
67

Real-Time USB Networking and Device I/O

RICHARD WEST, AHMAD GOLCHIN, and ANTON NJAVRO, Department of Computer Science,

Boston University, USA

Multicore PC-class embedded systems present an opportunity to consolidate separate microcontrollers as

software-defined functions. For instance, an automotive system with more than 100 electronic control units

(ECUs) could be replaced with one or, at most, several multicore PCs running software tasks for chassis, body,

powertrain, infotainment, and advanced driver assistance system (ADAS) services. However, a key challenge

is how to handle real-time device input and output (I/O) and host-level networking as part of sensor data

processing and control. A traditional microcontroller would commonly feature one or more Controller Area

Network (CAN) buses for real-time I/O. CAN buses are usually absent in PCs, which instead feature higher

bandwidth Universal Serial Bus (USB) interfaces. This article shows how to achieve real-time device I/O and

host-to-host communication over USB, using suitably written device drivers and a time-aware POSIX-like

“tuned pipe” abstraction. This allows developers to establish task pipelines spanning one or more hosts, with

end-to-end latency and throughput guarantees for sensor data processing, control, and actuation.

CCS Concepts: • Software and its engineering→Real-time schedulability; Input/output; • Computer

systems organization→ Real-time operating systems; Embedded systems;

Additional Key Words and Phrases: Universal Serial Bus (USB), extensible Host Controller Interface (xHCI),

real-time input/output, real-time host-to-host communication

ACM Reference format:

Richard West, Ahmad Golchin, and Anton Njavro. 2023. Real-Time USB Networking and Device I/O. ACM

Trans. Embedd. Comput. Syst. 22, 4, Article 67 (July 2023), 38 pages.

https://doi.org/10.1145/3604429

1 INTRODUCTION

Embedded and real-time systems interact with their environment using sensors and actuators. Sen-
sor inputs are processed, leading to control decisions that produce output signals to the actuators.
As the functional complexity of modern embedded systems has grown, the input/output (I/O)
processing and control are distributed across a network of low-cost microcontrollers. For example,
a modern automotive system features 10s to 100s of electronic control units (ECUs), each host-
ing a separate microcontroller, to support chassis, body, powertrain, infotainment, and Advanced

Driver Assistance System (ADAS) services. Each such ECU is largely responsible for a single
function, with multiple ECUs typically connected via a communication bus, such as Controller

Area Network (CAN) [32] or FlexRay [22].

This work is funded in part by the National Science Foundation (NSF) Grant # 2007707.

Authors’ address: R. West, A. Golchin, and A. Njavro, Department of Computer Science, Boston University, 111 Cumming-

ton Mall, Boston, Massachusetts 02215, USA; emails: {richwest, golchin, njavro}@bu.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1539-9087/2023/07-ART67 $15.00

https://doi.org/10.1145/3604429

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 4, Article 67. Publication date: July 2023.

https://orcid.org/0000-0001-5100-0666
https://orcid.org/0000-0002-4797-6380
https://orcid.org/0000-0003-2610-8020
https://doi.org/10.1145/3604429
mailto:permissions@acm.org
https://doi.org/10.1145/3604429
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3604429&domain=pdf&date_stamp=2023-07-24

67:2 R. West et al.

In an attempt to curtail the exponential growth in the number of ECUs or microcontrollers in
embedded systems, there is now a focus on functional consolidation. Consolidation replaces a col-
lection of microcontrollers with a smaller number of multicore computers (e.g., embedded Personal
Computers, or PCs), which run multiple functions in software. However, the use of PC-class hard-
ware in embedded systems poses several challenges. Firstly, PCs have limited I/O bus interfaces,
mostly based on Peripheral Component Interconnect Express (PCIe) or Universal Serial

Bus (USB), which differ from those in traditional embedded systems. Secondly, the operating

systems (OSs) running on PCs to manage software functions provide poor support for real-time
I/O. Thirdly, a PC-based OS must provide real-time scheduling of multiple software functions and
I/O requests to meet end-to-end delay guarantees for sensor data processing and control.

To address the first challenge, there needs to be a way to connect I/O devices and controllers that
traditionally use low-bandwidth interfaces such as CAN, I2C [62], SPI [53], and RS232 [80] to a PC.
Fortunately, many embedded I/O interfaces are available as USB devices, and a USB host controller
has the capacity to handle relative high-bandwidth sensors (e.g., cameras) and actuators that are
now relevant to emerging applications, including autonomous vehicles. A USB host controller
is equipped with a hardware bus scheduler that provides real-time guarantees to devices with
periodic transfers. Unfortunately, many USB devices (e.g., USB-CAN interfaces) only support best-
effort, asynchronous data exchange with the host. To combat this, bus scheduling within the host
OS must provide real-time guarantees on asynchronous transfers.

To address the second challenge, an embedded OS must handle real-time I/O. This is a problem
for systems such as Linux, which allow device interrupts to interfere with the execution of tasks.
Either the interrupt handler is given precedence over the task it preempts, which might then miss
a critical deadline, or the interrupt handler is deferred leading to delayed I/O transfers. Linux
attempts to address this problem by splitting interrupt service routines (ISRs) into two parts: a
top half that runs briefly when the interrupt occurs, and (2) a bottom half that performs the majority
of the interrupt handling at a time that is potentially more convenient. As we have previously
identified, the splitting of interrupt handlers into two parts does not guarantee that interrupts are
handled at the correct priority [12, 88]. Moreover, it does not ensure temporal isolation between
interrupt handling and task execution.

The third challenge concerns the coordination of host-level tasks and devices, or network-level
resources, to ensure end-to-end throughput and delay guarantees on the transfer of data. USB
has become an industry standard for its ability to support many different classes of devices and
communication endpoints, with relatively simple hardware needed to connect to a host. The han-
dling of interrupts, and direct memory access (DMA) control, for example, are addressed by the
USB host controller. This differs from other bus technologies, such as PCIe, where the device or
peripheral interface must include a controller that manages interrupts and DMA transfers. While
this has influenced the popularity of USB, most OSs do not adequately implement a real-time host
controller driver, to schedule access to the bus interface by different peripherals. Even worse, OSs
lack the capability to coordinate host and device, or network-level, resources to meet end-to-end
service requirements.

To address the challenges described above, the contributions of this article are: (1) a real-time
USB 3.x scheduler that supports both periodic and asynchronous requests, for network and device
transfers, (2) a system solution for integrated task and interrupt scheduling, and (3) the description
of a “Tuned Pipes” OS-level abstraction for real-time sensor data processing and control [26]. Tuned
Pipes provide a way to coordinate host and device or network resources according to end-to-end
throughput and delay requirements.

This article builds on our earlier work on USB 2.0 scheduling, to circumvent the problems found
in Linux systems [59]. We show how to implement a software-based USB 3 scheduler that works

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 4, Article 67. Publication date: July 2023.

Real-Time USB Networking and Device I/O 67:3

with the host controller, to provide timing guarantees for asynchronous devices and host-to-host
communication. This article shows how to combine interrupt and task scheduling, so that inter-
rupts are handled at the priority of the task that leads to their occurrence. Tuned Pipes combines
USB, task and interrupt scheduling to meet end-to-end service requirements.

Experimental results show that for a mixed-criticality system, our real-time bus scheduler guar-
antees quality of service (QoS) for high-criticality traffic, while inducing minimal loss on low-
criticality data. Here, criticality is defined as the consequence of failure to the system. Likewise,
experimental results show how USB 3.x is able to support predictable host-to-host communication
and device I/O. We believe this is a step towards USB being a viable bus technology for control
area networks, in systems requiring higher throughput and similar delays to those experienced by
CAN buses.

In the following section, we briefly introduce the necessary background knowledge for this work
with a focus on the structure of USB 3.x host controller hardware. This is followed by Section 3,
which describes the scheduling problem of the USB 3.x bus, and presents our solution to address the
problem in the context of a mixed-criticality I/O system. Section 4 focuses on designing different
topologies of host computers using USB 3.x. Section 5 describes the design of our tuned pipes
framework. An experimental evaluation of our USB system is shown in Section 6. Related work is
discussed in Section 7, followed by conclusions in Section 8.

2 BACKGROUND

This section provides background relevant to coordinated task and interrupt scheduling, as well
as fundamental concepts related to USB. The mathematical concepts underpinning this and subse-
quent sections are described by a series of equations. The key symbols used throughout the rest of
the article are summarized in Table 1, with a reference to the equations where they appear. Values
are shown in parentheses for symbols, where appropriate.

2.1 Task and Interrupt Scheduling

End-to-end guarantees on I/O processing require coordinated task and interrupt scheduling, which
is a central feature of our Quest real-time OS [12]. As is the case with Linux, Quest splits interrupt
handling into a top and bottom half. Top half processing is limited to acknowledging the interrupt,
identifying the priority for a corresponding bottom half thread, and setting a wakeup event for
when the bottom half is eligible to execute. While most of the interrupt processing is charged to a
dedicated thread, the top half executes in the context of the preempted thread, and so its execution
is kept minimal.

In Quest, bottom half interrupt handlers and tasks are bound to time-budgeted virtual CPUs

(VCPUs). Each VCPUi is specified a processor capacity reserve [57], consisting of a budget ca-
pacity, Ci , and period, Ti , depending on the corresponding worst case execution time and period.
VCPU i is eligible to receive up toCi units of execution time everyTi time units when it is runnable,
as long as a schedulability test is passed when creating new VCPUs. This way, Quest’s scheduling
subsystem guarantees temporal isolation between threads in the runtime environment.

Quest supports two types of VCPUs: Main VCPUs are associated with conventional tasks, while
I/O VCPUs are associated with interrupt bottom halves. Each Main VCPU is implemented as a Spo-
radic Server [74] that is scheduled by default using Rate-Monotonic Scheduling (RMS) [51]. An
optional configuration supports the earliest deadline first, but for this article, we assume RMS is in
use. In contrast, each I/O VCPU operates as a bandwidth-preserving server having a dynamically-
calculated budget and period based on the Main VCPU task it is handling I/O on behalf. Quest
features several classes of I/O VCPUs for networking, disk, and USB devices, amongst others. By de-
fault, a single I/O VCPU is setup for a USB host controller driver to handle interrupt bottom halves.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 4, Article 67. Publication date: July 2023.

67:4 R. West et al.

Table 1. Main Symbol Definitions and Related Equations

Symbol Equation Description

Ci (1) Budget capacity for Virtual CPU (VCPU) i

Ti (1), (8), (9), (10) Period for VCPU i
Ci
Ti

(1) CPU reservation (i.e., Utilization factor) for Main VCPU i

Uj (1) Utilization factor for I/O VCPU j

bi (2), (3), (4) Maximum packet size in bytes for endpoint i

ni (2), (4), (5), (6), (7) Maximum burst size (packets minus 1) for endpoint i

mi (2), (7) Consecutive bursts (minus 1) for endpoint i

qi (2) Quantum size bytes for endpoint i

Obit s (3) Bit stuffing overhead (3.167)

γ (3) Packet payload synchronization cost (1.167 [USB2.0], 1.0 [USB3.0])

wi (3), (5), (6), (7) Packet transfer latency for endpoint i

h (3) Host controller delay (assumed 5ns, implementation-specific)

p (3) Protocol overhead delay (depends on endpoint type and bus speed)

α (3) Symbol (bit) transfer latency (0.2ns [USB 3@5Gbps], 2.083ns [USB 2@480Mbps])

μf r ame (7) Micro-frame time (125000ns)

kj (4), (5), (6) Number of round-robin schedule passes for endpoint j

Bj (4) Transfer budget bytes for endpoint j

lj (5) Time to transfer Bj bytes for endpoint j

c j (6), (8), (10) Endpoint j transfer latency (in micro-frames) for Bj bytes

A (5), (6) Set of asynchronous endpoints

H (7) Set of high-criticality periodic endpoints

tA (6) Time within micro-frame to complete asynchronous requests

tAmax (7) Upper bound on tA

Ewc (9), (10) Worst-case end-to-end latency

When a device interrupt occurs, the task associated with its occurrence is determined. For ex-
ample, if some task τ initiated an I/O request that led to a device interrupt being generated, the I/O
VCPU inherits the period (denoted by Tmain) of the Main VCPU associated with τ . Since VCPUs
are scheduled using RMS by default, the I/O VCPU also inherits the priority of τ ’s Main VCPU.
This way, Quest is able to perform bottom half interrupt processing with the priority of the task
that initiated the I/O requests. Consequently, interrupt handling does not defer the execution of
higher priority tasks or suffer delays from lower priority tasks.

Instead of using Sporadic Servers for both Main and I/O VCPUs, each I/O VCPU j operates as
a Priority Inheritance Bandwidth-preserving Server (PIBS) [12, 15, 44], where a certain uti-
lization factorUj is specified to limit its bandwidth. For example, the budget of I/O VCPU j will be
limited toTmain ·Uj . With that, even if τ ’s Main VCPU has a large budget and issues a burst of I/O
requests, the CPU cycles consumed by the handling of corresponding device interrupts are limited
by the I/O VCPU’s bandwidth. PIBS uses a single replenishment to avoid fragmentation of replen-
ishment list budgets caused by short-lived interrupt bottom half service routines. By using PIBS
for interrupt threads, the scheduling overheads from context switching and timer reprogramming
are reduced [60]. In prior work [12], we showed that for n Main VCPUs andm I/O VCPUs running
on a single physical CPU, temporal isolation is guaranteed amongst all VCPUs if Equation (1) is
satisfied:

n−1∑

i=0

Ci

Ti
+

m−1∑

j=0

(2 −Uj)·Uj ≤ n
(

n
√

2 − 1
)

(1)

Quest’s support for PIBS-based I/O VCPUs contrasts with related work that attempts to main-
tain temporal isolation between tasks sharing resources. de Niz et al. [15] compare two schemes:

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 4, Article 67. Publication date: July 2023.

Real-Time USB Networking and Device I/O 67:5

Fig. 1. USB host and device stacks.

(1) a priority inheritance approach that allows a task to use a non-depleted processor reserve for
itself and any task that it blocks, and (2) a priority ceiling-based approach [70] that establishes a
special processor reserve for use in critical sections. Similarly, Lamastra et al. [44] apply the idea
of priority inheritance to tasks sharing resources using processor reserves managed by Constant

Bandwidth Servers (CBS) [1].
Quest’s I/O VCPUs have a separate reserve for the purposes of interrupt handling. Only the

priority of the Main VCPU being served by the I/O VCPU is inherited, as the I/O VCPU utilization
is established when the system is configured. This makes sense because interrupt handlers can be
profiled, to establish how much CPU time they need to execute.

2.2 Universal Serial Bus

USB is a master-slave protocol that connects a host computer (the master) to one or more pe-
ripheral devices (the slaves). As of USB 3.0, a device operates at one of four possible communi-
cation rates: low, full, high, or super speed, with maximum throughputs of 1.5 Mbps, 12 Mbps,
480 Mbps, and 5 Gbps, respectively. Recent advances with USB 3.2 now increase bus bandwidth
up to 20 Gbps. This maximum bandwidth is not necessarily shared by all the devices connected to
a USB host controller. The effective bandwidth share depends on the speed of the USB device, and
how the system software programs the host controller to schedule USB packets on the data trans-
fer bus associated with the device in question. Figure 1 depicts the hardware-software structure
of both a USB host and device, which communicate over a physical link. Each physical device con-
sists of one or more configurations that specify how many interfaces it supports, amongst other
information.

Only one configuration for a given device is active at any time, and it, in turn, supports one or
more functions. A multi-function full-speed input device, for example, might have two functions
for both a keyboard and a mouse. Each hardware function provides a collection of interfaces, with
each interface providing one or more endpoints of communication. A function supports alternative
interfaces to enable or disable certain endpoints and/or change their data rate. Each endpoint
specifies the type of data transfer, whether it is an input or output endpoint, the maximum packet

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 4, Article 67. Publication date: July 2023.

67:6 R. West et al.

size, how many packets it can receive during a single transaction, and how often transactions
should occur in the case of periodic endpoints.

The USB protocol supports four types of data transfer between a host and a device: (1) Control

transfers for device configuration, (2) Bulk transfers for reliable delivery of non-real-time data,
(3) Isochronous transfers for real-time, loss-tolerant data, and (4) Interrupt transfers for real-time,
loss-sensitive data. Different devices support different transfer types. For example, a USB camera
is typically isochronous, a mass storage device usually supports bulk transfers, and a keyboard
works with interrupt transfers. Each USB device exposes up to 32 endpoints, each of which is
capable of transferring data in one direction only, according to one of the four transfer types
mentioned above.

USB transactions are always initiated by the host computer, with peripheral devices only ca-
pable of responding to host requests. In USB 1.0/1.1, all transactions occur within a frame set at
1 millisecond. Any USB 1.0/1.1 transactions crossing a frame boundary are discarded. USB 2.0 and
higher support micro-frames of 125 microseconds. Each frame contains eight micro-frames and
USB 2.0+ transactions cannot cross a micro-frame boundary, or else they will be discarded. All
transactions are split into two classes: (1) periodic, which is for isochronous and interrupt trans-
fers, and (2) asynchronous, which is for bulk and control transfers.

The Enhanced Host Controller Interface (EHCI) [20] implementation for USB 2.0 organizes
periodic transactions in a frame list. The host controller indexes the list using a frame index register,
which is incremented every micro-frame.

Asynchronous transactions are ordered in a separate round-robin circular list. The USB Spec-
ification [82, 83] limits the time available to schedule data transfers from the periodic frame list
before the circular asynchronous list is processed. For example, high-speed periodic transfers are
limited to 80% of a micro-frame, leaving at least 20% to asynchronous transfers. USB 3 super-speed
periodic traffic can occupy up to 90% of the micro-frame time, thus guaranteeing at least 10% for
bulk and control traffic. Each time the asynchronous list is processed, it resumes with the next
transfer after the one previously processed.

Periodic transactions are specified in terms of the number of bytes per packet, number of pack-
ets per transmission, and the transmission interval (in frames for low- and full-speed devices, or
micro-frames otherwise). The scheduling problem is to ensure that transactions do not cross micro-
frame boundaries for high or super-speed devices, and no more than eight micro-frames worth of
transactions occupy each frame. The schedule must map transactions to frames and micro-frames
so that intervals and transmission delays are guaranteed for periodic transmissions. Essentially,
this is a bin-packing problem, with EHCI allowing software to construct the periodic and asyn-
chronous schedules.

The extensible Host Controller Interface (xHCI) [85] is intended to be a replacement for
EHCI, providing better power efficiency, performance, and new capabilities in USB 3.x. The host
memory data structures differ significantly between EHCI and xHCI. The periodic frame list and
circular asynchronous list in EHCI are no longer exposed to the system software. They are replaced
with ring buffers in xHCI with data fields that influence how the frame list and the asynchronous
list are formed by the host controller. An extensible host controller (xHC) manages three types
of rings in host memory: (1) a single command ring, (2) an event ring, and (3) a separate transfer

ring for each device endpoint. The command ring passes requests from the host system software to
the controller. The event ring returns status information, and results of transfers to system soft-
ware. Finally, each transfer ring contains a set of transfer descriptors (TDs) that consist of one or
more transfer request blocks (TRBs). TRBs contain the data to be transferred in a given request.
In the case of periodic endpoints, TRBs also contain a frame ID field. This allows periodic trans-
fers to specify the starting frame ID, at the granularity of 1ms. For transactions requiring service

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 4, Article 67. Publication date: July 2023.

Real-Time USB Networking and Device I/O 67:7

Fig. 2. The data organization of xHCI.

intervals of one or more micro-frames, it is possible to pack multiple isochronous or interrupt TDs
in the same frame by specifying a common starting frame ID. Aside from this level of software
control, all transfer rings are processed by the xHC. Figure 2 illustrates various transfer rings and
buffers in an xHCI.

The xHCI Specification mandates multiple USB bus instances (BIs) be implemented by xHCs
(USB 3.x host controllers) to provide support for the previous generations of the USB protocol.
For example, a USB 3.0 host controller provides at least one USB 3.0 BI operating at 5.0 Gbps, a
USB 2.0 BI at 480 Mbps, a USB 1.1 BI at 12 Mbps, and one USB 1.0 BI clocked at 1.5 Mbps. These
BIs feature dedicated hardware logic for USB traffic scheduling, FIFO buffers, and transceivers.
However, the host controller driver accesses the BIs via the same Transfer Ring interface without
explicitly handling TRB to BI routing. Once the host controller driver enumerates a USB device on
a port, the xHC will assign the device to the corresponding BI and handle the routing internally.

A noteworthy feature introduced by USB 3 is a super-speed debugging capability (xDbC)
built in every standard USB 3 host controller. It provides a means to connect two systems via a
cross-over cable1 where one system is a Debug Host and the other a Debug Target (System Under
Test). On the Debug Target’s side, xDbC appears as a PCI device under xHC with two independent
super-speed bulk transfer endpoints. On the Debug Host, xDbC appears as a USB 3.0 device with
two bulk endpoints for communicating with the Debug Target. OSs such as Windows and Linux
use xDbC as a serial debug interface, similar to a traditional UART. However, as we discuss in
Section 4, it is possible to use xDbC as a high-speed host-to-host communication link, which can
outperform conventional Gigabit Ethernet. Using our proposed USB 3.x real-time scheduler, xDbC
and other USB host-to-host communication bridge devices are able to achieve predictable data
transfer latency and throughput.

3 USB 3 BUS SCHEDULING

3.1 Hardware Bus Scheduler

xHCI [85] uses two schedulers per BI: a bandwidth-preserving periodic scheduler for isochronous
and interrupt endpoints, and a round-robin scheduler for bulk and control endpoints. The system
software places TDs on the ring buffers of endpoints, and notifies the host controller to assign each
TD to one of the schedulers for the corresponding BI, based on the type of the endpoint. The host
controller breaks down each TD into multiple USB packets to transfer. The exact size of each USB

1A USB cross-over cable features two Type-A USB connectors at each end. The VCC signal is disconnected as the cable is

supposed to connect to host controllers that supply current. The receive pair of one connector is attached to the transmit

pair of the other connector, and vice versa.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 4, Article 67. Publication date: July 2023.

67:8 R. West et al.

packet depends on the implementation of the downstream device, however, the maximum packet
size is dictated by the USB standard [83]. USB 3.x control endpoints are limited to packets of up to
512 bytes (payload), while other types of endpoints have a maximum packet size of 1024 bytes.

The host controller schedules one quantum (burst of packets) for each endpoint during each
micro-frame before switching to another endpoint. Equation (2) represents the quantum size of a
super-speed endpoint, where qi is the maximum number of bytes transferred for endpoint i before
the xHC switches to another endpoint. In the same equation, bi is the maximum packet size (in
bytes) supported by the endpoint, ni corresponds to the maximum burst size (packets minus one),
andmi is the number of consecutive bursts (minus one) transferred for endpoint i .

qi ≤ (mi + 1) (ni + 1)bi

0 ≤ ni ≤ 15 (Isochronous & Bulk)

0 ≤ mi ≤ 2 (Interrupt & Isochronous)

ni ,mi = 0 (Others)

(2)

Asynchronous endpoints are characterized by their quantum size, and the host controller treats
them as best-effort traffic. However, periodic endpoints are scheduled in a time-triggered manner.
This means that for each endpoint i , one TD of up to qi bytes is schedulable every period, Ti . The
period of an isochronous or interrupt endpoint is of the form Ti = 2δi−1 × μ f rame nanoseconds,
where 1 ≤ δi ≤ 16.2 The parameters bi , ni , mi and δi are communicated to the system software
when the USB device is enumerated by the host controller driver.

During each micro-frame, the host controller scheduler transfers one quantum of each periodic
endpoint with available TDs, and then schedules asynchronous traffic once all periodic TDs allo-
cated to the micro-frame are transferred, or the utilization of the micro-frame time by periodic TDs
reaches 90%. The asynchronous TDs are transferred according to a round robin scheduler until the
end of the current micro-frame.

The aforementioned parameters determine the amount of data that must be exchanged before
the host controller services another endpoint. However, to understand the endpoint service times
and switching points in a schedule, it is important to derive the transfer latency of USB packets
and express qi in time units (e.g., nanoseconds).

Equation (3) represents a generalized formulation for USB packet transfer latency, derived from
various USB standards. In the equation, wi denotes the worst-case transfer latency (in nanosec-
onds) of a packet of bi bytes for endpoint i . h denotes the host controller’s delay, and p represents
the delay induced by the protocol overheads. As defined by the USB Specification, the value of h is
the time required for the host to prepare for or recover from a transmission and is implementation-
specific. We assume this value to be 5 nanoseconds, as is typically used by Linux kernels. This value
is sufficient to account for variations in delays exhibited by different host controllers, and is inde-
pendent of the host processor speed. The protocol overheads denoted by p include synchroniza-

tion (SYNC) transfers, per-packet identifiers (PIDs), End-of-Packet (EOP) markers, cyclic

redundancy checks (CRCs), as well as inter-packet gaps and bus turnaround times for multi-
packet transactions. From the xHCI Specification [85], bulk and interrupt transactions have proto-
col overheads corresponding to the delay in transferring 48 bytes for outgoing (OUT) transfers,
and an additional 36 bytes for simultaneous incoming (IN) transfers. Isochronous transactions
have protocol overheads corresponding to the transfer delay of 32 bytes for OUT plus 16 bytes for
IN transfers.

2δi is referred to by the term “bInterval” for the corresponding endpoint in the USB Specification. This one-byte value

is restricted to 1 ≤ bInterval ≤ 16 for periodic endpoints, with bInterval used as the exponent for a 2(bI nt erval−1)

number of micro-frames.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 4, Article 67. Publication date: July 2023.

Real-Time USB Networking and Device I/O 67:9

In the equation, α is the latency of transferring a symbol (i.e., one bit of data), which is derived
from the inverse of the clock frequency of the BI’s transceiver. For example, α = 0.2 nanoseconds
for a USB 3.0 BI at 5 Gbps. USB 2.0 and below use bit stuffing every 6 consecutive 1 symbols to
ensure synchronized bit timing. The constant Obits = 19/6 accounts for worst-case bit stuffing
overheads of the required 8-bit packet ID, 7-bit address field, and 4-bit endpoint number. The USB
3.x Specification does not mention bit stuffing but we include it here for compatibility with other
USB protocols, as we are interested in determining a worst-case time bound for packet transfers.
γ factors the cost of host-device bit-level SYNC on the packet payload. For USB 2.0 and below,

γ = 7/6 to account for the worst-case added stuffing bit every 6 consecutive 1 symbols. For USB
3.x, we assume γ = 1, as it appears the protocol uses a one-to-one payload scrambling algorithm
instead. From Equation (3) it is then possible to derive the transfer latency for a quantum qi of
packets, each with bi bytes, for burst parameters ni andmi greater than 0.

wi = h + p + (α × �Obits + 8γbi �) (3)

3.2 Scheduling Model and Timing Analysis

We define three sets of endpoints for the BI of interest: (1) the set of asynchronous endpoints,A, (2)
high-criticality periodic endpoints, H , and (3) low-criticality periodic endpoints, L. Let the tuple
< Bi ,Ti > be the budget (in bytes) and period (in micro-frames) of endpoint i specified by the USB
device driver at the time of device initialization. The objective is to ensure all endpoints i ∈ {A∪H }
are always capable of transferring their budget (Bi) in every period (Ti), as long as there is enough
data in the host memory or the downstream device buffer to send or receive. However, endpoints
in L only receive their budget in each period, provided there is enough remaining bandwidth after
all high-criticality endpoints (in {A ∪ H }) reserve their budgets.

Our approach to finding an assignment of USB transactions is to use a heuristic that parallels
the first-fit decreasing (FFD) algorithm for bin-packing [24] and rate monotonic scheduling [71].
We build on our earlier work [59], which is shown to outperform Linux’s first-fit algorithm for
USB 2 traffic, to derive a solution for USB 3 scheduling.

Section 3.4 presents a slightly modified version of the FFD algorithm to provide bandwidth
preservation for interrupt and isochronous endpoints using USB 3. However, the goal of this article
is to ensure bandwidth preservation for asynchronous endpoints as well as highly critical periodic
endpoints. One reason for this is that many devices that require service guarantees only support
asynchronous endpoints, such as debug hosts, which are useful for host-to-host communication,
or USB-CAN interfaces, which require control traffic to be handled by real-time host-level services.

Since the hardware scheduler transfers TDs from endpoints in H and L (i.e., the periodic end-
points) before scheduling endpoints in A, we build our mixed-criticality solution based on our
earlier bin-packing algorithm as follows:

Every time a new USB device is enumerated and set to be scheduled on the BI:

(1) the minimum micro-frame time tA required for all endpoints in A to meet their budget re-
quirements is computed.

(2) An array ofN micro-frame bins is allocated, with each bin’s initial capacity set to μ f rame−tA
nanoseconds. N is the least common multiple of periods of all endpoints in {H ∪ L}. Each
bin keeps track of the available micro-frame time for periodic traffic.

(3) The micro-frames are then filled with TDs from the endpoints in H . The schedule fails if not
all TDs in H fit while respecting their budget and period requirements. Upon a successful
return from the bin-packing algorithm, the capacities of each bin are reduced as a result of
preserving bandwidth for the highly critical endpoints.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 4, Article 67. Publication date: July 2023.

67:10 R. West et al.

(4) Finally, the bin-packing algorithm is called once more to try to schedule TDs from end-
points in L in the remaining time within each bin. This ensures that low-criticality traffic will
be scheduled by the xHC only when all high-criticality traffic is guaranteed its bandwidth.
Given that tA is reserved for every micro-frame, a feasible schedule ensures asynchronous
traffic is guaranteed predictable service.

ALGORITHM 1: Quest USB Bus Scheduling

1: A← (input) set of asynchronous endpoints

2: H ← (input) set of high-criticality periodic endpoints

3: L ← (input) set of low-criticality periodic endpoints

4: // (1) Calculate the reservation required for the asynchronous traffic (Algorithm 2)

5: tA ← usb_sched_async(A, H)

6: if tA < 0 then

7: return FALSE

8: end if

9: // (2) Allocate and initialize the bins for the periodic traffic scheduling

10: N ← LCM ({Ti ∪Tj : i ∈ H, j ∈ L })
11: M ← alloc(N integers)

12: for f = 0 to N − 1 do

13: M[f]← μf r ame − tA

14: end for

15: // (3) Allocate bins for the highly critical periodic traffic (Algorithm 3)

16: (r et, M) ← usb_sched_periodic(H , M , N , TRUE)

17: if r et = T RU E then

18: // (4) Allocate bins for the low-criticality periodic traffic (Algorithm 3)

19: M ← usb_sched_periodic(L, M , N , FALSE)

20: return TRUE

21: end if

22: return FALSE

In Step (1), tA is derived by calculating the maximum number of micro-frames an asynchronous
endpoint j ∈ A requires to successfully transfer its Bj bytes of data in a time less than or equal
to Tj . During each pass of the round-robin scheduler for asynchronous endpoint j, one burst of
packets having qj bytes is transferred. Each burst consists of (nj + 1) packets, and each packet
takes w j nanoseconds to transfer. Therefore, endpoint j needs to be visited by the xHC round-
robin scheduler kj times to transfer Bj bytes, as shown in Equation (4).

kj =

⌈
Bj

(nj + 1)bj

⌉
(4)

For simplicity, consider a scenario in which there are no periodic endpoints associated with a
BI, and thus all the bandwidth goes to the asynchronous endpoints in A. In the worst case, all
asynchronous transfer requests arrive at the same time, and the endpoint of interest, j, always
receives its quantum after every other endpoint. Therefore, the worst-case latency of endpoint j
is simply the sum of transfer times of all asynchronous endpoints for the duration of kj passes
through the round-robin schedule. Equation (5) shows lj as the time it takes for the host controller
to transfer one full budget, Bj , of payload for endpoint j in the worst-case scenario under this
assumption.

lj ≤ kj

|A |∑

i=1

(ni + 1)wi (5)

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 4, Article 67. Publication date: July 2023.

Real-Time USB Networking and Device I/O 67:11

Now consider the addition of periodic endpoints associated with a BI. We must first address the
initial time within each micro-frame where only periodic TDs are scheduled, in addition to the
worst-case transfer time of an asynchronous endpoint as shown in Equation (5). To address this
scenario, we assume that at least tA nanoseconds surplus time in every micro-frame after all pe-
riodic TDs are scheduled is reserved for asynchronous transfers. Therefore, the worst-case time
it now takes to transfer Bj bytes for asynchronous endpoint j is c j micro-frames, as shown in
Equation (6).

c j =

⎡⎢⎢⎢⎢⎢
1

tA
kj

|A |∑

i=1

(ni + 1)wi

⎤⎥⎥⎥⎥⎥ (6)

It follows that the worst-case time to transfer Bj bytes for endpoint j is μ f rame×c j nanoseconds.

3.3 Asynchronous Reservation

Given a group of asynchronous endpoints A and periodic endpoints H , we can find a range of
possible values for tA. We first derive tAmax to reject sets of asynchronous endpoints that are not
schedulable, when ∃i ∈ A|ci > Ti . According to the USB 3.x Specification, periodic transfers take
precedence for up to 90% of each micro-frame. Assuming there are |H | periodic endpoints present
in every micro-frame, which each transfer (mi + 1) (ni + 1)bi bytes, then the upper bound for tA is

tAmax =max
⎧⎪⎨⎪⎩μ f rame −

|H |∑

i=1

(mi + 1) (ni + 1)wi , 0.1 μ f rame
⎫⎪⎬⎪⎭ (7)

tAmax is at least 0.1 μ f rame because of the amount of time within each micro-frame reserved
for periodic transfers. If the micro-frame time consumed by high-criticality periodic requests in H
is less than 90%, then tAmax may be higher than 0.1 μ f rame . Once tAmax is established, then the
minimum feasible tA ensures that every endpoint i ∈ {A ∪ H } transfers at least Bi bytes every Ti

micro-frames. The minimum feasible tA yields the smallest reservation necessary for asynchronous
traffic, while maximizing the endpoints in L that are schedulable. Algorithm 2 determines whether
a feasible tA exists that guarantees service to endpoints in A and H while minimizing rejections of
endpoints in L.

— Lines 4 to 6 compute kj as defined in Equation (4) and are used in Equation (6) for each
endpoint j ∈ A. Thekj values only change with a change in the asynchronous pool, therefore,
it can be calculated once at the beginning of the algorithm. Any change in the asynchronous
pool should invoke Algorithm 2 again.

— Line 10 computes the amount of time, tp , the xHC spends on the periodic schedule at the
beginning of each micro-frame, given only that highly critical endpoints are present.

— Lines 11 to 18 of the Algorithm 2 incorporate tP into Equation (7) to calculate tAmax , update
the transfer latency c j of each endpoint ∈ A, and verify the asynchronous admission criteria
below:

∀i ∈ A : ci ≤ Ti (8)

— Then, if the resulting tAmax is enough for all endpoints in A to transfer their Bi bytes every
Ti , the algorithm proceeds with finding the minimum possible value for tA by increasing the
micro-frame time from the minimum asynchronous reservation in step increments (e.g.,
μ f rame × 10% nanoseconds), as shown in lines 20 to 32.

The step value is a multiple of the smallest quantum size (see Equation (2)) among the endpoints
associated with the BI for which we are establishing a schedule, as bus transfers are considered
non-preemptive.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 4, Article 67. Publication date: July 2023.

67:12 R. West et al.

ALGORITHM 2: Asynchronous Reservation (tA) Computation—usb_sched_async()

1: A← set of Asynchronous endpoints

2: H ← set of high-criticality Periodic endpoints

3: step ← incremental step (in ns)

4: for j = 0 to |A | − 1 do

5: A[j].k ← ceil (A[j].B
(A[j].n+1)A[j].b) // Equation (4)

6: end for

7: // Find latency of one pass over the RR schedule

8: tr ←
∑|A|−1

i=0 (A[i].n + 1)A[i].w

9: // Find the maximum feasible tA

10: tP ←
∑|H |−1

i=0 (H [i].m + 1) (H [i].n + 1)H [i].w

11: tAmax ←max {0.1 μf r ame, μf r ame − tP } // Equation (7)

12: // Test the feasibility of tAmax

13: for j = 0 to |A | − 1 do

14: A[j].c = � A[j].k
tAmax

tr // Equation (6)

15: if A[j].c > A[j].T then

16: return −1 // not feasible

17: end if

18: end for

19: // Find the minimum feasible tA

20: for tAmin = 0.1 μf r ame to tAmax with step do

21: f easible ←true

22: for j = 0 to |A | − 1 do

23: A[j].c = � A[j].k
tAmin

tr // Equation (6)

24: if A[j].c > A[j].T then

25: f easible ←false

26: break

27: end if

28: end for

29: if f easible then

30: return tA ← tAmin

31: end if

32: end for

33: return −1 // not feasible

3.4 Periodic Reservation

Algorithm 3 is provided with an array of periodic endpoints assigned to set P . It is first called with
P = H and then with P = L. Each endpoint, Pi , is specified with a packet transmission quantum of
qi bytes, and periodTi in micro-frames. A successful assignment of micro-frames to the endpoint i
will start in micro-frame f = j and proceed to be serviced in micro-frame f = (j +a·Ti)%N , where
a = 1, 2,

As shown in our earlier USB 2.0 scheduling work [59], sorting endpoints by increasing inter-
val, with ties being broken by servicing the largest transmission delay first, tends to increase the
likelihood of finding successful schedules. The alternative would be to exhaustively consider all
possible permutations of endpoints, which is impractical for an online scheduler.

4 HOST-TO-HOST COMMUNICATION OVER USB 3

Real-time distributed and embedded systems often require data to be processed and distributed
across more than one host. For example, an autonomous vehicle management system (VMS)
might feature an array of cameras, LIDARs, and ultrasonic sensors that are connected to more than
one host, which share the data processing load. Pipelines of tasks spanning different machines
perform sensing, processing, control, and actuation.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 4, Article 67. Publication date: July 2023.

Real-Time USB Networking and Device I/O 67:13

ALGORITHM 3: Periodic Reservation Algorithm—usb_sched_periodic()

1: P ← (input) array of periodic endpoints fed to this algorithm

2: M ← (input/output) micro-frame bins

3: N ← (input) number of the bins

4: h ← (input) a boolean value indicating that P = H

5: // M[f]: The available transfer time in the micro-frame f

6: // P [i].s : The starting micro-frame allocated for the periodic endpoint i

7: // Sort endpoints by smallest period (T) first, breaking ties by largest transmission delay first

8: P ← SORT(P, T)
9: for i = 0 to |P | − 1 do

10: P [i].s ← −1

11: q ← (P [i].m + 1) (P [i].n + 1)P [i].w

12: j ← 0

13: while P [i].s = −1 ∧ j < P [i].T do

14: f easible ← TRUE

15: f ← j

16: while f < N do

17: if M[f] < q then

18: f easible ← FALSE

19: end if

20: f ← f + P [i].T

21: end while

22: if f easible then

23: P [i].s ← j // TDs of endpoint i start from micro-frame j

24: f ← j

25: while f < N do

26: M[f]← M[f] − q // Update bin’s remaining capacity

27: f ← f + P [i].T

28: end while

29: else

30: j ← j + 1

31: end if

32: end while

33: if P [i].s = −1 ∧ h then

34: // Could not fit the highly critical endpoint i

35: return FALSE

36: end if

37: end for

38: return (TRUE, M)

CAN communication is an example fieldbus technology that is typically used in automotive sys-
tems but lacks the bandwidth capabilities of USB. USB 3.x supports host-to-host communication
using the xHCI built-in debug capability known as xDbC. A Cross-over cable enables bulk trans-
fers between a Debug Host and a corresponding Debug Target machine that appears as a device.
Alternatively, a pair of hosts are able to exchange data via USB using an active bridge such as
PL27A1 [31], or by connecting to a machine with a built-in On-The-Go (OTG) device controller.

In this article, we focus on the use of xDbC and active bridges for USB networking. OTG con-
trollers are less common on embedded PCs, instead being more prevalent on tablets and smart-
phones. Single-board computers such as the UP Squared work with the Quest RTOS and include
OTG device controllers. However, our experiences with the UP Squared suggest there are hard-
ware limitations that preclude the use of super-speed (gigabit per second) transfer rates. Instead,
OTG-based host-to-host transfers fall back to high-speed (several hundred megabit per second)
rates. Nonetheless, if super-speed OTG is made available on a larger set of devices it has potential

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 4, Article 67. Publication date: July 2023.

67:14 R. West et al.

Fig. 3. xDbC/xHCI stacks in the debug host and debug target.

benefits over xDbC. Whereas xDbC provides only asynchronous endpoints, OTG supports peri-
odic transfers. This potentially simplifies the scheduling of transactions as there would be no need
to support bulk transfer guarantees for host-to-host communication as described in Section 3.

While some embedded systems are equipped with one or more Gigabit Ethernet interfaces,
utilizing USB 3.x as the host-to-host communication medium has the following advantages:

— Direct connectivity between hosts is possible without the need for separately powered
switches and hubs, as used by networks such as Ethernet. This saves space, cost, and en-
ergy by avoiding extra hardware and wiring.

— USB 3.0 xDbC and bridge cables offer transfer rates above 1 Gbps, exceeding the typical rate
limit of most embedded Ethernet interfaces.

— Host-level USB 3.x scheduling is able to ensure predictable throughput guarantees.
— USB networking and device I/O are unified, meaning the same software stack within the

OS is used for scheduling I/O and communication requests. There is no need to implement
host-level protocol converters or bridges that translate USB packets into other formats (e.g.,
Ethernet frames) suitable for network communication. Pipelines of tasks spanning multiple
hosts are then able to be scheduled in coordination with network transfers and device I/O.

4.1 xHCI Debug Capability for Networking

Figure 3 shows the software structure and physical connectivity between a Debug Host (master)
and Debug Target (slave). The slave enables the Debug Capability of its USB 3.x host controller via
an xDbC driver. Once the master senses connection to another USB 3.x host controller, it assigns
control to a Debug Device Driver. This is shown in the figure with port P3 in the master connected
to P1 in the slave via a passive USB cross-over cable. The Target then appears as having a super-
speed USB 3.x link to the Debug Host.

The xHCI hardware allows a single machine to act as both a Debug Host and Target for two
different remote machines. This allows the re-purposing of xDbC as a fully-duplex host-to-host
communication link, with network topologies involving more than two host computers such as
trees and stars.

USB communication using xDbC is readily available within xHC hardware. However, the fol-
lowing limitations must be considered:

(1) xDbC connections using passive cross-over cables that do not strengthen or repeat the signal
are limited to 3–5 meters, based on the USB signaling standard.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 4, Article 67. Publication date: July 2023.

Real-Time USB Networking and Device I/O 67:15

Fig. 4. A 3-D hypercube using xDbC and active USB bridge links.

Fig. 5. Examples of USB network topologies using xDbC links.

(2) Each xHC only includes one xDbC controller, and therefore, topologies such as hypercubes
that require more connections than hosts are not implementable by solely relying on xDbC
links.

(3) USB is a master-slave protocol leading to asymmetric rather than peer connections between
hosts. Establishing xDbC connections on a Debug Host must be ordered to achieve the de-
sired topology.

4.1.1 Limitations 1 and 2. The first two issues are mitigated by the use of USB 3 bridge devices
(active links). PL27A1 for example, is a USB-A to USB-A cable with a chipset in the middle. The
PL27A1 chipset consists of two USB devices, each of which is enumerable by only one of the hosts
connected by the bridge. The two USB devices share hardware buffers for data exchange between
the host computers; the input buffer of one side is shared with the output buffer of the other
side, and vice versa. The signal amplification performed by PL27A1 addresses Limitation 1. More-
over, one can use as many USB 3 active links as there are USB 3 ports in the system, and address
Limitation 2 at the cost of about 190 mW per active link [31].

Figure 4 shows the implementation of a 3D hypercube using 8 xDbC and 4 PL27A1 links. The
arrows represent xDbC links between two hosts. The tail of each arrow is connected to the machine
that enables its xDbC controller and presents it as a USB device to the other machine attached to
the head of the arrow. Using this representation, the second limitation translates to not allowing
an out-degree of more than one.

It should be noted that a passive xDbC cable connection between a pair of hosts is less expensive
than a PL27A1 or similar bridge cable, making it desirable to use as many xDbC connections as a
given topology will allow. Additionally, xDbC connections support two endpoints for both inward
(IN) and outgoing (OUT) communication, so separate cables for full-duplex communication are
not needed. However, there are limitations to the complexities of network topologies handled by
xDbC. If more complex network configurations are required, a combination of xDbC and active
bridge connections makes sense, with the aim of using as few bridges as possible.

4.1.2 Limitation 3. Figure 5 shows several example networks that rely only on xDbC links, and
which require ordered operations to form successful topologies. We assume that system designers

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 4, Article 67. Publication date: July 2023.

67:16 R. West et al.

Fig. 6. Examples of misconfigured USB network topologies using xDbC links.

specify (e.g., at boot time) which hosts must enable their xDbC controllers. However, a Debug
Target must enable its xDbC controller before the Debug Host is allowed to proceed with USB 3
device enumeration. The proper order of the enumeration (xHC.enum) and enable (xDbC.enable)
events is shown below, for cases (a)–(c), with eventi → eventj indicating eventi happens before
eventj . Note that all hosts must enumerate their attached devices for I/O operations, but enabling
xDbC is optional and depends on the desired network topology.

— (a) Hosts 2 and 3: xHC.enum→ Hosts 2 and 3: xDbC.enable→ Host 1: xHC.enum
— (b) Hosts 1 and 2: xHC.enum→ Hosts 1 and 2: xDbC.enable→ Host 3: xHC.enum→ Host 3:
xDbC.enable→ Host 4: xHC.enum

— (c) Host 1: xHC.enum→ Host 1: xDbC.enable→ Host 2: xHC.enum→ Host 2: xDbC.enable
→ Host 3: xHC.enum→ Host 3: xDbC.enable→ Host 4: xHC.enum→ Host 4: xDbC.enable
→ Host 1: xHC.enum

Should hosts not follow the correct order of enumeration and xDbC enable events, the final con-
nections may result in an unwanted network configuration. Figure 6 shows examples of how each
of the three networks in Figure 5 may end in a partially disconnected state.

In Figure 6(a), Host 1 performs USB enumeration after Host 2 enables its xDbC controller, but
before Host 3 enables its controller. Situations like this are easily resolved if the hosts repeat
the enumeration of xDbC-connected ports for a set amount of time. In Figure 6(b), a connection
is established between Hosts 1 and 3 rather than 3 and 4, if Host 1 enumerates the xDbC previously
enabled by Host 3. In this case, Hosts 3 and 4 will not be linked unless Host 4 also enables its xDbC
and it is enumerated by Host 3. This results in one more xDbC being enabled than necessary, which
consumes extra power, assuming the xDbC of Host 1 is enabled and not used. Finally, Figure 6(c)
shows a situation where the xDbCs of Hosts 2 and 3 are enabled and subsequently enumerated
by Hosts 1 and 4, respectively, leaving a missing link between a pair of hosts wishing to form a
circular network topology as shown in Figure 5(c).

The correct order of xDbC.enable and xHC.enum steps is ensured if each host is first provided
with a list of xDbC dependencies. One possible approach is to assign these dependency lists to
hosts at boot time.

Let Pi be a dependency list assigned to host hi . Each host hj ∈ Pi | j � i enables its xDbC con-
troller for connection to host hi . Algorithm 4 shows how the xDbC dependencies are processed to
ensure the correct order of enumeration for the desired network topology. After initializing xHCI
(Line 5), xDbC is enabled locally if the current host is the designated leader and the flag to enable
xDbC is true (Lines 6–8). In all other cases, the current host waits for device attachments from
each host in its xDbC dependency list (Lines 9–13). The local host then performs xHCI enumera-
tion (Line 14) and subsequently enables its xDbC, if required and it is not the leader (Lines 15–17).
The use of a leader is to break cycles in network topologies.

In Figure 5(a), P1 = {2, 3} and P2 = P3 = {}. This prevents Host 1 from proceeding to enumeration
until it has successfully sensed the xDbC controllers of Hosts 2 and 3. In Figure 5(b), P1 = P2 = {},
and, therefore, they enumerate and then enable their xDbC controllers first. Since P3 = {1, 2}, Host

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 4, Article 67. Publication date: July 2023.

Real-Time USB Networking and Device I/O 67:17

ALGORITHM 4: xDbC Network Initialization
1: i ← (input) the index of the current host

2: e ← (input) flag indicating whether or not xDbC must be enabled

3: P ← (input) dependency list for the current host

4: LEADER ← (input) the index of the host that enables xDbC first to avoid a deadlock

5: Initialize xHCI

6: if e = T RU E ∧ i = LEADER then

7: xDbC.Enable // Enable xDbC for enumeration by other hosts

8: end if

9: for j = 0 to |P | − 1 do

10: while xHCI.deviceAttached(P [j].host) = FALSE do

11: Wait // Wait for attachment of xDbC from host hj ∈ Pi

12: end while

13: end for

14: xHCI.Enumerate

15: if e = T RU E ∧ i � LEADER then

16: xDbC.Enable // Enable xDbC if not a Leader

17: end if

18: return

3 only enables its xDbC once Hosts 1 and 2 are done with their enumeration of USB devices. As
P4 = {3}, Host 4 proceeds with enumeration once Host 3 has finished network initialization. In
Figure 5(c), assigning P1 = {4}, P2 = {1}, P3 = {2}, and P4 = {3} results in a deadlock if there is no
leader. However, if one of the hosts is designated the leader it will enable its xDbC first, and the
ring topology will be correctly formed.

5 TUNED PIPES PROGRAMMING INTERFACE

Sections 3 and 4 show how to schedule and manage USB 3.x endpoints associated with I/O devices
and network connections. A bus scheduler is rendered ineffective if the host does not coordinate
the execution of tasks and interrupt handlers associated with device I/O and network traffic. We
address this problem using an abstraction known as a “tuned pipe”.

A tuned pipe is a host-to-device communication channel that has throughput and delay bounds.
Abstractly, it encompasses the control and data path necessary to execute the code that moves data
between a user-space memory buffer and the device.

In the Quest RTOS, a tuned pipe is built on a device endpoint abstraction, which comprises an
I/O VCPU and an optional Main VCPU, as well as kernel buffers used by the corresponding device
driver. A tuned pipe extends an endpoint into a user-space thread, which runs an application-
specific function to pre- or post-process data. Pre-processed data is sent through the tuned pipe
to the endpoint for delivery to the device. Post-processed data is input from a device through its
endpoint into a user-level address space.

Figure 7 shows the tuned pipe abstraction. Data flows between a user-space pipe buffer and
an endpoint buffer. Data in the endpoint buffer may correspond to multiple pipes. Control flow
for a tuned pipe encompasses the execution of a user-level thread associated with a Main VCPU
and one or more threads in the device endpoint. A device endpoint has at least one thread to
perform bottom half interrupt handling, and an optional thread to parse and process the data in
the endpoint buffer.

5.1 Tuned Pipes API

Quest’s tuned pipe API allows user-space programs to establish host-to-device communication
channels with throughput and delay constraints. The pipe is guaranteed to be temporally isolated

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 4, Article 67. Publication date: July 2023.

67:18 R. West et al.

Fig. 7. Tuned pipe abstraction.

from the activities of other tasks and I/O pipes. The creation of a tuned pipe is established by a
call to tpipe:

int tpipe(endpoint_t end, qos_t qspec,
(void *)(*func)(void *), void *arg);

On success, tpipe returns an integer pipe identifier, otherwise, it returns −1. A newly-created
tuned pipe spawns a user-level thread that is mapped to a Main VCPU and bound to a device
endpoint. Figure 7 shows the binding of a Main VCPU to a device endpoint, which is associated
with an endpoint type, as follows:

typedef struct {
vcpu_id_t iovcpuid; // Bottom half VCPU ID
vcpu_id_t mvcpuid; // Main VCPU ID
struct sched_param *iovcpu_params;
struct sched_param *mvcpu_params;
endpoint_attrs_t *eattrs; // Attributes

} endpoint_t;

An endpoint’s I/O VCPU (identified by iovcpuid) provides budgeted CPU time for a bottom
half device driver. The scheduling parameters of the I/O VCPU (iovcpu_params) are dependent
on the device capabilities (e.g., how much data it is able to transfer in a given time interval), and
the requirements of the tuned pipes associated with that endpoint. Depending on the device, mul-
tiple tuned pipes may be associated with a single endpoint. For example, a USB-CAN device might
expose up to five separate channels and, hence, five separate pipes for its endpoint. This informa-
tion is provided by a device driver information base when the driver is registered with the OS, and
attributes in this information base are accessed through the eattrs member of the endpoint type,
which is partially described as follows:

typedef struct {
int max_channels; //Max pipes for endpoint
uint64_t max_tput; //Max bits per min_latency
time_t min_latency;//Min delay [nanoseconds]
int min_ebufsz; //Min endpoint buffer size
int max_ebufsz; //Max endpoint buffer size
int min_pktsz; //Min transfer packet size
int max_pktsz; //Max transfer packet size
...

} endpoint_attrs_t;

In the above, max_channels is the maximum number of channels supported by the endpoint

for the creation of unique pipes. The ratio max_tput
min_latency is the highest sustainable throughput

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 4, Article 67. Publication date: July 2023.

Real-Time USB Networking and Device I/O 67:19

achievable by the endpoint, and is limited by the device bandwidth. min_latency is the mini-
mum delay between successive data items transferred between the host memory and the device.
A device is not capable of reading or writing data faster than this time. [min|max]_ebufsz is the
[minimum|maximum] endpoint buffer size, and [min|max]_pktsz is the [minimum|maximum]
size of a packet transferred to or from the device.

The key attributes within struct sched_param are the corresponding VCPU’s budget, C , and
period, T . Depending on the device driver, an endpoint might use a Main VCPU (identified by
mvcpuid) in addition to an I/O VCPU. We use such a configuration in the implementation of our
USB-CAN driver, to parse incoming packet data in an endpoint buffer and associate it with separate
pipe buffers.

A device driver developer establishes the default scheduling parameters for the endpoint I/O
VCPU and, if it is used, the Main VCPU also. Depending on the tuned pipe requests from user-
space, the endpoint’s VCPU scheduling parameters, including both budget and period, might be
adjusted from their defaults. They will nonetheless be constrained by the capabilities of the device.
For example, suppose a USB-CAN device exposes five channels of up to 2.25 Mbps, such that four
channels are limited to 500 Kbps and one is limited to 250 Kbps; for an endpoint with a 4 KB
buffer, a Main VCPU thread must process the buffer every 14 ms to avoid overflow. If a device
driver developer establishes the processing overhead is no more than 2 ms, then the endpoint
Main VCPU budget and period are set to C = 2 ms and T = 14 ms, respectively.

The creation of a tuned pipe associates a thread function (func) and its argument (arg) with
a new Main VCPU. This is similar to the semantics of thread creation APIs such as the POSIX
pthread_create call. The difference is that the new thread in a tuned pipe is mapped to a time-
constrained VCPU whose budget and period are automatically established to guarantee the QoS
specified by the tpipe call. The QoS specification, qspec, is of the following type:

typedef struct {
time_t latency; // Nanoseconds
uint64_t tput; // Bits per given latency
size_t IObufsz; // Pipe buffer size in bytes
time_t texec_time;// Thread exec time

} qos_t;

The texec_time is the thread (func) execution time to process IObufsz bytes of data in a given
period of the user-level Main VCPU. This time is assumed to be determined by prior measure-
ments of the data processing delay. As an example, suppose a user wishes to process a pipe buffer
containing up to 128 bytes of packet data within 1 ms of its arrival on a 500 Kbps pipe associated
with a device endpoint. texec_time is set to 1ms and assumed to be sufficient to accommodate
the execution time of func. Along with IObufsz=128 bytes, latency is set to 1 × 109 nanoseconds,
and tput is set to 512 × 103 bits/second. The Main VCPU associated with the thread func has an
automatically-generated budget, C = 1 ms and period, T = 2 ms. The period is derived by the
tpipe function using Little’s Law, L = λW , where L is the buffered data (here, 128 bytes), λ is the
arrival rate (here, no more than 500 Kbps), andW is the time for the buffer to be filled before being
reused. W effectively bounds the period of the Main VCPU. In this case, W = T = 2 ms, ensures
the pipe buffer is processed before overflowing.

It should be observed that the constraints on a Main VCPU associated with a tuned pipe are
limited by the capabilities of the device endpoint. Thus, it would be impossible to meet throughput
and delay constraints outside the range of feasible values supported by the endpoint. However, the
tpipe call may adjust the endpoint VCPU scheduling parameters to accommodate a pipe request,
if the endpoint attributes (e.g., maximum endpoint throughput) are not violated. The successful

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 4, Article 67. Publication date: July 2023.

67:20 R. West et al.

Fig. 8. Data and control flow for USB-CAN tuned pipes.

creation of a tuned pipe also requires the Main and I/O VCPUs to be feasibly scheduled according
to the utilization bound test (shown in Equation (1)).

5.2 End-to-End Guarantee

The combination of Quest’s VCPU and USB schedulers guarantees end-to-end latency require-
ments for device I/O and network transfers. In this section, we use a USB-CAN system as an
example to elaborate on separate latencies that influence end-to-end time.

5.2.1 Latency Contributors. The end-to-end transfer delay is influenced by several factors,
which we will identify as part of our analysis. To begin, we first consider the end-to-end data and
control flow during a USB-CAN transfer, illustrated in Figure 8. The most complex path considers
the input of data, as this has to be demultiplexed for different user-level threads. Consequently,
the end-to-end time of a CAN message starts with its arrival at the interface to the CAN bus, and
ends when the message is read by a user-space thread.

When a CAN message arrives, it is temporarily stored in a hardware buffer within the CAN
controller before the host issues a USB read transfer request. A USB read transfer request will
cause the data to be moved from the hardware buffer into a target host memory buffer3 using DMA
when the corresponding USB endpoint is scheduled by the host controller. Instead of triggering an
interrupt upon the completion of each DMA transfer, the USB host controller can be configured
to periodically trigger interrupts to poll the completion of multiple pending transfers at a time.
The time that system software waits for the completion of the DMA contributes to the end-to-end

latency, represented by 1 in Figure 8.

3In the case of USB-CAN, the target is a buffer allocated within the USB-CAN driver.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 4, Article 67. Publication date: July 2023.

Real-Time USB Networking and Device I/O 67:21

The time during which interrupts are disabled is minimized by delegating the polling operation
to a threaded bottom-half routine, associated with a dedicated USB I/O VCPU. The delay between
the completion of a DMA transfer and the invocation of the bottom-half thread also contributes

to the end-to-end latency, represented by 2 .
The bottom half updates the xHC host-resident data structures and invokes a specific callback

function for each completed transfer. Common to subsystems that utilize a USB communication
stack, our CAN driver registers a callback function that does nothing but wake up the thread that
is waiting for the completion of the USB transfer in question. This is a dedicated CAN RX thread re-
sponsible for issuing all the USB read transfers. Upon waking up, it parses received CAN messages
and distributes them to buffers assigned to each CAN channel. After that, the RX thread issues
a new USB read transfer and yields the CPU. The delay between the invocation of the registered
callback function and the completion of the RX thread execution is the third contributor to the

end-to-end latency, represented by 3 . As shown in Figure 8, the CAN RX thread is associated
with a Main VCPU, whose budget is denoted byCr x and period byTr x . We select the initial budget
Cr x through off-line profiling in order to provide the thread with enough time to issue one USB
read request to the host controller, parse the received data, and distribute the data among separate
CAN channel buffers for the user threads. The final value of Cr x and Tr x should be chosen based
on the CAN bus load, and adjusted according to user requirements elaborated in Section 5.1.

A CAN message is queued in the channel buffer until a user-level thread, which has opened that
channel, issues a system call to copy the message to user level. Each user-level application thread
is assumed to be associated with a Main VCPU with Cusr budget and Tusr period. The waiting
time a message spends in the channel buffer is the fourth, and last, contributor to the end-to-end

latency, represented by 4 . Section 5.1 also describes the way in which Tusr is determined.

5.2.2 End-to-End Timing Analysis. The scenario that leads to the worst case latency is the sum-

mation of largest delays incurred by steps 1 – 4 . In order to derive the end-to-end transfer
latency, we begin by describing the timing properties of all the steps involved in the analysis.

First, each USB transfer request causes data to be moved from the hardware buffer to the USB-
CAN kernel buffer, which takesTusb nanoseconds. We assume the USB device endpoint the driver
reads from is accepted by our USB scheduler, and therefore, completes its transfer in Tep

4 micro-
frames. If the host controller is configured to trigger interrupts immediately, the worst-case delay

of step 1 isTusb = Tep×μ f rame nanoseconds. However, in the case of xHCI triggering interrupts

at every TxHCI nanoseconds, Tusb = TxHCI × �
Tep×μf r ame

Tx HCI
.

Second, the I/O VCPU associated with the bottom half of the xHCI driver is woken up every

Tiovcpu nanoseconds, which contributes to the worst-case delay in step 2 . The USB I/O VCPU
is bounded by a predefined factor of Uusb % CPU utilization. Its budget is Cusb = Uusb ·Tr x and its
period is Tiovcpu = Tr x because I/O VCPUs derive service constraints from the Main VCPU they
serve when using PIBS.

Third, the worst-case overhead of the CAN RX thread to parse the USB-CAN buffer, distrib-
ute messages into separate channel buffers, and issue the next USB read request is Tr x . This is
because the RX thread with a budget of Cr x may be preempted and, hence, will not necessarily

complete execution before the end of its period. This contributes to the cost of step 3 .
Finally, a user-level thread takes a maximum of Tusr time units to complete Cusr time units of

execution when there is preemption, which contributes to the cost of step 4 . Cusr is set to the
worst-case value necessary to complete the copying of data into a user-level address space.

4Tep is the period passed to the USB Scheduler by the USB-CAN driver for the input endpoint.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 4, Article 67. Publication date: July 2023.

67:22 R. West et al.

The four-step worst-case end-to-end latency is therefore:

Ewc = Tusb +Tiovcpu +Tr x +Tusr

= Tusb + 2 ·Tr x +Tusr
(9)

Note that the worst-case delay is the sum of a sequence of periods associated with the four
stages of data transfer. This is because Quest’s scheduler guarantees that every task associated
with a different VCPU will receive up to its reserved budget, Ci , every period Ti if Equation (1) is
satisfied. The proof of this is omitted but is included in our work that extends tuned pipes across
separate guest OSes supported by the Quest-V partitioning hypervisor [27].

6 EXPERIMENTAL EVALUATION

6.1 Real-Time USB 3 Scheduling

Our real-time USB 3.x scheduler is evaluated using the test setup shown in Figure 9. This represents
a simplified version of a VMS under development for an industrial partner.

A Cincoze DX1100 embedded PC, featuring a 2.4 GHz 9th generation Intel Core-i7 hexacore
processor consolidates multiple vehicle functions, including those for the Instrument Cluster

(IC), In-vehicle Infotainment (IVI), and ADAS. The DX1100 runs our Quest RTOS, which im-
plements the USB 3 scheduler described earlier. Two UP Squared single-board computers support
additional vehicle control functions and backup services in case of hardware and software failures.
In our production VMS, we run Quest alongside Linux to manage IC, IVI, and ADAS services. How-
ever, for these experiments, we simply run Quest on four cores, leaving the others which would
ordinarily be available to Linux unused.

For this article, four USB cameras are used to represent front, rear, and side-facing visual sensors
for obstacle detection and avoidance. Although the full VMS will feature more cameras and other
sensors, such as LIDAR and RADAR, the basic setup used in this article is sufficient to show the
benefits of our USB scheduling framework.

Four processes are forked in the Quest RTOS, one for each camera connected to the DX1100.
These processes each run a single-threaded task bound to their own Main VCPU and separate
physical core. All other tasks are responsible for processing and exchanging data with the Two UP
Squared computers. The assignment of tasks to cores ensures they are guaranteed their correspond-
ing CPU reserves. However, in this article, we make no additional attempts to avoid inter-core inter-
ference through implicitly shared resources such as caches and memory buses. Such interference
is possible to mitigate using techniques such as cache partitioning [2, 9, 19, 33, 36, 50, 66, 67, 76, 78]
and page coloring [10, 48, 49, 72, 79]. Our prior work on COLORIS shows an efficient method of
dynamic page coloring [87]. This is, however, outside the scope of this article.

Each camera features a USB 3 IMX291 imaging chipset capable of capturing 50 HD frames per
second (fps) at 1920 × 1080 pixel resolution. Each IMX291 has a hardware buffer of 4 MB, and
supports an isochronous endpoint of 33 KB to transfer frames between the device and host memory.
The endpoints have parametersm = 2, n = 10, and b = 1024 bytes, as described in Section 3.

Each UP Squared board runs an instance of Quest on a quad-core Pentium N4200 Intel processor
operating at 1.1 GHz. These boards are used to represent the handling of timing critical tasks for
chassis, body, and powertrain control, including torque vectoring and battery management. The
DX1100 acts as the mission control center for the vehicle, gathering environmental information
through one USB 3 isochoronous endpoint per camera, and communicating control signals to the
UP Squared boards via two uni-directional USB 3 xDbC bulk endpoints per board. Depending on
the operating mode of the vehicle, the DX1100 either processes driver-input commands or uses
the signals generated by autonomous driving software.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 4, Article 67. Publication date: July 2023.

Real-Time USB Networking and Device I/O 67:23

Fig. 9. USB 3 scheduling—experimental setup.

The service requirements of isochronous endpoints (i1, . . ., i4) change at runtime. This is because
the primary cameras of interest depend on whether the vehicle is moving forward, reversing, or
changing lanes. However, bulk endpoints (b1, . . .,b4) used for host-to-host communication and
USB-CAN transfers are always critical for the safe operation of the vehicle. As stated in Section 3,
the host controller hardware guarantees a minimum of 10% bandwidth for asynchronous transfers,
but this may be insufficient without additional software management.

In this section, we present two sets of experiments using the setup described above to demon-
strate how our bus scheduler guarantees throughput and delay requirements. We also discuss how
the observed values follow our mathematical model in Section 3.

The maximum packet size of all endpoints in these experiments is 1024 bytes. Using Equation (3),
we calculate the maximum packet transfer latency of each bulk and isochronous endpoint to be
1778.4 ns and 1720.8 ns, respectively.5 The bus utilization values reported throughout this sec-
tion are derived from the latency, and each endpoint’s budget and period. However, the reserved
throughput values exclude the various overheads of the USB bus, and they are simply calculated
as the number of payload bits per microsecond. This matches what we measure in software on the
DX1100 for each endpoint.

6.1.1 End-to-End Latency Guarantees. The objective of this experiment is to verify the worst-
case latency analysis presented in Section 3. Five different scenarios are constructed, with the
same total periodic and asynchronous bus utilizations but varying asynchronous transfer latencies.
All scenarios pass the schedulability test, but exhibit different worst-case transfer latencies (c j in
Equation (6)) for bulk endpoints.

Camera one is assigned a budget of 33KB for every period of one micro-frame, while camera
two is assigned the same budget for every other micro-frame. Cameras three and four are not used
in this experiment. Therefore, the total bus utilization allocated to isochronous data transfers is
68.1%, which leaves 31.9% for the four bulk endpoints—i.e., tA = 39875 ns in the worst case. The
total bus utilization of asynchronous traffic is set to 5.7% to ensure all scenarios are schedulable.

In this set of experiments, each UP Squared generates a 60 minute series of timestamped 1 KB
USB PING packets that are routed through the DX1100 to the opposite UP Squared board. The
DX1100 constantly listens for new packets from the UP Squared boards, unpacks the headers,
and forwards the packets to their destination based on a static routing table. Once an UP Squared
receives a PINGmessage, it generates a corresponding PONGmessage and transmits it to the original

5The latency parameters of a USB 3 host controller are as follows: h = 5 ns, α = 0.2 ns , γ = 1, pBulk = 134.4 ns ,

pI soc = 76.8 ns .

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 4, Article 67. Publication date: July 2023.

67:24 R. West et al.

Table 2. USB 3 Scheduling—Expected End-to-End Latencies for Bulk Endpoints

Scenario
Budget

(Bj in bytes)

Period

(Tj in micro-frames)

Endpoint Latency

(c j in micro-frames)

Worst-case

End-to-End

Latency (μs)

1 1,024 1 1 4,000

2 8,192 8 2 4,500

3 20,480 20 4 5,500

4 40,960 40 8 7,500

5 88,064 86 16 11,500

Table 3. USB 3 Scheduling—Delay Contributors

Entity Period (μs) Description

UP Squared

Ttx /Tr x 250 xDbC sender/receiver MainVCPU

Tx DbC 125 Worst case latency of xDbC packets over the USB 3 Bus

DX1100

T ′tx/T
′
r x 250 Host-based router sender/receiver MainVCPU

Tusb 125 × c j Worst-case latency of Bulk USB packets

Tiovcpu 250 xHCI bottom-half Handler

sender via the DX1100. Upon reception of a PONG message, each UP Squared verifies the integrity
of the message using a checksum, and records the timestamp once again.

We calculate the round-trip message delay by subtracting the timestamp of each PONG message
from the timestamp of its corresponding PING message. There are two possible round-trip paths:
(1) from endpoint b1 to b4, and (2) from endpoint b3 to b2, each passing through the DX1100 and the
opposite UP Squared. This type of round-trip path is representative of a range of throughput and
delay contributors, and avoids performing clock-SYNC for an accurate time measurement as every
delay item is observed using the same (local) timestamp counter. Table 2 shows the configuration
of each bulk endpoint in every scenario, as well as the expected worst-case end-to-end latency
values, calculated from Equation (10).

Table 3 shows the parameterization of the contributors responsible for the end-to-end latency
of the packets originating from one UP Squared to the other (via DX1100) and back to the first UP
Squared.

The round-trip latency of bulk packets follows from the analysis provided for the CAN inter-
face driver in Section 5.2, with the following differences: (1) Our xDbC and USB-Bridge drivers
support zero-copy data-transfer from user-space and do not perform any scatter-gather opera-
tions between threads, yielding Tusr = 0; (2) the xDbC Driver does not implement a bottom-half
handler and polls for the completion of any pending operation; (3) to simplify Tusb , we configure
the host controller to trigger interrupts immediately as they arrive.

The worst-case latency of one UP Squared sending a message to the DX1100 isTtx+Tx DbC = 375
micro-seconds. Similarly, the worst-case delay of an UP Squared receiving a message is Tr x +

Tx DbC = 375 micro-seconds. We expect an additional bottom-half handling delay of 250 micro-
seconds for the DX1100 to exchange one message in each direction. Since the worst-case latency
(c j in Equation (6)) for each of the bulk endpoints in this experiment depends on the scenario, we
express Tusb as a factor of c j values reported in Table 2.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 4, Article 67. Publication date: July 2023.

Real-Time USB Networking and Device I/O 67:25

Table 4. USB 3 Scheduling—Observed Bulk Endpoint Latency Statistics

Latency (μs) Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Maximum 4,037 4,359 5,256 7,553 11,560

Minimum 3,033 3,426 2,859 3,268 3,521

Average 3,549 3,875 3,969 5,186 7,447

Std. Dev. 167 129 382 658 1,238

Fig. 10. USB 3 scheduling—CDF of end-to-end latencies of bulk endpoints.

Note that in schedulable configurations, the actual bulk endpoint latency for bus transactions
(125c j micro-seconds for endpoint j) is always less than or equal to the period (125Tj micro-
seconds) of the endpoint depending on the amount of slack in tA if the USB bus is under-utilized.
For this reason, we calculate our expected worst-case latency values using c j instead ofTj , to vali-
date our latency analysis more precisely. The total end-to-end delay of a packet in this round trip
is as follows:

Ewc = 2(Ttx +Tx DbC +Tusb +Tiovcpu +T
′
r x +T

′
tx +Tusb +Tiovcpu +Tx DbC +Tr x)

= 2(375 + 1000 + 2(125c j) + 375)

= 3500 + 500c j

(10)

Table 4 presents the message latencies for all five scenarios. The results of all four bulk endpoints
are aggregated in each case since each such endpoint was configured with the same parameters
and showed a similar latency. Figure 10 depicts a cumulative distribution function (CDF) of
the results.

The maximum observed latencies shown in Table 4 in some cases exceeded the calculated worst-
case latency values by at most 60 micro-seconds. The percentage of messages exceeding their
expected worst-case latencies are 0.3%, 0.0%, 0.0%, 0.1%, and 0.1% for scenarios 1 to 5, respectively.
We attribute these outliers to micro-architectural issues, such as cache misses and memory stalls,
as well as measurement errors.

6.1.2 Throughput Guarantees. We again use the same setup as before to measure throughput
guarantees. Three scenarios are considered, with various asynchronous and periodic traffic loads
on the USB 3 bus. We show that bulk and high criticality isochronous endpoints receive their
required throughputs when there is sufficient bus bandwidth for both classes of endpoints to
be serviced. In contrast, low criticality isochronous endpoints are not guaranteed their service
requests.

As stated earlier, the USB 3 hardware scheduler ensures service requirements of periodic end-
points are met by reserving bandwidth for (m + 1) (n + 1)b bytes every period (in micro-frames),
regardless of how much bandwidth is actually used by the USB device. In this set of experiments,

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 4, Article 67. Publication date: July 2023.

67:26 R. West et al.

Table 5. USB 3 Scheduling—QoS Assignments and Throughput Expectations

Endpoint Criticality Budget (bytes) Period (micro-frames) % Bus Utilization Throughput (Mbps)

Common to all scenarios

i1 High 33,792 1 45.4 2,162

i2 Low 33,792 2 22.7 1,081

i3 Low 33,792 4 11.4 541

i4 Low 33,792 8 5.7 270

Scenario 1

b1, . . ., b4 High 4,096 8 0.71 33

Bulk Endpoint Total 2.84 132

Scenario 2

b1, . . ., b4 High 6,144 2 4.27 197

Bulk Endpoint Total 17.08 788

Scenario 3

b1, . . ., b4 High 8,192 1 11.38 520

Bulk Endpoint Total 45.52 2,080

Table 6. USB 3 Scheduling—Observed Throughput Values of

Individual Bulk Endpoints, b1, . . .,b4 (Mbps)

Min Max Average Std. Dev.

Senario 1 34.32 44.03 39.49 1.31

Senario 2 202.83 262.57 234.20 9.18

Senario 3 525.06 627.19 573.20 12.65

the cameras are configured with m = 2, n = 10, b = 1024 resulting in a budget of 33KB every
period. The only exception to this is when an endpoint is rejected at the time of enumeration
if the sum of periodic bandwidth reservations exceeds the 90% threshold. Without the addition
of our software-based scheduler, the rejections happen in the order of USB device enumeration.6

However, our scheduler will not submit low criticality periodic requests to the USB 3 hardware
scheduler if they violate the requirements of bulk and high criticality isochoronous requests.

Table 5 shows the configured/expected QoS for each endpoint in the three scenarios. As men-
tioned earlier, the bus utilization values are derived from Equation (3) to account for the overheads
induced by the USB protocol. For example, the bus utilization of the first isochronous endpoint is

calculated as (m1+1)(n1+1)w1

μf r ame
× 100 = 3×11×1720.8

μf r ame
× 100 = 45.4%.

Each scenario runs for 60 minutes and the throughput of each endpoint on the DX1100 is mea-
sured. The results of the four bulk endpoints are aggregated in each scenario, as they all have the
same scheduling parameters. Table 6 summarizes the observed throughput values in Mbps.

Scenario 1 represents a relatively low-throughput asynchronous demand, where each bulk end-
point is guaranteed to transfer at least four 1024-byte packets every 8 micro-frames, requiring
0.71% of the USB 3 bus bandwidth. In this case, the total asynchronous bandwidth reservation
is 2.84%, which is easily achievable as the host controller limits the periodic traffic to 90%. More-
over, the total bandwidth required by the four isochronous endpoints is 85.2%. Therefore, Scenario
1 must be schedulable even with a trivial periodic packet scheduler that starts every endpoint on
the first micro-frame and assigns to each endpoint the subsequent micro-frames solely based on
periodicity.

6At the time of device enumeration, the host controller reads all possible device configurations, and selects one with at least

one interface. Periodic endpoints associated with that interface are rejected if they violate the bandwidth limit enforced by

the USB Specification.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 4, Article 67. Publication date: July 2023.

Real-Time USB Networking and Device I/O 67:27

Fig. 11. Tuned pipes—experimental setup.

Scenario 2 presents a more challenging situation in which each of the four bulk endpoints trans-
fer at least 6 packets every 2 micro-frames, resulting in a total asynchronous bandwidth reservation
of 17.08%. This scenario is also schedulable by our bin-packing algorithm, which distributes the
starting micro-frames of isochronous endpoints to leave at least 20.05% utilization left-over for
asynchronous traffic.

In Scenario 3, the total bus utilization of asynchronous traffic equals 45.52%. Therefore, only the
first and the fourth isochronous endpoints (i1 and i4) are schedulable. The low-criticality endpoints
i2 and i3 are rejected by our software-based scheduler to ensure the highly-critical bulk endpoints
are each guaranteed to transfer 8 KB every micro-frame. As a result, the actual periodic bandwidth
reservation equals 51.1%. As seen, the minimum bandwidth for each bulk endpoint is 525.06 Mbps,
which is above the reservation of 520 Mbps.

Running the above experiments using Yocto Linux 4.19 on the DX1100, we observed that only
one camera is active at a time. This is due to the following differences between Quest and Linux:
(1) the USB software stack in Linux only relies on the USB 3 hardware scheduler, and does not allow
isochronous endpoint periods to be reconfigured to values other than what the devices report (here,
1 micro-frame), even if meaningful data is transferrable to the host; (2) the UVC driver in Linux
always selects the 33 KB per micro-frame bandwidth reservation for the 50 fps FullHD streaming
mode, as the next largest configuration presented by the cameras supports up to 37.5 frames per
second. Due to reasons (1) and (2), each camera demands 45.4% of the overall bandwidth, which
amounts to 90.8% for two cameras, which is above the 90% limit for periodic traffic. Therefore, only
one of the cameras is accepted by the hardware bus scheduler.

Comparing Linux with Scenario 3 using the Quest software-based scheduler, bulk transfers are
able to obtain (100−45.4) = 54.6% bandwidth, which is more than necessary to meet their require-
ments. However, unlike with Quest, none of the low criticality cameras are able to transfer data.

6.2 Tuned Pipes

The next set of experiments focuses on the performance of tuned pipes, using the testbed shown
in Figure 11. A Kvaser USBcan Pro 5xHS five-channel CAN bus interface is connected via USB 3.0
to an UP Squared single-board computer. The UP Squared has 4 GB RAM and a dual-core Celeron
N3350 processor operating at 1.1 Ghz. Tasks and interrupts are assigned to a shared single core,
rather than having all I/O requests handled on a dedicated and potentially low-utilization core.

An automotive system is simulated by a sequence of CAN frames from several CAN devices
acting as ECUs. ECU1 and ECU2 are represented by Woodward MotoHawk ECM5634-70 modules,
commonly used for engine and powertrain control functions. An Arduino UNO with a SeeedStu-
dio CAN-BUS Shield V1.2 is programmed to produce a repeatable sequence of CAN frames. This
represents ECU3, which is connected to the fifth CAN channel (CAN5).

With the Kvaser USBcan Pro 5xHS interface, each CAN channel is associated with a separate
bus having a maximum configurable bandwidth of 1 Mbps. It is worth noting that by empirical

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 4, Article 67. Publication date: July 2023.

67:28 R. West et al.

Table 7. CAN Bus Traffic

Bus CAN1 CAN2 CAN3 CAN4 CAN5

Bandwidth (bps) 500K 250K 500K 500K 500K

Throughput % 10 20 30 40 69

CAN frames std ext std ext std

study, the USB-CAN interface appears to have a buffer size of 4 KB, which results in stale data
being overwritten when it is full.

6.2.1 Endpoint Guarantees. In the first tuned pipes experiment, the ECUs generate CAN traffic
at different rates to the host computer, to see if a USB-CAN endpoint is capable of receiving all
frames without loss. Host tasks communicate with the Kvaser USB-CAN interface using the CAN-
lib API [42]. The key functions of the CANlib API run on our Quest RTOS, to control bus timing
properties and to read and write different CAN channels.

Quest’s tuned pipes implementation is compared against Ubilinux, which includes the
PREEMPT-RT patch. The bandwidth of each bus is limited to the maximum bit rates in bits-per-

second (bps) shown in Table 7. This configuration has a maximum bandwidth aggregated across
all channels of 4 × 500 + 250 = 2250 Kbps, resulting in a minimum of 14 ms to fill the 32 Kilobit
hardware buffer of the USB-CAN interface. The actual steady-state throughputs, as a percentage of
each channel’s maximum configured bandwidth, are shown below the bandwidth values. The final
row in the table shows the frame format on each channel, from standard (std) 11-bit, to extended
(ext) 29-bit frame IDs. The data payload of each frame type is set to the maximum 8 bytes.

The Linux implementation of the Kvaser CAN driver uses a kernel (RX) thread to periodi-
cally issue USB read transfers. The RX thread is blocked until the USB xHCI bottom half pro-
cesses the transfer completion event. The bottom half runs as a non-schedulable softirq. The
SCHED_DEADLINE [34] policy is used with the RX thread, having a runtime budget of 2 ms and a
period of 14 ms. A comparable Quest experiment uses an RX thread assigned to a Main VCPU with
the same budget and period. However, Quest’s xHCI bottom half interrupt handler is assigned to
a schedulable I/O VCPU with a CPU utilization of 1%.

The budget is derived by measuring the time for the RX thread to parse and distribute
4 KB data into separate host memory buffers for different endpoints, as well as account for buffer
overruns. The period and deadline of a thread are set to the same value, for all cases where
SCHED_DEADLINE is used in Linux.

Table 8 shows the 6 scenarios used to compare Linux and Quest. These scenarios vary in exper-
iment duration from 30 to 60 seconds, and whether there are I/O-, CPU-, or both I/O- and CPU-
bound tasks. The aim is to show the extent to which Linux and Quest are able to achieve temporal
isolation between tasks. For I/O, 5 separate CAN reader tasks are used, one per channel. I/O-bound
tasks run at their default priorities in both Linux and Quest. For cases where CPU-bound tasks are
involved, each task increments a counter every 10 μs and reports how far away the counter is from
the expected value, for a given budget and period over the duration of the experiment. CPU-bound
tasks run under SCHED_DEADLINE in Linux, each having a budget of 1 ms and a period of 7 ms.
Quest uses the same budget and period values for corresponding Main VCPUs. These periods yield
relatively higher priorities for the CPU-bound threads than the RX thread, potentially causing the
greatest interference on I/O operations.

Table 9 shows that Quest does not experience any lost CAN packets, as there are no overruns
of the USB-CAN 4 KB buffer for any of the experimental scenarios. Linux, however, experiences
overruns in the two scenarios where there are higher priority CPU-bound tasks. These cause in-
terference with the USB xHCI bottom half (softirq) in Linux. The softirq initially runs with the

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 4, Article 67. Publication date: July 2023.

Real-Time USB Networking and Device I/O 67:29

Table 8. Experimental Scenarios

Scenario Duration (s) CPU-bound Tasks I/O-bound Tasks

1 30 0 5

2 30 3 0

3 30 3 5

4 60 0 5

5 60 3 0

6 60 3 5

Table 9. USB-CAN Buffer Overruns

Scenario Buffer Overruns

Quest All Scenarios 0

Linux 3 230
6 405

Fig. 12. Average counter error for CPU-bound tasks.

highest priority in the system, with interrupts enabled. However, if the softirq processing loops
MAX_SOFTIRQ_RESTART times, as described in Section 2, and still finds more softirqs to process
due to high rate of interrupts, it will wake up a ksoftirqd thread to handle the remaining work.
Older versions of Linux set ksoftirqd to run at the lowest priority on the target CPU, but recent
versions set the thread to normal user-level task priority. Notwithstanding, the consequences are
that interrupt bottom halves in Linux are either handled at the highest priority, or a relatively low
priority. SCHED_DEADLINE, therefore, has limited benefit for tasks with I/O requirements.

Figure 12 shows the average counter error for the three CPU-bound tasks running on Quest and
Linux, in each of the corresponding scenarios. For Scenarios 3 and 6, the Linux tasks increment
their counters beyond the expected value for their initial budgets. This appears to be an artifact of
SCHED_DEADLINE, which redistributes unused budget of blocked deadline tasks amongst those
that are runnable. The RX thread in Linux will block until the xHCI bottom half handles completion
interrupts for USB transfers. As observed above, the bottom half is deferred when the frequency
of interrupts surpasses a certain threshold, to allow interrupted tasks to proceed. For Scenarios
2 and 5, there are no I/O tasks active.

The CPU-bound tasks in Linux show significant errors between the actual and expected counter
values. The positive values indicate that Linux tasks are lagging behind their expected progress.
This is partly due to SCHED_DEADLINE tasks being unable to reclaim the unused budget of
blocked tasks, and also the overhead of the task scheduler. In each case, Quest guarantees progress
close to what is expected. Although not shown, Quest has the ability to allow tasks to use CPU

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 4, Article 67. Publication date: July 2023.

67:30 R. West et al.

Fig. 13. Number of frames per second received by two user-level I/O tasks, with (a) Quest, and (b) Linux.

cycles above their budget limits when no other tasks have available budgets. This allows the CPU-
bound tasks to increment their counters far in excess (more than 495,000) of their target values.

6.2.2 End-to-End Guarantees.

Input Requests. A further set of tuned pipes experiments concerns the delivery of data to user-
space tasks according to throughput and delay constraints. The experimental setup is similar to
that in Figure 11, except CAN4 is replaced with a second Arduino and CAN shield. Both CAN4 and
CAN5 generate standard frames with a throughput of 69% of their 500 Kbps channel bandwidths.
Five tasks on the UP Squared open pipes to the USB-CAN devices, and record the number of CAN
frames received every second over a 30 second period. Standard CAN frames are 108 bits, while
extended frames are 128 bits. However, the Kvaser USB-CAN interface requires each frame to be
encapsulated in a 64-byte message. All subsequent throughput calculations are based on the Kvaser
message size.

An oscilloscope measures the minimum and maximum transmission delay of a CAN frame
from each Arduino, which is 363.4 μs and 366.2 μs, respectively. These values imply that the
minimum and maximum throughput from the two Arduinos should be in the range [1/366.2 μs,
1/363.4 μs]=[2730 frames/s, 2752 frames/s].

For Quest, each I/O task creates a tuned pipe with the following QoS specification as defined
in Section 5.1: latency=1×109 ns, tput=2752 CAN frames per second, IObufsz=128 CAN frames,
and texec_time=2 ms. The throughput (tput) is calculated from the maximum effective transfer
rate from a single Arduino when sending 108-bit (largest-size) standard CAN frames. The effective
transfer rate accounts for additional bits on the CAN bus for bit stuffing and protocol overheads.
Using Little’s Law, the I/O task period is set to 46 ms, which is the largest interval before a user-
space buffer of 128 frames could overflow. The budget for each I/O task is set to 2 ms, which is
sufficient to process up to 128 buffered frames. Quest I/O tasks are assigned to Main VCPUs, while
equivalent Linux tasks are assigned to the SCHED_DEADLINE class.

Figure 13 shows the number of frames per second received by the two I/O tasks associated with
the Arduino devices, for both Quest and Linux. The first second of data is omitted to allow I/O
buffers to populate. Similarly, Figure 14 shows the minimum, maximum and average throughput
across both USB-CAN channels using Quest and Linux. The two horizontal lines show the target
minimum and maximum values that should be maintained for successful throughput guarantees.

As can be seen, the Quest tasks receive data within the expected throughput bounds of 2,730
to 2,752 frames/s, whereas Linux tasks do not. The reason Linux tasks sometimes exceed their
throughput bounds in 1s intervals is that they fail to receive sufficient data in the previous second,
and subsequently copy additional frames from the endpoint buffer in the next second. Finally,

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 4, Article 67. Publication date: July 2023.

Real-Time USB Networking and Device I/O 67:31

Fig. 14. Minimum, maximum, and average (input) throughput of the two CAN channels using Linux and

Quest.

Linux fails to sustain an average throughput even above the minimum 2,730 frames/s generated
by Arduino. This is because Linux loses some CAN frames as observed in the previous experiment
(Table 9). With Linux, CAN4 and CAN5 average 2,703 and 2,714 frames per second, respectively.
In Quest, CAN4 and CAN5 average 2,745 and 2,743 frames per second, respectively, without loss
of packets.

Note that although the average throughput of Linux is close to the required target range, the
fact that packets are lost could be critical to a real system. For example, a lost CAN frame that
affects automotive braking or engine speed could lead to an accident, with potential loss of life.

Output Requests. For completeness, a series of experiments to show throughput and delay
guarantees on data output to a USB-CAN device are performed. A setup similar to that in Table 7
is used, with three of the five channels (CAN1-CAN3) operating as inputs, as before. CAN4 and
CAN5 are associated with two Arduino CAN devices, configured to receive data from the host.
Given the limitations of the Arduino CAN shields, all data is sent from the host to these devices
in standard frame format.

For Quest, a separate tuned pipe is established for CAN4 and CAN5, to output data to each
Arduino device. As before, an oscilloscope is used to measure the latency of one iteration of an
Arduino sketch, which toggles a GPIO pin upon reception of a CAN frame from the host.

The observed minimum and maximum latencies for one iteration of the Arduino sketch are
325.4 μs and 327.5 μs , respectively. These values are established while transferring data from the
host as fast as possible to ensure the Kvaser USB-CAN interface buffer is always full. These mea-
sured latencies corresponded to a maximum and minimum throughput of 3,073 and 3,053 CAN
frames per second, respectively.

The latency to send 128 64-byte messages from a user-level host buffer for each tuned pipe
is measured to be no more than 2 milliseconds. Consequently, the QoS specification for each
tuned pipe for CAN4 and CAN5 is set to: latency=1×109 ns, tput=3073 CAN frames per second,
IObufsz=128 CAN frames, and texec_time=2 ms. The main VCPU for each tuned pipe in Quest
has a derived budget and period of C = 2ms and T = 41ms, respectively. For comparison with
Linux, a separate SCHED_DEADLINE thread is established for each channel having equivalent
constraints to those of Quest’s Main VCPUs.

Figure 15(a) shows that Quest is able to transfer data from a host to each Arduino device via
the USB-CAN interface according to the tuned pipe QoS specification. In comparison, Figure 15(b)
shows that Linux sometimes experiences significant drops in throughput, below the minimum
3,053 CAN frames per second expected for each Arduino device. This is because of demotion in

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 4, Article 67. Publication date: July 2023.

67:32 R. West et al.

Fig. 15. Number of frames per second sent by two user-level I/O tasks, with (a) Quest, and (b) Linux.

Fig. 16. Minimum, maximum, and average (output) throughput of the two CAN channels using Linux and

Quest.

the priority of the xHCI bottom half used for USB transfers, as described earlier. As can be seen,
bottom half priority inversion affects both input and output transfers.

Finally, Figure 16 shows that the average throughput for CAN4 and CAN5 is within the expected
range with Quest. Although the average throughput with Linux is almost within the expected
range, there is far greater variance in the minimum and maximum throughput than with Quest.

7 RELATED WORK

7.1 Resource Reservation

Central to the coordination of host processing and USB transfers is the combined scheduling of
tasks and interrupt handlers. The USB host controller generates interrupts either on completion
of a transfer request, or at a pre-determined rate. These events must be correctly scheduled with
other tasks to achieve the end-to-end service guarantees provided by our tuned pipes framework.
As noted in Section 2, the Quest RTOS provides the necessary abstractions for real-time end-to-end
transfer and processing of USB data.

Unlike other real-time OSs [6, 23, 28, 43, 55, 56, 58, 69, 73, 84], Quest provides processor reser-
vations to ensure task and I/O events are guaranteed timely execution. This is similar to resource
reserves in Linux/RK [63], which are derived from processor capacity reserves in RT-Mach [57].
Other systems such as Redline [86] support the notion of budgets and replenishments, similar to
how Quest works, using a task scheduling model similar to that used in Deferrable Servers [5, 77].
In contrast to both Redline and Linux/RK, Quest allows I/O events to be processed at priorities in-

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 4, Article 67. Publication date: July 2023.

Real-Time USB Networking and Device I/O 67:33

herited from virtual servers responsible for executing tasks, for whom I/O event processing is
being performed.

The HARTIK kernel [1] provides temporal isolation between hard and soft real-time tasks, using
a Constant Bandwidth Server (CBS) approach. A CBS has a current budget, cs and a bandwidth
limited by the ratio Qs/Ts , where Qs is the maximum server budget available in the period Ts .
When a server depletes all its budget it is recharged to its maximum value. A corresponding server
deadline is updated by a function ofTs , depending on the state of the server when a new job arrives
for service, or when the current budget expires.

CBS guarantees a total utilization factor no greater thanQs/Ts , even in overloads, by specifying
a maximum budget in a designated window of time. This contrasts with work on the Constant

Utilization Server (CUS) [18] and Total Bandwidth Server (TBS) [75], which ensure bandwidth
limits only when actual job execution times are no more than specified worst-case values. CBS has
bandwidth preservation properties similar to that of the Dynamic Sporadic Server (DSS) [25]
but with better responsiveness.

Linux now supports the SCHED_DEADLINE scheduling policy [46], based on the Earliest

Deadline First (EDF) and CBS algorithms, with resource reservations. However, resource reserva-
tions are limited to tasks rather than I/O event handlers, unlike with Quest’s virtual CPU scheduler.

7.2 Real-Time Interrupt Handling

Quest uses Main and I/O VCPUs to provide processor reservations for tasks and interrupt events,
respectively. Several research works [16, 21, 37, 68] have investigated the idea of integrating
interrupt handling with the scheduling and accountability of processes. Brandenburg et al. [8]
highlighted the importance of accurate interrupt accounting for multiprocessor real-time systems.
Lewandowski et al. [47] considered bandwidth constraints on device driver execution. Similarly,
Manica et al. [54] presented a theoretical model for scheduling interrupt threads following the
reservation-based approach. However, none of these works explore the dependency between in-
terrupts and processes, and use that information to decide the priority of interrupt handlers (es-
sentially bottom halves) in CPU scheduling. Motivated by Zhang and West [88], Quest combines
the scheduling and accountability of interrupts associated with corresponding processes that issue
service requests on I/O devices.

Previous work by Kuhns et al. [41] showcased the design and analysis for real-time I/O sub-
systems. The temporal isolation between interrupt handlers and tasks is used in Quest’s tuned
pipes for I/O transfers. Scout [61] exposes paths that are similar to pipes in our system, as a way
to offer QoS guarantees to applications. However, paths in Scout are non-preemptive schedulable
entities, ordered according to an EDF policy. Similarly, RAD-FLOWS by Pineiro et al. [65], pro-
vide a method to guarantee end-to-end inter-process communication, instead of throughput and
delay-constrained I/O transfers.

7.3 Predictable Networking and I/O

Research shows how Linux’s approach to USB 2.0 scheduling leads to unnecessary transfer request
rejections, which are feasible according to available bus bandwidth [59]. The same work shows
how a suitably written USB host controller driver is capable of providing throughput and delay
guarantees on USB bulk data transfers that would otherwise be given best-effort service.

Other work provides a derivation of the worst-case transmission delay in a CAN bus for real-
time communication, considering blocking delays and jitter [14, 81]. Similar work presents a sched-
uling analysis of CAN using FIFO rather than priority queues [13]. While previous scheduling
analyses for CAN are based on the assumption that the highest priority message submitted for

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 4, Article 67. Publication date: July 2023.

67:34 R. West et al.

transmission is the next message a node transmits, in practice many CAN device drivers use a
FIFO queue.

Real-time bus communication has been studied in both a theoretical framework [3, 35, 45] and
in various physical implementations [13, 40, 52, 90]. Lehoczky et al. [35] modeled real-time bus
scheduling as a CPU scheduling problem, with several notable differences relating to preemption,
buffering and priority granularity. Our method of ordering periodic requests is similar to rate-
monotonic task scheduling, with rules for breaking ties. While Lehoczky et al. address the real-
time scheduling of periodic messages transmitted on a multi-master bus, this does not apply to
USB, which is a master-slave bus protocol.

Zuberi and Shin [90] address the utilization problem of CAN bus networks. They introduce
the mixed traffic scheduler (MTS), which is a hierarchical scheduler using both EDF and Dead-

line Monotonic Scheduling (DMS). The authors state that pure EDF is not reasonable due to the
limited number of bits for priority levels in the CAN bus protocol. Their solution is to discretize
time into regions and first use EDF to prioritize tasks with deadlines in different time regions. DMS
is then used to prioritize tasks that fall within the same time region.

New alternative technologies are emerging in situations where CAN buses have insufficient
bandwidth. Time Sensitive Networking (TSN) [11], Audio Video Bridging (AVB) [4], and
Time Triggered Ethernet [38, 39] are comparable [89] technologies now found in the automo-
tive and avionics domains. The scheduling properties of these network technologies have been
modeled and analyzed by various research groups [7, 17, 64]. However, we believe that USB of-
fers a noticeable advantage over these alternatives in that it offers a common bus solution for
both networking and device I/O. Our future work will focus on a comparison between USB and
the aforementioned technologies such as TSN and CAN for combined (host-to-host) network and
device I/O transfers.

Huang et al. [29, 30] attempt to provide QoS guarantees for USB 1.1 and 2.0. To do this, they
modify endpoint descriptors within the host controller driver. Effectively, endpoint service require-
ments are translated to have the same throughput but with the smallest possible interval given the
endpoint speed. For full- and low-speed devices, the smallest interval is one frame. For high-speed
devices, the smallest interval is one micro-frame. As an example, Huang et al. treat a high-speed
endpoint with a packet size of 512-bytes and interval of two micro-frames as an equivalent end-
point with a packet size of 256-bytes and an interval of one micro-frame. Admission control is then
performed on the modified endpoints. This is to ensure the total utilization is below maximum
capacity. To reduce overhead, an attempt is made to reinstate the original endpoint intervals
and packet sizes. This endpoint modification violates the USB Specification as the endpoint in-
terval rate is not respected. Similarly, polling at a higher rate is not guaranteed to work for all
devices.

8 CONCLUSIONS

This article introduces a unified real-time USB software stack for networking and device I/O. Our
USB 3.x scheduler is shown to support timing guarantees on both periodic and asynchronous
requests. The software stack is built into the Quest RTOS, to leverage both Main and I/O VCPUs,
which integrate interrupt and task scheduling. A tuned pipes abstraction that combines VCPU and
USB scheduling shows how to provide end-to-end timing guarantees on pipelines between host
tasks and devices. Experimental evaluations using a star topology of hosts and cameras corroborate
our analysis of end-to-end service guarantees.

A USB-CAN implementation in Quest is compared to a standalone Linux system featuring real-
time preemption and deadline-based scheduling support. I/O service constraints are shown to be
guaranteed in all cases in Quest, but not Linux.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 4, Article 67. Publication date: July 2023.

Real-Time USB Networking and Device I/O 67:35

This work provides the impetus to consider USB as a viable high bandwidth control area network
in place of traditional CAN buses. Before that is possible, further work is needed to investigate var-
ious networking topologies and device configurations for emerging industrial control applications,
requiring the exchange of large volumes of data. Notwithstanding, in comparison to technologies
such as TSN, USB has the ability to combine the scheduling of both device I/O and host-to-host com-
munication data. In fact, USB 4.0 specifies support for host-to-host communication in combination
with traditional device I/O. The work in this article should transfer to future USB standards where
scheduling bulk transactions with service guarantees in the presence of periodic data is necessary.

ACKNOWLEDGMENTS

Any opinions, findings, and conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the NSF. Special thanks also to our
colleagues at Drako Motors and Celenum, without whose support this work would not be possible.

REFERENCES

[1] Luca Abeni and Giorgio Buttazzo. 1998. Integrating multimedia applications in hard real-time systems. In Proceedings

of the 19th IEEE Real-Time Systems Symposium. 4–13.

[2] David H. Albonesi. 1999. Selective cache ways: On-demand cache resource allocation. In Proceedings of the ACM/IEEE

International Symposium on Microarchitecture (MICRO’99). 248–259.

[3] Caglan M. Aras, James F. Kurose, Douglas S. Reeves, and Henning Schulzrinne. 1994. Real-time communication in

packet-switched networks. In Proceedings of the IEEE. 122–139.

[4] Lucia Lo Bello. 2014. Novel trends in automotive networks: A perspective on ethernet and the IEEE audio video

bridging. In Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA). 1–8. DOI:https://doi.

org/10.1109/ETFA.2014.7005251

[5] Guillem Bernat and Alan Burns. 1999. New results on fixed priority aperiodic servers. In Proceedings of the IEEE

Real-Time Systems Symposium. 68–78. Retrieved from citeseer.ist.psu.edu/bernat99new.html.

[6] Gedare Bloom, Joel Sherrill, Tingting Hu, and Ivan Cibrario Bertolotti. 2021. Real-Time Systems Development with

RTEMS and Multicore Processors (Embedded Systems). CRC Press.

[7] Unmesh D. Bordoloi, Amir Aminifar, Petru Eles, and Zebo Peng. 2014. Schedulability analysis of ethernet AVB

switches. In Proceedings of the 2014 IEEE 20th International Conference on Embedded and Real-Time Computing Sys-

tems and Applications. 1–10. DOI:https://doi.org/10.1109/RTCSA.2014.6910530

[8] Björn B. Brandenburg, Hennadiy Leontyev, and James H. Anderson. 2009. Accounting for interrupts in multiprocessor

real-time systems. In Proceedings of the 2009 15th IEEE International Conference on Embedded and Real-Time Computing

Systems and Applications. 273–283. DOI:https://doi.org/10.1109/RTCSA.2009.37

[9] Jichuan Chang and Gurindar S. Sohi. 2007. Cooperative cache partitioning for chip multiprocessors. In Proceedings of

the International Conference on Supercomputing (ICS’07). 242–252.

[10] Sangyeun Cho and Lei Jin. 2006. Managing distributed, shared L2 caches through OS-level page allocation. In Proceed-

ings of the 39th Annual IEEE/ACM International Symposium on Microarchitecture. 455–468.

[11] Cisco. 2017. Time-Sensitive Networking: A Technical Introduction. (2017). White paper, www.cisco.com.

[12] M. Danish, Y. Li, and R. West. 2011. Virtual-CPU scheduling in the Quest operating system. In Proceedings of the 17th

IEEE Real-Time and Embedded Technology and Applications Symposium. 169–179.

[13] Robert I. Davis. 2011. Controller area network (CAN) schedulability analysis with FIFO queues. In Proceedings of the

23rd Euromicro Conference on Real-Time Systems (ECRTS). 45–56.

[14] Robert I. Davis, Alan Burns, Reinder J. Bril, and Johan J. Lukkien. 2007. Controller area network (CAN) schedulability

analysis: Refuted, revisited and revised. Real-Time Systems 35, 3 (2007), 239–272.

[15] D. de Niz, L. Abeni, S. Saewong, and R. Rajkumar. 2001. Resource sharing in reservation-based systems. In Proceedings

of the 22nd IEEE Real-Time Systems Symposium (RTSS 2001) (Cat. No.01PR1420). 171–180. DOI:https://doi.org/10.1109/

REAL.2001.990608

[16] L. E. Leyva del Foyo, P. Mejia-Alvarez, and D. de Niz. 2006. Predictable interrupt management for real time kernels

over conventional PC hardware. In Proceedings of the 12th IEEE Real-Time and Embedded Technology and Applications

Symposium (RTAS’06). 14–23.

[17] Libing Deng, Guoqi Xie, Hong Liu, Yunbo Han, Renfa Li, and Keqin Li. 2022. A survey of real-time ethernet modeling

and design methodologies: From AVB to TSN. ACM Computing Surveys 55, 2, Article 31 (jan 2022), 36 pages. DOI:https:

//doi.org/10.1145/3487330

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 4, Article 67. Publication date: July 2023.

https://doi.org/10.1109/ETFA.2014.7005251
citeseer.ist.psu.edu/bernat99new.html
https://doi.org/10.1109/RTCSA.2014.6910530
https://doi.org/10.1109/RTCSA.2009.37
https://doi.org/10.1109/REAL.2001.990608
https://doi.org/10.1145/3487330

67:36 R. West et al.

[18] Z. Deng, J. W. S. Liu, and J. Sun. 1997. A Scheme for Scheduling Hard Real-Time Applications in Open System Envi-

ronment. (1997). https://ieeexplore.ieee.org/document/613785.

[19] Haakon Dybdahl, Per Stenström, and Lasse Natvig. 2006. A cache-partitioning aware replacement policy for chip

multiprocessors. In Proceedings of the High Performance Computing, Vol. 4297/2006. 22–34.

[20] EHCI March 12, 2002. Enhanced Host Controller Interface Specification for Universal Serial Bus (1.0 ed.).

[21] T. Facchinetti, G. Buttazzo, M. Marinoni, and G. Guidi. 2005. Non-preemptive interrupt scheduling for safe reuse of

legacy drivers in real-time systems. In Proceedings of the 17th Euromicro Conference on Real-Time Systems (ECRTS’05).

98–105.

[22] FlexRay Consortium 2010. FlexRay Communications System Protocol Specification (3.0.1 ed.). FlexRay Consortium.

[23] FreeRTOS April 2023. Official website. Retrieved from https://www.freertos.org/.

[24] Michael R. Garey and David S. Johnson. 1981. Approximation algorithms for bin packing problems: A survey. In

Proceedings of the Analysis and Design of Algorithms in Combinatorial Optimization. Springer, 147–172.

[25] T. M. Ghazalie and T. Baker. 1995. Aperiodic servers in a deadline scheduling environment. Real-Time Systems 9 (1995),

31–67.

[26] Ahmad Golchin, Zhuoqun Cheng, and Richard West. 2018. Tuned pipes: End-to-end throughput and delay guarantees

for USB devices. In Proceedings of the 2018 IEEE Real-Time Systems Symposium (RTSS). IEEE, 196–207.

[27] Ahmad Golchin, Soham Sinha, and Richard West. 2020. Boomerang: Real-time I/O meets legacy systems. In Proceedings

of the 2020 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS). IEEE, 390–402.

[28] Dan Hildebrand. 1992. An architectural overview of QNX. In Proceedings of the USENIX Workshop on Microkernels and

Other Kernel Architectures. 113–126.

[29] Chih Yuan Huang, Li Pin Chang, and Tei Wei Kuo. 2003. A cyclic-executive-based QoS guarantee over USB. In Pro-

ceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’03). IEEE Computer

Society. Retrieved from http://dl.acm.org/citation.cfm?id=827266.828522.

[30] Chih Yuan Huang, Tei Wei Kuo, and Ai Chun Pang. 2004. QoS support for USB 2.0 periodic and sporadic device

requests. In Proceedings of the 25th IEEE International Real-Time Systems Symposium (RTSS’04). IEEE Computer Society,

395–404. DOI:https://doi.org/10.1109/REAL.2004.45

[31] Prolific Technology Inc. 2019. SuperSpeed USB 3.0 Host-to-Host Bridge Controller Datasheet. (2019). https://

prolificusa.com/wp-content/uploads/2018/02/DS-27131201-PL27A1_V1.4.pdf.

[32] ISO 11898 2009. Road Vehicles—Controller Area Network (CAN). ISO 11898. https://www.iso.org/obp/ui/#iso:std:iso:

11898:-1:ed-2:v1:en.

[33] Ravi Iyer. 2004. CQoS: A framework for enabling QoS in shared caches of CMP platforms. In Proceedings of the18th

Annual International Conference on Supercomputing. 257–266.

[34] Kernel.org. 2014. Linux Deadline Scheduling Policy. (2014). Retrieved from https://www.kernel.org/doc/

Documentation/scheduler/sched-deadline.txt.

[35] K. A. Kettler, J. P. Lehoczky, and J. K. Strosnider. 1995. Modeling bus scheduling policies for real-time systems. In

Proceedings of the 16th IEEE Real-Time Systems Symposium (RTSS’95). IEEE Computer Society. Retrieved from http://

dl.acm.org/citation.cfm?id=827267.828916.

[36] Seongbeom Kim, Dhruba Chandra, and Yan Solihin. 2004. Fair cache sharing and partitioning in a chip multiprocessor

architecture. In Proceedings of the Parallel Architectures and Compilation Techniques (PACT’04).

[37] Steve Kleiman and Joe Eykholt. 1995. Interrupts as threads. SIGOPS Oper. Syst. Rev. 29, 2 (April 1995), 21–26.

[38] Hermann Kopetz. 2008. The rationale for time-triggered ethernet. In Proceedings of the 2008 Real-Time Systems Sym-

posium. 3–11. DOI:https://doi.org/10.1109/RTSS.2008.33

[39] H. Kopetz, A. Ademaj, P. Grillinger, and K. Steinhammer. 2005. The time-triggered ethernet (TTE) design. In Proceed-

ings of the 8th IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’05). 22–33.

DOI:https://doi.org/10.1109/ISORC.2005.56

[40] Hermann Kopetz and Günter Grünsteidl. 1994. TTP-a protocol for fault-tolerant real-time systems. Computer 27, 1

(Jan. 1994), 14–23. DOI:https://doi.org/10.1109/2.248873

[41] F. Kuhns, D. C. Schmidt, and D. L. Levine. 1999. The design and performance of a real-time I/O subsystem. In Proceed-

ings of the 5th IEEE Real-Time Technology and Applications Symposium. 154–163. DOI:https://doi.org/10.1109/RTTAS.

1999.777670

[42] Kvaser CANlib April 2023. CAN bus API. (April 2023). Retrieved from https://www.kvaser.co.

[43] J. J. Labrosse. 2002. MicroC/OS-II: The Real Time Kernel. Taylor & Francis.

[44] G. Lamastra, G. Lipari, and L. Abeni. 2001. A bandwidth inheritance algorithm for real-time task synchronization

in open systems. In Proceedings 22nd IEEE Real-Time Systems Symposium (RTSS 2001) (Cat. No.01PR1420). 151–160.

DOI:https://doi.org/10.1109/REAL.2001.990606

[45] John P. Lehoczky and Lui Sha. 1986. Performance of real-time bus scheduling algorithms. In Proceedings of the 1986

ACM SIGMETRICS Joint International Conference on Computer Performance Modelling, Measurement and Evaluation

(SIGMETRICS’86/PERFORMANCE’86). ACM, New York, NY, 44–53. DOI:https://doi.org/10.1145/317499.317538

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 4, Article 67. Publication date: July 2023.

https://ieeexplore.ieee.org/document/613785
https://www.freertos.org/
http://dl.acm.org/citation.cfm?id=827266.828522
https://doi.org/10.1109/REAL.2004.45
https://prolificusa.com/wp-content/uploads/2018/02/DS-27131201-PL27A1_V1.4.pdf
https://www.iso.org/obp/ui/#iso:std:iso:11898:-1:ed-2:v1:en
https://www.kernel.org/doc/Documentation/scheduler/sched-deadline.txt
http://dl.acm.org/citation.cfm?id=827267.828916
https://doi.org/10.1109/RTSS.2008.33
https://doi.org/10.1109/ISORC.2005.56
https://doi.org/10.1109/2.248873
https://doi.org/10.1109/RTTAS.1999.777670
https://www.kvaser.co
https://doi.org/10.1109/REAL.2001.990606
https://doi.org/10.1145/317499.317538

Real-Time USB Networking and Device I/O 67:37

[46] J. Lelli, C. Scordino, L. Abeni, and D. Faggioli. 2016. Deadline scheduling in the Linux kernel. Software: Practice and

Experience 46, 6 (June 2016), 821–839.

[47] M. Lewandowski, M. J. Stanovich, T. P. Baker, K. Gopalan, and A. I. A. Wang. 2007. Modeling device driver effects in

real-time schedulability analysis: Study of a network driver. In Proceedings of the 13th IEEE Real Time and Embedded

Technology and Applications Symposium (RTAS’07). 57–68.

[48] Jochen Liedtke, Hermann Härtig, and Michael Hohmuth. 1997. OS-controlled cache predictability for real-time sys-

tems. In Proceedings of the 3rd IEEE Real-time Technology and Applications Symposium.

[49] Jiang Lin, Qingda Lu, Xiaoning Ding, Zhao Zhang, Xiaodong Zhang, and P. Sadayappan. 2008. Gaining insights into

multicore cache partitioning: Bridging the gap between simulation and real systems. In Proceedings of the 14th IEEE

International Symposium on High Performance Computer Architecture. 367–378.

[50] Chun Liu, Anand Sivasubramaniam, and Mahmut Kandemir. 2004. Organizing the last line of defense before hitting

the memory wall for CMPs. In Proceedings of the International Symposium on High-Performance Computer Architecture.

176–185.

[51] C. L. Liu and James W. Layland. 1973. Scheduling algorithms for multiprogramming in a hard real-time environment.

Journal of the ACM 20, 1 (1973), 46–61.

[52] Jork Loeser and Hermann Härtig. 2004. Low-latency hard real-time communication over switched ethernet. In Proceed-

ings of the 16th Euromicro Conference on Real-Time Systems (ECRTS’04). IEEE Computer Society, 13–22. DOI:https://

doi.org/10.1109/ECRTS.2004.16

[53] M68HC11 2007. M68HC11 Reference Manual (6.1 ed.). https://www.nxp.com/docs/en/reference-manual/M68HC11RM.

pdf.

[54] Nicola Manica, Luca Abeni, and Luigi Palopoli. 2010. Reservation-based interrupt scheduling. In Proceedings of the

2010 16th IEEE Real-Time and Embedded Technology and Applications Symposium. 46–55. DOI:https://doi.org/10.1109/

RTAS.2010.25

[55] M. Masmano, Y. Valiente, P. Balbastre, I. Ripoll, and A. Crespo. 2010. LithOS: An ARINC-653 guest operating system

for XtratuM. In Proceedings of the 12th Real-Time Linux Workshop.

[56] A. J. Massa. 2003. Embedded Software Development with eCos. Pearson Education, Inc., Upper Saddle River, NJ.

[57] Clifford Mercer, Stefan Savage, and Hideyuki Tokuda. 1993. Processor capacity reserves: An abstraction for managing

processor usage. In Proceedings of the 4th Workshop on Workstation Operating Systems. 129–134.

[58] Miosix Accessed: April 2023. Official Website. (Accessed: April 2023). Retrieved from http://www.miosix.org.

[59] E. Missimer, Y. Li, and R. West. 2013. Real-time USB communication in the quest operating system. In Proceedings of

the 2013 IEEE 19th Real-Time and Embedded Technology and Applications Symposium (RTAS). 11–20.

[60] E. Missimer, K. Missimer, and R. West. 2016. Mixed-criticality scheduling with I/O. In Proceedings of the 28th Euromicro

Conference on Real-Time Systems (ECRTS). 120–130.

[61] David Mosberger and Larry L. Peterson. 1996. Making paths explicit in the Scout operating system. In Proceedings

of the Second USENIX Symposium on Operating Systems Design and Implementation (OSDI’96). ACM, New York, NY,

153–167.

[62] NXP Semiconductor October 1, 2021. The I 2C Bus Specification and User Manual, Revision 7.0.

[63] Shuichi Oikawa and Ragunathan Rajkumar. 1998. Linux/RK: A portable resource kernel in Linux. In Proceedings of

the 19th IEEE Real-Time Systems Symposium.

[64] Maryam Pahlevan, Nadra Tabassam, and Roman Obermaisser. 2019. Heuristic list scheduler for time triggered traffic

in time sensitive networks. SIGBED Review 16, 1 (feb 2019), 15–20. DOI:https://doi.org/10.1145/3314206.3314208

[65] Roberto Pineiro, Kleoni Ioannidou, Scott A. Brandt, and Carlos Maltzahn. 2011. Rad-flows: Buffering for predictable

communication. In Proceedings of the 2011 17th IEEE Real-Time and Embedded Technology and Applications Symposium.

IEEE, 23–33.

[66] Nauman Rafique, Won-Taek Lim, and Mithuna Thottethodi. 2006. Architectural support for operating system-driven

CMP cache management. In Proceedings of the Parallel Architectures and Compilation Techniques (PACT’06). 2–12.

[67] Parthasarathy Ranganathan, Sarita V. Adve, and Norman P. Jouppi. 2000. Reconfigurable caches and their application

to media processing. In Proceedings of the 27th Annual International Symposium on Computer Architecture. 214–224.

[68] John Regehr. 2001. HLS: A framework for composing soft real-time schedulers. In Proceedings of the 22nd IEEE Real-

Time Systems Symposium. 3–14.

[69] RTLinux Accessed: April 2023. RT-Linux Community Website. (Accessed: April 2023). Retrieved from https://wiki.

linuxfoundation.org/realtime/start.

[70] L. Sha, R. Rajkumar, and J. P. Lehoczky. 1990. Priority inheritance protocols: An approach to real-time synchronization.

IEEE Transactions on Computers 39, 9 (September 1990), 1175–1185. DOI:https://doi.org/10.1109/12.57058

[71] Lui Sha, R. Rajkumar, and S. S. Sathaye. 1994. Generalized rate-monotonic scheduling theory: A framework for devel-

oping real-time systems. Proceedings of the IEEE 82, 1 (1994), 68–82. DOI:https://doi.org/10.1109/5.259427

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 4, Article 67. Publication date: July 2023.

https://doi.org/10.1109/ECRTS.2004.16
https://www.nxp.com/docs/en/reference-manual/M68HC11RM.pdf
https://doi.org/10.1109/RTAS.2010.25
http://www.miosix.org
https://doi.org/10.1145/3314206.3314208
https://wiki.linuxfoundation.org/realtime/start
https://doi.org/10.1109/12.57058
https://doi.org/10.1109/5.259427

67:38 R. West et al.

[72] Timothy Sherwood, Brad Calder, and Joel Emer. 1999. Reducing cache misses using hardware and software page

placement. In Proceedings of the 13th International Conference on Supercomputing. New York, NY, 155–164.

[73] Green Hills Software. 2015. INTEGRITY-178B RTOS. (2015). Retrieved from http://www.ghs.com/products/safety_

critical/integrity-do-178b.html.

[74] B. Sprunt. 1989. Scheduling Sporadic and Aperiodic Events in a Hard Real-Time System. Technical Report CMU/SEI-89-

TR-011. Software Engineering Institute, Carnegie Mellon.

[75] M. Spuri and G. Buttazzo. 1994. Efficient aperiodic service under earliest deadline scheduling. In Proceedings of the

IEEE Real-Time Systems Symposium.

[76] Shekhar Srikantaiah, Mahmut Kandemir, and Mary Jane Irwin. 2008. Adaptive set pinning: Managing shared caches

in CMPs. In Proceedings of the Architectural Support for Programming Languages and Operating Systems (ASPLOS’08).

[77] Jay K. Strosnider, John P. Lehoczky, and Lui Sha. 1995. The deferrable server algorithm for enhanced aperiodic respon-

siveness in hard real-time environment. IEEE Transactions on Computers 44, 1 (January 1995), 73–91.

[78] G. E. Suh, L. Rudolph, and S. Devadas. 2004. Dynamic partitioning of shared cache memory. Journal of Supercomputing

28, 1 (April 2004), 7–26.

[79] George Taylor, Peter Davies, and Michael Farmwald. 1990. The TLB slice–a low-cost high-speed address translation

mechanism. In Proceedings of the 17th Annual International Symposium on Computer Architecture. New York, NY, 355–

363.

[80] TIA 232 F 1997. TIA-232-F: Interface between Data Terminal Equipment and Data Circuit-Terminating Equipment

Employing Serial Binary Data Interchange. (1997).

[81] Ken Tindell, H. Hanssmon, and Andy J. Wellings. 1994. Analysing real-time communications: Controller area network

(CAN). In Proceedings of the Real-Time Systems Symposium (RTSS). IEEE Computer Society, 259–263.

[82] USB 2.0 2000. Universal Serial Bus Specification (2.0 ed.). Universal Serial Bus Specification, Revision 2.0, April 27, 2000,

Compaq, Hewlett-Packard, Intel, Lucent, Microsoft, NEC, Philips.

[83] USB 3.x 2017. Universal Serial Bus Specification (3.2 ed.). Universal Serial Bus 3.2 Specification, September 22, 2017, USB

3.0 Promoter Group (Apple Inc., Hewlett-Packard Inc., Intel Corporation, Microsoft Corporation, Renesas Corporation,

STMicroelectronics, and Texas Instruments.

[84] VxWorks Accessed: April 2023. VxWorks Official Website. (Accessed: April 2023). Retrieved from http://www.

windriver.com/products/vxworks.

[85] XHCI 2017. eXtensible Host Controller Interface for Universal Serial Bus (1.1 ed.). eXtensible Host Controller Interface

for Universal Serial Bus (xHCI), May 2019, Revision 1.2, Intel Corporation.

[86] Ting Yang, Tongping Liu, Emery D. Berger, Scott F. Kaplan, and J. Eliot B. Moss. 2008. Redline: First class support

for interactivity in commodity operating systems. In Proceedings of the 8th USENIX Symposium on Operating Systems

Design and Implementation.

[87] Ying Ye, Richard West, Zhuoqun Cheng, and Ye Li. 2014. COLORIS: A dynamic cache partitioning system using page

coloring. In Proceedings of the 23rd International Conference on Parallel Architectures and Compilation (PACT’14). ACM,

381–392. DOI:https://doi.org/10.1145/2628071.2628104

[88] Yuting Zhang and Richard West. 2006. Process-aware interrupt scheduling and accounting. In Proceedings of the 2006

27th IEEE International Real-Time Systems Symposium (RTSS’06). IEEE, 191–201.

[89] Lin Zhao, Feng He, Ershuai Li, and Jun Lu. 2018. Comparison of time sensitive networking (TSN) and TTEthernet. In

Proceedings of the 2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC). 1–7. DOI:https://doi.org/10.1109/

DASC.2018.8569454

[90] K. M. Zuberi and K. G. Shin. 1995. Non-preemptive scheduling of messages on controller area network for real-time

control applications. In Proceedings of the Real-Time Technology and Applications Symposium (RTAS’95). IEEE Com-

puter Society. Retrieved from http://dl.acm.org/citation.cfm?id=526671.828330.

Received 19 December 2022; revised 11 April 2023; accepted 28 May 2023

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 4, Article 67. Publication date: July 2023.

http://www.ghs.com/products/safety_critical/integrity-do-178b.html
http://www.windriver.com/products/vxworks
https://doi.org/10.1145/2628071.2628104
https://doi.org/10.1109/DASC.2018.8569454
http://dl.acm.org/citation.cfm?id=526671.828330

