessor using commodity hardware

and software.
Insights derived from our experimental research include

the following:

. Efficient execution on standard NIs. Even commodity
NI hardware has resources sufficient for handling
both the regular tasks it must perform (e.g., message
receipt and sending) and certain additional tasks
required by individual applications. In fact, experi-
mental results attained with the DWCS packet
scheduler for media applications demonstrate that
even older, relatively slow i960-based NIs can
perform a variety of such tasks, at real-time rates
and at a granularity of scheduling suitable for MPEG
media streams.

. Improved scalability and predictability for NI-based
streaming services. By running media scheduling
services on NIs rather than host CPUs, the host’s
CPU, memory, and I/O infrastructure are offloaded
and, in addition, substantial improvements are
attained in the predictability of media streaming,
measured as improvements in the delay-jitter of
media streams.

. Performance improvements due to traffic elimination. An
advantage derived from placing media scheduling
onto NIs is the elimination of traffic from the host
node. This fact is strengthened by the “filtering”
property of media scheduling in which losses are
allowed. This property is shared by many other
applications being investigated in our current
research, including the selection of subsets from
sensor data or from large scientific or engineering
data, and data downsampling or compression. The
latter typically require more processing power than
is currently available on commercial NIs.

To summarize, the approach to scalability for media

streaming advocated by this paper has three components.

The first is scalable scheduler algorithm design [63], [62] and

the efficient realizations of such algorithms. The second is the

appropriate distribution of media scheduling across avail-

able hardware/software resources (in this case, i960RD

cards, PCI bus segments, and disks) in order to separate the

resources used for media scheduling from those used by

general host applications. This approach also ensures that

host-based programs and loading conditions do not interfere

with NI-based media streaming and scheduling.

5.1 Future Work

One insight from this paper is that CoProcessors cannot be
assumed capable of scheduling packets at the per-frame
rates required by future communication links (e.g., 10Gbps
Ethernet (10GEA standard) or Infiniband). To address this
issue, we have built QoS packet scheduling hardware
architectures that can meet the wire-speeds of 10Gbps links.
The FPGA hardware CoProcessor can meet the wire-speeds
of 10Gbps links under systems software control of a peer or
Host-NI CoProcessor. We are currently investigating scal-
ing of this architecture to a large number of streams by
allowing stream state to be multiplexed on the same FPGA
hardware substrate [60], [26], [27], [30]. In addition, we are
studying how to “divide” scheduling functionality or how
to simplify it so that per frame scheduling may be
performed with the RISC-based microengines resident on
typical next generation CoProcessors, such as Intel’s
IXP1200 [68]. Finally, beyond packet scheduling, we are
investigating suitable extension architectures for NIs, so
that application-specific functionality is easily mapped to
them, whenever applications can benefit from such NI-
based support. One set of extensions already under
development by our group concerns the reliability and
scalability of transaction services implemented on cluster
machines [19], [20].

ACKNOWLEDGMENTS

This work was supported in part by the US Department of
Energy under its NGI program, by the US National Science
Foundation, and by hardware/software donations from Intel
Corporation and WindRiver Systems. The authors would like
to thank the reviewers for their many invaluable suggestions.
Their thanks also go to other contributors to this research,
including Professor Sudhakar Yalamanchili, Professor Ken
Mackenzie, and MS students S. Manni and S. Roy.

REFERENCES

[1] A. Acharya, M. Uysal, and J. Saltz, “Active Disks,” Proc. Int’l Conf.
Architectural Support for Programming Languages and Operating
Systems, 1998.

[2] Akamai and FreeFlow Content Management, http://www.aka
mai.com, 2003.

[3] 10 Gigabit Ethernet Alliance, http://www.10gea.org, 2003.
[4] K. Almeroth and M. Ammar, “A Scalable, Interactive Video-on-

Demand Service Using Multicast Communication,” Proc. Int’l
Conf. Computer Comm. Networks, Sept. 1994.

[5] T.E. Anderson, D.E. Culler, D.A. Patterson, and the NOW Team “A
Case for Networks of Workstations: NOW,” IEEE Micro, Feb. 1995.

[6] Apache http Server Project Apache Software Foundation, http://
www.apache.org/httpd.html, 2003.

[7] Infiniband Trade Association, http://www.infinibandta.org, 2003.
[8] B.N. Bershad, S. Savage, P. Pardyak, E.G. Sirer, M. Fiuczynski, and

B. Eggers Chambers, “Extensibility, Safety, and Performance in
the SPIN Operating System,” Proc. 15th ACM Symp. Operating
Systems Principles, pp. 267-284, Dec. 1995.

[9] B. Blake, “A Fast, Efficient Scheduling Framework for Parallel
Computing Systems,” PhD thesis, Dept. of Computer and
Information Science, The Ohio State Univ., Dec. 1989.

[10] N.J. Boden, D. Cohen, R.E. Felderman, A.E. Kulawik, C.L. Seitz,
J.N. Seizovic, and W.-K. Su, “Myrinet—A Gigabit-per-Second
Local-Area Network,” IEEE MICRO, Feb. 1995.

[11] W.J. Bolosky, R.P. Fitzgerald, and J.R. Douceur, “Distributed
Schedule Management in the Tiger Video Fileserver,” Proc. 16th
ACM Symp. Operating System Principles, vol. 31, pp. 212-223, Dec.
1997.

668 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 7, JULY 2003

[12] C. Keppitiyagama, et al. “Asynchronous MPI Messaging on
Myrinet,” Proc. Int’l Parallel and Distributed Processing Symp.,
Apr. 2001.

[13] Solaris On-Line Documentation, http://www.docs.sun.com, 2003.
[14] D.R. Engler, M.F. Kaashoek, and J. O‘Toole Jr., “Exokernel: An

Operating System Architecture for Application-Level Resource
Management,” Proc. 15th Symp. Operating System Principles, Dec.
1995.

[15] E.W. Felten, R.D. Alpert, A. Bilas, M.A. Blumrich, D.W. Clark, S.
Damianakis, C. Dubnicki, L. Iftode, and K. Li, “Early Experience
with Message-Passing on the SHRIMP Multicomputer,” Proc. 23rd
Int’l Symp. Computer Architecture, May 1996.

[16] D. Ferrari, A. Banerjea, and H. Zhang, “Network Support for
Multimedia—A Discussion of the Tenet Approach,” TR-92-072,
Dept. of Computer Science, Univ. of California Berkeley, 1992.

[17] M.E. Fiuczynski, B.N. Bershad, R.P. Martin, and D.E. Culler,
“SPINE—An Operating System for Intelligent Network Adap-
ters,” TR-98-08-01, Aug. 1998.

[18] A. Gavrilovska, K. Schwan, A. McDonald, and K. Mackenzie,
“Stream Handlers: Application-Specific Message Services on
Attached Network Processors,” Proc. 10th IEEE Conf. High-
Performance Interconnects, Aug. 2002.

[19] A. Gavrilovska, K. Schwan, and V. Oleson, “Adaptable Mirroring
on Clusters,” Proc. 10th Int’l Conf. High Performance Distributed
Computing, Aug. 2001.

[20] A. Gavrilovska, K. Schwan, and V. Oleson, “Practical Approach to
Zero Downtime in an Operational Information System,” Proc. 22nd
IEEE Int’l Symp. Distributed Computing Systems, 2002.

[21] I2O Special Interest Group, www.i2osig.org/architecture/tech
back98.html, 1999.

[22] Intel, IQ80960Rx Evaluation Platform Board Manual, Mar. 1997.
[23] C. Isert and K. Schwan, “ACDS: Adapting Computational Data

Streams for High Performance,” Proc. Int’l Parallel and Distributed
Processing Symp., 2000.

[24] M.B. Jones, D. Rosu, and M.-C. Rosu, “CPU Reservations and
Time Constraints: Efficient, Predictable Scheduling of Indepen-
dent Activities,” Proc. 16th ACM Symp. Operating System Principles,
vol. 31, pp. 198-211, Dec. 1997.

[25] C. Krasic and J. Walpole, “QoS Scalability for Streamed Media
Delivery,” Technical Report CSE-99-011, Dept. of Computer
Science, Oregon Graduate Inst., 17, 1999.

[26] R. Krishnamurthy, et al. “The Georgia Tech Asan Approach,”
Proc. IEEE Int’l Symp. High Performance Computer Architecture, Jan.
2001.

[27] R. Krishnamurthy, et al. “Architecture and Hardware for
Scheduling of Gigabit Packet Streams,” Proc. IEEE Int’l Symp.
High Performance Computer Architecture, Jan. 2001.

[28] R. Krishnamurthy, K. Schwan, R. West, and M. Rosu, “A Network
CoProcessor-Based Approach to Scalable Media Streaming in
Servers,” Technical Report GIT-CC-00-03, Georgia Inst. of Tech-
nology, 2000.

[29] R. Krishnamurthy, K. Schwan, R. West, and M. Rosu, “A Network
Co-Processor-Based Approach to Scalable Media Streaming in
Servers,” Proc. Int’l Conf. Parallel Processing, Int’l Assoc. for
Computers and Comm. (IACC), Aug. 2000.

[30] R. Krishnamurthy, S. Yalamanchili, K. Schwan, and R. West,
“Architecture and Hardware for Scheduling Gigabit Packet
Streams,” Proc. 10th IEEE Conf. High-Performance Interconnects,
Aug. 2002.

[31] E. Lee and C. Thekkath, “Petal: Distributed Virtual Disks,” Proc.
Int’l Conf. Architectural Support for Programming Languages and
Operating, 1996.

[32] J. Lockwood, J. Turner, and D. Taylor, “Field Programmable Port
Extender (FPX) for Distributed Routing and Queuing,” Proc. ACM
Int’l Symp. Field Programmable Gate Arrays, pp. 137-144, Feb. 2000.

[33] G. Mair, “Telepresence—The Technology and Its Economic and
Social Implications,” Proc. IEEE Int’l Symp. Technology and Soc.,
1997.

[34] M. Martonosi, D. Clark, and M. Mesarina, “The Shrimp Hardware
Performance Monitor: Design and Applications,” Proc. 1996
SIGMETRICS Symp. Parallel and Distributed Tools, 1996.

[35] C.W. Mercer, S. Savage, and H. Tokuda, “Processor Capacity
Reservation for Multimedia Operating Systems,” Proc. IEEE Int’l
Conf. Multimedia Computing and Systems, May 1994.

[36] D. Mosberger and T. Jin, “Httperf—A Tool for Measuring Web
Server Performance,” Proc. 1998 Workshop Internet Server Perfor-
mance, held in conjunction with Sigmetrics 1998, June 1998.

[37] J. Nieplocha, et al. “One-Sided Communication on Myrinet-Based
SMP Clusters Using the GM Message-Passing Library,” Proc.
Workshop Comm. Architectures in Clusters, held in conjunction with
Proc. Int’l Parallel and Distributed Processing Symposium, Apr. 2001.

[38] I2O Intel Page, http://www.developer.intel.com/iio, 1999.

[39] V. Pai, P. Druschel, and W. Zwaenepoel, “Lo-Lite: A Unified
Buffering and Caching System,” Proc. Third Symp. Operating
Systems Design and Implementation, 1999.

[40] S. Pakin, M. Laura, and A. Chien, “High Performance Messaging
on Workstations: Illinois Fast Messages (FM) for Myrinet,” Proc.
Supercomputing, Dec. 1995.

[41] X. Guo, P. Goyal, and H.M. Vin, “A Hierarchical CPU Scheduler
for Multimedia Operating Systems,” Proc. Second Symp. Operating
Systems Design and Implementation, pp. 107-121, 1996.

[42] B. Plale and K. Schwan, “DQUOB: Managing Large Data Flows by
Dynamic Embedded Queries,” Proc. IEEE Int’l Symp. High
Performance Distributed Computing, 2000.

[43] RAMBUS, http://www.rambus.com, 2003.

[44] J.L. Rexford, A.G. Greenberg, and F.G. Bonomi, “Hardware-
Efficient Fair Queuing Architectures for High-Speed Networks,”
Proc. INFOCOMM, pp. 638-646, Mar. 1996.

[45] M.-C. Rosu, K. Schwan, and R. Fujimoto, “Supporting Parallel
Applications on Clusters of Workstations: The Intelligent Network
Interface Approach,” Proc. Sixth IEEE Int’l Symp. High Performance
Distributed Computing, Aug. 1997.

[46] D. Rosu, K. Schwan, and S. Yalamanchili, “FARA—A Framework
for Adaptive Resource Allocation in Complex Real-Time Sys-
tems,” Proc. Fourth IEEE Real-Time Technology and Applications
Symp., June 1998.

[47] D. Rosu, K. Schwan, S. Yalamanchili, and R. Jha, “On Adaptive
Resource Allocation for Complex Real-Time Applications,” Proc.
18th IEEE Real-Time Systems Symp., Dec. 1997

[48] M.-C. Rosu and K. Schwan, “Sender Coordination in the
Distributed Virtual Communication Machine,” Proc. Seventh IEEE
Int’l Symp. High Performance Distributed Computing, 1998.

[49] M.-C. Rosu, K. Schwan, and R. Fujimoto, “Supporting Parallel
Applications on Clusters of Workstations: The Virtual Commu-
nication Machine-Based Architecture,” Cluster Computing, vol. 1,
pp. 1-17, Jan. 1998.

[50] Y. Saito, B. Bershad, and H. Levy, “Availability and Performance
in Porcupine: A Highly Scalable Internet Mail Service,” Proc. 17th
ACM Symp. Operating Systems Principles, Dec. 1999.

[51] K. Schwan and H. Zhou, “Dynamic Scheduling of Hard Real-Time
Tasks and Real-Time Threads,” IEEE Trans. Software Eng., vol. 18,
no. 8, pp. 736-748, Aug. 1992.

[52] Intel IXP 1200 Web Site, http://www.intel.com/design/network/
products/npfamily/index.htm, 2003.

[53] C. Stunkel, D. Shea, B. Abali, M. Atkins, C. Bender, D. Grice, P.
Hochschild, D. Joseph, B. Nathanson, R. Swetz, R. Stucke, M. Tsao,
and P. Varker, “The SP2 Communication Subsystem,” technical
report, IBM Thomas J. Watson Research Center, Yorktown
Heights, N.Y., http://ibm.tc.cornell.edu, Aug. 1994

[54] R. Swan, S. Fuller, D. Siewiorek, and C. Modular, “Multi-
Microprocessor,” Proc. Nat’l Computer Conf., vol. 46, pp. 637-644,
1977.

[55] Alteon Web Systems, http://www.alteonWebsystems.com, 2001.

[56] M. Trivedi, B. Hall, G. Kogut, and S. Roche, “Web-Based
Teleautonomy and Telepresence,” Proc. SPIE Optical Science and
Technology Conf., 2000.

[57] T. von Eicken, A. Basu, V. Buch, and W. Vogels, “U-Net: A User-
Level Network Interface for Parallel and Distributed Computing,”
Proc. 15th ACM Symp. Operating Systems Principles, Dec. 1995.

[58] T. von Eicken, D.E. Culler, S.C. Goldstein, and K.E. Schauser,
“Active Messages: A Mechanism for Integrated Communication
and Computation,” Proc. 19th Int’l Symp. Computer Architecture,
May 1992.

[59] J. Walpole, R. Koster, S. Chen, C. Cowan, D. Maier, D. McNamee,
C. Pu, D. Steere, and L. Yu, “A Player for Adaptive MPEG Video
Streaming over the Internet,” Proc. 26th Applied Imagery Pattern
Recognition Workshop, Oct. 1997.

[60] R. West, R. Krishnamurthy, W. Norton, K. Schwan, S. Yalaman-
chili, M. Rosu, and S. Chandra, “QUIC: A Quality of Service
Network Interface Layer for Communication in NOWS,” Proc.
Heterogeneous Computing Workshop, in conjunction with IPPS/SPDP,
Apr. 1999.

KRISHNAMURTHY ET AL.: ON NETWORK COPROCESSORS FOR SCALABLE, PREDICTABLE MEDIA SERVICES 669

[61] R. West and C. Poellabauer, “Analysis of a Window-Constrained
Scheduler for Real-Time and Best-Effort Packet Streams,” Proc.
21st IEEE Int’l Symp. Real-time Systems, 2000.

[62] R. West and K. Schwan, “Dynamic Window-Constrained Sche-
duling for Multimedia Applications,” Proc. Sixth Int’l Conf.
Multimedia Computing and Systems, also available as Technical
Report: GIT-CC-98-18, Georgia Inst. of Technology, June 1999.

[63] R. West, K. Schwan, and C. Poellabauer, “Scalable Scheduling
Support for Loss and Delay Constrained Media Streams,”
Technical Report GIT-CC-98-29, Georgia Inst. of Technology, 1998.

[64] WindRiver Systems, VxWorks Reference Manual, first ed., Feb. 1997.
[65] Xilinx, http://www.xilinx.com, 2003.
[66] H. Zhang and S. Keshav, “Comparison of Rate-Based Service

Disciplines,” Proc. ACM SIGCOMM, pp. 113-121, Aug. 1991.
[67] D. Zhou and K. Schwan, “Adaptation and Specialization for High

Performance Mobile Agents,” Proc. Usenix Conf. Object-Oriented
Technologies, 1999.

[68] X. Zhuang, W. Shi, I. Paul, and K. Schwan, “On the Efficient
Implementation of the DWCS Packet Scheduling Algorithm on
IXP1200 Network Processors,” Proc. IEEE Int’l Symp. Multimedia
Networks and Systems, 2002.

Raj Krishnamurthy is a PhD degree candidate
in the College of Computing at the Georgia
Institute of Technology. His graduate degree is
in electrical engineering from Georgia Tech.
Until December 2002, he was a research
scientist with the Center for Experimental Re-
search in Computer Systems at Georgia Tech.
His interests are in architecture and VLSI, with a
focus on high-speed networks and real-time
systems. He is a student member of the IEEE
and ACM. He actively consults for startups in

embedded systems and technology strategy.

Karsten Schwan received the MSc and PhD
degrees from Carnegie-Mellon University in
Pittsburgh, Pennsylvania. His PhD research in
high performance computing concerned operat-
ing and programming systems support for the
Cm* multiprocessor. He is a professor in the
College of Computing at the Georgia Institute of
Technology. He is also the director of the Center
for Experimental Research in Computer Sys-
tems (CERCS), a GT entity that spans both the

College of Computing and the School of Electrical and Computer
Engineering. At Ohio State University, he established the PArallel, Real-
Time Systems (PARTS) Laboratory conducting research on operating
system support for cluster computing and on real-time applications and
operating systems for parallel machines and containing both specialized
(embedded) and commercially available machines (e.g., Intel hypercube
and BBN Butterfly). At Georgia Tech, his work concerns middleware and
systems support for grid and pervasive systems, focusing on the
interactive nature of modern distributed and parallel applications (e.g.,
online monitoring and program steering), the real-time nature of
pervasive applications (e.g., system support for predictable operation
in dynamic environments), and the online configuration and adaptation
of application or system components (e.g., configuring communication
infrastructures). He is a senior member of the IEEE.

Richard West received the MEng degree in
microelectronics and software engineering in
1991 from the University of Newcastle-upon-
Tyne, England. He later received both the MS
(1998) and PhD (2000) degrees in computer
science from the Georgia Institute of Technol-
ogy. He is currently an assistant professor in the
Computer Science Department at Boston Uni-
versity, where his research interests include
operating systems, real-time systems, distribu-

ted computing, and QoS management.

Marcel-Catalin Rosu received the MS degrees
from the Polytechnic University of Bucharest and
Cornell University, in 1987 and 1995, respec-
tively, and the PhD degree from the Georgia
Institute of Technology in 1999, all in computer
science. He is a research staff member in the
Internet Infrastructure and Computing Utilities
Department at the IBM T.J. Watson Research
Center in Yorktown Heights, New York. His
research interests include operating system

support for cluster computing, processor scheduling, multimedia, Web
server performance, and distributed computing.

. For more information on this or any other computing topic,
please visit our Digital Library at http://computer.org/publications/dlib.

670 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 7, JULY 2003

