
The Quest-V Separation Kernel for Mixed Criticality Systems

Ye Li, Richard West, and Eric Missimer

Computer Science Department
Boston University
Boston, MA 02215

Email: {liye,richwest,missimer}@cs.bu.edu

Abstract—Multi- and many-core processors are becom-
ing increasingly popular in embedded systems. Many of
these processors now feature hardware virtualization ca-
pabilities, such as the ARM Cortex A15, and x86 pro-
cessors with Intel VT-x or AMD-V support. Hardware
virtualization offers opportunities to partition physical
resources, including processor cores, memory and I/O
devices amongst guest virtual machines. Mixed criticality
systems and services can then co-exist on the same plat-
form in separate virtual machines. However, traditional
virtual machine systems are too expensive because of
the costs of trapping into hypervisors to multiplex and
manage machine physical resources on behalf of separate
guests. For example, hypervisors are needed to schedule
separate VMs on physical processor cores. In this paper,
we discuss the design of the Quest-V separation kernel,
that partitions services of different criticalities in separate
virtual machines, or sandboxes. Each sandbox encapsulates
a subset of machine physical resources that it manages
without requiring intervention of a hypervisor. Moreover,
a hypervisor is not needed for normal operation, except to
bootstrap the system and establish communication channels
between sandboxes.

I. INTRODUCTION

Embedded systems are increasingly featuring multi-
and many-core processors, due in part to their power,
performance and price benefits. These processors offer
new opportunities for an increasingly significant class of
mixed criticality systems. In mixed criticality systems,
there is a combination of application and system com-
ponents with different safety and timing requirements.
For example, in an avionics system, the in-flight en-
tertainment system is considered less critical than that
of the flight control system. Similarly, in an automotive
system, infotainment services (navigation, audio and so
forth) would be considered less timing and safety critical
than the vehicle management sub-systems for anti-lock
brakes and traction control.

A major challenge to mixed criticality systems is the
safe isolation of separate components with different lev-
els of criticality. Isolation has traditionally been achieved
by partitioning components across distributed modules,
which communicate over a network such as a CAN bus.
For example, Integrated Modular Avionics (IMA) [1]
is used to describe a distributed real-time computer

network capable of supporting applications of differing
criticality levels aboard an aircraft. To implement such
concepts on multi-core platform, a software architecture
that enforces the safe isolation of system components is
required.

This notion of component isolation, or partitioning, is
the basis of software system standards such as ARINC
653 [2] and the Multiple Independent Levels of Security
(MILS) [3] architecture. Current implementations of
these standards into operating system kernels [4][5][6]
have focused on micro-kernel and virtual machine tech-
nologies for resource partitioning and component isola-
tion. However, due to hardware limitations and software
complexity, these systems either cannot completely elim-
inate covert channels of communication between isolated
components or add prohibitive performance overhead.

Hardware-assisted virtualization provides an oppor-
tunity to efficiently separate system components with
different levels of safety, security and criticality. Back in
2006, Intel and AMD introduced their VT-x and AMD-
V processors, respectively, with support for hardware
virtualization. More recently, the ARM Cortex A15 was
introduced with hardware virtualization capabilities, for
use in portable tablet devices. Similarly, some Intel Atom
chips now have VT-x capabilities for use in automobile
In-Vehicle Infotainment (IVI) systems [7], and other
embedded systems.

While modern hypervisor solutions such as Xen [8]
and Linux-KVM [9] leverage hardware virtualization to
isolate their guest systems, they are still required for
CPU and I/O resource multiplexing. Expensive traps into
the hypervisor occur every time a guest system needs to
be scheduled, or when an I/O device transfers data to
or from a guest. This situation is both unnecessary and
too costly for mixed criticality systems with real-time
requirements.

In this paper we present a new operating system design
leveraging hardware-assisted virtualization as an extra
ring of protection, to achieve efficient resource partition-
ing and performance isolation for subsystems. Our sys-
tem, called Quest-V, is a separation kernel [10] design.
The system avoids traps into a hypervisor (a.k.a. virtual



machine monitor, or VMM) when making scheduling
and I/O management decisions. Instead, all resources are
partitioned at boot-time amongst system components that
are capable of scheduling themselves on available pro-
cessor cores. Similarly, system components are granted
access to specific subsets of I/O devices and memory so
that devices can be managed without involvement of a
hypervisor.

In the rest of this paper, we describe how Quest-V can
be configured to support a Linux front-end responsible
for low criticality legacy services, while native Quest
services can operate on separate hardware resources
(memory, I/O and CPU cores) to ensure safe, predictable
and efficient service guarantees. In this way, high criti-
cality Quest services can co-exist with less critical Linux
services on the same hardware platform.

II. QUEST-V SEPARATION KERNEL ARCHITECTURE

Quest-V partitions a system into a series of sandbox
kernels, with each sandbox encompassing a subset of
memory, I/O and CPU resources. The current imple-
mentation works on Intel VT-x platforms but plans are
underway to port Quest-V to the AMD-V and ARM
architectures.

Fig. 1. Example Quest-V Architecture Overview

A high-level overview of the Quest-V architecture
is shown in Figure 1. The system is partitioned into
separate sandboxes, each responsible for a subset of
machine physical memory, I/O devices and processor
cores. Trusted monitor code is used to launch guest
services, which may include their own kernels and user
space programs. A monitor is responsible for managing
special extended page tables (EPTs) that translate guest

physical addresses (GPAs) to host physical addresses
(HPAs), as described later in Figure 2.

We chose to have a separate monitor for each sand-
box, so that it manages only one set of EPT memory
mappings for a single guest environment. The amount of
added overhead of doing this is small, as each monitor’s
code fits within 4KB 1. However, the benefits are that
monitors are made much simpler, since they know which
sandbox they are serving rather than having to determine
at runtime the guest that needs their service. Typically,
guests do not need intervention of monitors, except to
establish shared memory communication channels with
other sandboxes, which requires updating EPTs.
Mixed-Criticality Example – Figure 1 shows an ex-
ample of three sandboxes, where two are configured
with Quest native safety-critical services for command,
control and sensor data processing. These services might
be appropriate for a future automotive system that assists
in vehicle control. Other less critical services could be
assigned to vehicle infotainment services, which are
partitioned in a sandbox that has access to a local
display device. A non-real-time Linux system could be
used in this case, perhaps also managing a network
interface (NIC) to communicate with other vehicles or
the surrounding environment, via a vehicle-to-vehicle
(V2V) or vehicle-to-infrastructure (V2I) communication
link.

A. Resource Partitioning

Quest-V supports configurable partitioning of CPU,
memory and I/O resources amongst guests. Resource
partitioning is mostly static, taking place at boot-time,
with the exception of some memory allocation at run-
time for dynamically created communication channels
between sandboxes.

CPU Partitioning – In Quest-V, scheduling is per-
formed within each sandbox. Since processor cores are
statically allocated to sandboxes, there is no need for
monitors to perform sandbox scheduling as is typically
required with traditional hypervisors. This approach
eliminates most of the monitor traps otherwise necessary
for sandbox context switches. It also means there is no
notion of a global scheduler to manage the allocation
of processor cores amongst guests. Each sandbox’s local
scheduler is free to implement its own policy, simplifying
resource management. This approach also distributes
contention amongst separate scheduling queues, without
requiring synchronization on one global queue.

1The EPTs take additional data space, but 12KB is enough for a
1GB sandbox.

2



Memory Partitioning – Quest-V relies on hardware
assisted virtualization support to perform memory parti-
tioning. Figure 2 shows how address translation works
for Quest-V sandboxes using Intel’s extended page ta-
bles. Each sandbox kernel uses its own internal paging
structures to translate guest virtual addresses to guest
physical addresses. EPT structures are then walked by
the hardware to complete the translation to host physical
addresses.

Fig. 2. Extended Page Table Mapping

On modern Intel x86 processors with EPT support,
address mappings can be manipulated at 4KB page
granularity. For each 4KB page we have the ability to set
read, write and even execute permissions. Consequently,
attempts by one sandbox to access illegitimate memory
regions of another will incur an EPT violation, causing
a trap to the local monitor. The EPT data structures are,
themselves, restricted to access by the monitors, thereby
preventing tampering by sandbox kernels.

EPT mappings are cached by hardware TLBs, expe-
diting the cost of address translation. Only on returning
to a guest after trapping into a monitor are these TLBs
flushed. Consequently, by avoiding exits into monitor
code, each sandbox operates with similar performance
to that of systems with conventional page-based virtual
address spaces [11].

I/O Partitioning – In Quest-V, device management
is performed within each sandbox directly. Device inter-
rupts are delivered to a sandbox kernel without monitor
intervention. This differs from the “split driver” model
of systems such as Xen, which have a special domain to
handle interrupts before they are directed into a guest.
Allowing sandboxes to have direct access to I/O devices
greatly reduces the overhead of monitor traps to handle
interrupts.

To partition I/O devices, Quest-V first has to restrict
access to device specific hardware registers. Device

registers are usually either memory mapped or accessed
through a special I/O address space (e.g. I/O ports).
For the x86, both approaches are used. For memory
mapped registers, EPTs are used to prevent their ac-
cesses from unauthorized sandboxes. For port-addressed
registers, special hardware support is necessary. On
Intel processors with VT-x, all variants of in and out
instructions can be configured to cause a monitor trap
if access to a certain port address is attempted. As a
result, a hardware provided I/O bitmap can be used to
partition the whole I/O address space amongst different
sandboxes. Unauthorized access to a certain register can
thus be ignored or trigger a fault recovery event.

Any sandbox attempting access to a PCI device must
use memory-mapped or port-based registers identified
in a special PCI configuration space [12]. Quest-V
intercepts access to this configuration space, which is
accessed via both an address and data I/O port. A trap
to the local sandbox monitor occurs when there is a PCI
data port access. The monitor then determines which
device’s configuration space is to be accessed by the
trapped instruction. A device blacklist for each sandbox
containing the Device ID and Vendor ID of restricted PCI
devices is used by the monitor to control actual device
access.

Fig. 3. PCI Configuration Space Protection

A simplified control flow of the handling of PCI
configuration space protection in a Quest-V monitor is
given in Figure 3. Notice that simply allowing access
to a PCI data port is not sufficient because we only
want to allow the single I/O instruction that caused the
monitor trap, and which passed the monitor check, to be
correctly executed. Once this is done, the monitor should

3



immediately restrict access to the PCI data port again.
This behavior is achieved by setting the trap flag (TF) bit
in the sandbox kernel system flags to cause a single step
debug exception after it executes the next instruction.
By configuring the processor to generate a monitor trap
on debug exception, the system can immediately return
to the monitor after executing the I/O instruction. After
this, the monitor is able to mask the PCI data port again
for the sandbox kernel, thereby mediating future device
access.

In addition to direct access to device registers, in-
terrupts from I/O devices also need to be partitioned
amongst sandboxes. In modern multi-core platforms, an
external interrupt controller is almost always present to
allow configuration of interrupt delivery behaviors. On
modern Intel x86 processors, this is done through an I/O
Advanced Programmable Interrupt Controller (IOAPIC).
Each IOAPIC has an I/O redirection table that can be
programmed to deliver device interrupts to all, or a
subset of, sandboxes. Each entry in the I/O redirection
table corresponds to a certain interrupt request from an
I/O device on the PCI bus.

Fig. 4. APIC Configuration

Figure 4 shows the hardware APIC configuration.
Quest-V uses EPT entries to restrict access to memory
regions, used to access IOAPIC registers. This way, the
IOAPIC interrupt redirection table is prevented from
alteration by an unauthorized sandbox. Attempts by
a sandbox to access the IOAPIC space cause a trap
to the local monitor as a result of an EPT violation.
The monitor then checks to see if the sandbox has
authorization to update the table before allowing any
changes to be made. Consequently, device interrupts are
safely partitioned amongst sandboxes.

B. Linux Sandbox Support

In addition to native Quest kernels, Quest-V is also
designed to support other third party sandbox kernels
such as Linux and AUTOSAR OS. Currently, we have
successfully ported a Puppy Linux distribution with

Linux 3.8 kernel to serve as our system front-end, pro-
viding a window manager and graphical user interface.
A Quest kernel is first started in the Linux sandbox
to bootstrap our paravirtualized Linux kernel. Because
Quest-V exposes maximum possible privilege of hard-
ware access to sandbox kernels, the actual changes made
to the original Linux 3.8 kernel are well under 100 lines.
These changes are mainly focused on limiting Linux’s
view of available memory and handling I/O device DMA
offsets caused by memory virtualization.

The VGA frame buffer and GPU hardware are always
assigned to the bootstrapped Linux sandbox. All the
other sandboxes will have their default terminal I/O
tunneled through shared memory channels to virtual
terminals in the Linux front-end. We developed libraries,
user space applications and a kernel module to support
this redirection in Linux. A screen shot of Quest-V
after booting the Linux front-end sandbox is shown in
Figure 5. Here, we show two virtual terminals connected
to two different native Quest sandboxes similar to the
configuration shown in Figure 1. In this particular ex-
ample, we allocated 512MB of memory to the Linux
sandbox and 256MB of memory to each native Quest
sandbox. The network interface card has been assigned
to Quest sandbox 1, while the serial device has been
assigned to Quest sandbox 2. The Linux sandbox is
granted ownership of the USB host controller in addi-
tion to the GPU and VGA frame buffer. Observe that
although the machine has four processor core, the Linux
kernel detects only one core.

C. VCPU Scheduling

Sandboxes running Quest kernels use a form of virtual
CPU (VCPU) scheduling for conventional tasks and
interrupt handlers [13]. The concept of a VCPU is
similar to that in traditional virtual machines [8], where
a hypervisor provides the illusion of multiple physical
CPUs (PCPUs) 2 represented as VCPUs to each of the
guests. VCPUs exist as kernel abstractions to simplify
the management of resource budgets for potentially
many software threads. We use a hierarchical approach
in which VCPUs are scheduled on PCPUs and threads
are scheduled on VCPUs.

A VCPU acts as a resource container [14] for schedul-
ing and accounting decisions on behalf of software
threads. It serves no other purpose to virtualize the
underlying physical CPUs, since our sandbox kernels
and their applications execute directly on the hardware.
In particular, a VCPU does not need to act as a container

2We define a PCPU to be either a conventional CPU, a processing
core, or a hardware thread.

4



Fig. 5. Quest-V with Linux Front-End

for cached instruction blocks that have been generated
to emulate the effects of guest code, as in some trap-
and-emulate virtualized systems.

In common with bandwidth preserving servers [15],
[16], [17], each VCPU, V , has a maximum compute
time budget, Cmax, available in a time period, VT . V is
constrained to use no more than the fraction VU = Cmax

VT

of a physical processor (PCPU) in any window of real-
time, VT , while running at its normal (foreground) prior-
ity. To avoid situations where PCPUs are idle when there
are threads awaiting service, a VCPU that has expired its
budget may operate at a lower (background) priority. All
background priorities are set below those of foreground
priorities to ensure VCPUs with expired budgets do not
adversely affect those with available budgets.

Fig. 6. VCPU Scheduling Hierarchy

Quest kernels define two classes of VCPUs as shown
in Figure 6: (1) Main VCPUs are used to schedule
and track the PCPU usage of conventional software
threads, while (2) I/O VCPUs are used to account for,
and schedule the execution of, interrupt handlers for
I/O devices. This distinction allows for interrupts from
I/O devices to be scheduled as threads, which may be
deferred execution when threads associated with higher
priority VCPUs having available budgets are runnable.
I/O VCPUs can be specified for certain devices, or for
certain tasks that issue I/O requests, thereby allowing
interrupts to be handled at different priorities and with
different CPU shares than conventional tasks associated
with Main VCPUs.

By default, VCPUs act like Sporadic Servers [18],
[19]. Local APIC timers are programmed to replenish
VCPU budgets as they are consumed during thread
execution. Sporadic Servers enable a system to be treated
as a collection of equivalent periodic tasks scheduled by
a rate-monotonic scheduler (RMS) [20]. This is signifi-
cant, given I/O events can occur at arbitrary (aperiodic)
times, potentially triggering the wakeup of blocked tasks
(again, at arbitrary times) having higher priority than
those currently running. RMS analysis can be applied,

5



to ensure each VCPU is guaranteed its share of CPU
time, VU , in finite windows of real-time.

III. EXISTING SOLUTIONS AND RELATED WORK

Xen [8], Linux-KVM [9], XtratuM [6] and the Wind
River Hypervisor [21] all use virtualization technologies
to logically isolate and multiplex guest virtual machines
on a shared set of physical resources. LynxSecure [5] is
another similar approach targeted at safety-critical real-
time systems.

PikeOS [4] is a separation micro-kernel [22] that sup-
ports multiple guest VMs, and targets safety-critical do-
mains such as Integrated Modular Avionics. The micro-
kernel supports a virtualization layer that is required to
manage the spatial and temporal partitioning of resources
amongst guests.

In contrast to the above systems, Quest-V statically
partitions machines resources into separate sandboxes.
Services of different criticalities can be mapped into
separate sandboxes. Each sandbox manages its own
resources independently of an underlying hypervisor.
Quest-V also avoids the need for a split-driver model
involving a special domain (e.g., Dom0 in Xen) to handle
device interrupts. Interrupts are delivered directly to the
sandbox associated with the corresponding device, using
I/O passthrough.

IV. CONCLUSIONS AND FUTURE WORK

This paper introduces Quest-V, which is an open-
source separation kernel built from the ground up. It
uses hardware virtualization in a first-class manner to
separate system components of different criticalities.
It avoids traditional costs associated with hypervisor
systems, by statically allocating partitioned subsets of
machine resources to guest sandboxes, which perform
their own scheduling, memory and I/O management.
Hardware virtualization simply provides an extra logical
ring of protection. Sandboxes can communicate via
shared memory channels that are mapped to immutable
entries in extended page tables (EPTs). Only trusted
monitors are capable of changing the entries in these
EPTs, preventing access to arbitrary memory regions in
remote sandboxes.

Quest-V requires system monitors to be trusted. Al-
though these occupy a small memory footprint and are
not involved in normal system operation, the system
can be compromised if the monitors are corrupted.
Future work will investigate the use of hardware features
such as Intel’s trusted execution technology (TXT) to
enforce safety of the monitors. Additionally, online fault
detection and recovery strategies will be considered.

Please see www.questos.org for more details.

REFERENCES

[1] C. B. Watkins, “Integrated Modular Avionics: Managing the
allocation of shared intersystem resources,” in Proceedings of
the 25th Digital Avionics Systems Conference, pp. 1–12, 2006.

[2] “ARINC 653 - an avionics standard for safe, partitioned systems.”
Wind River Systems / IEEE Seminar, August 2008.

[3] J. Alves-foss, W. S. Harrison, P. Oman, and C. Taylor, “The MILS
architecture for high-assurance embedded systems,” International
Journal of Embedded Systems, vol. 2, pp. 239–247, 2006.

[4] “SYSGO PikeOS.” http://www.sysgo.com/products/pikeos-rtos-
and-virtualization-concept.

[5] “LynxSecure Embedded Hypervisor and Separation Kernel.”
http://www.lynuxworks.com/virtualization/hypervisor.php.

[6] A. Crespo, I. Ripoll, and M. Masmano, “Partitioned embedded
architecture based on hypervisor: The xtratum approach.,” in
EDCC, pp. 67–72, 2010.

[7] “Intel In-Vehicle Infotainment (IVI) system.”
http://www.intel.com/content/www/us/en/intelligent-
systems/in-vehicle-infotainment/in-vehicle-infotainment-in-
car-entertainment-with-intel-inside.html.

[8] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of
virtualization,” in Proceedings of the 19th ACM Symposium on
Operating Systems Principles, pp. 164–177, 2003.

[9] I. Habib, “Virtualization with kvm,” Linux J., vol. 2008, no. 166,
p. 8, 2008.

[10] J. M. Rushby, “Design and verification of secure systems,” in
Proceedings of the eighth ACM symposium on Operating systems
principles, pp. 12–21, 1981.

[11] Y. Li, R. West, E. Missimer, and M. Danish, “Quest-V: A
virtualized multikernel for high-confidence embedded systems.”
http://www.cs.bu.edu/fac/richwest/papers/quest-v.pdf.

[12] PCI: http://wiki.osdev.org/PCI.
[13] M. Danish, Y. Li, and R. West, “Virtual-CPU Scheduling in

the Quest Operating System,” in Proceedings of the 17th Real-
Time and Embedded Technology and Applications Symposium,
pp. 169–179, 2011.

[14] G. Banga, P. Druschel, and J. C. Mogul, “Resource Containers:
A new facility for resource management in server systems,”
in Proceedings of the 3rd USENIX Symposium on Operating
Systems Design and Implementation, 1999.

[15] L. Abeni, G. Buttazzo, S. Superiore, and S. Anna, “Integrating
multimedia applications in hard real-time systems,” in Proceed-
ings of the 19th IEEE Real-time Systems Symposium, pp. 4–13,
1998.

[16] Z. Deng, J. W. S. Liu, and J. Sun, “A scheme for scheduling
hard real-time applications in open system environment,” in Pro-
ceedings of the 9th Euromicro Workshop on Real-Time Systems,
1997.

[17] M. Spuri, G. Buttazzo, and S. S. S. Anna, “Scheduling aperiodic
tasks in dynamic priority systems,” Real-Time Systems, vol. 10,
pp. 179–210, 1996.

[18] B. Sprunt, L. Sha, and J. Lehoczky, “Aperiodic task scheduling
for hard real-time systems,” Real-Time Systems Journal, vol. 1,
no. 1, pp. 27–60, 1989.

[19] M. Stanovich, T. P. Baker, A. I. Wang, and M. G. Harbour,
“Defects of the POSIX sporadic server and how to correct
them,” in Proceedings of the 16th IEEE Real-Time and Embedded
Technology and Applications Symposium, 2010.

[20] C. L. Liu and J. W. Layland, “Scheduling algorithms for mul-
tiprogramming in a hard-real-time environment,” Journal of the
ACM, vol. 20, no. 1, pp. 46–61, 1973.

[21] http://www.windriver.com/products/hypervisor/.
[22] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock,

P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish,
T. Sewell, H. Tuch, and S. Winwood, “seL4: Formal verification
of an OS kernel,” in Proceedings of the 22nd ACM Symposium
on Operating Systems Principles, pp. 207–220, 2009.

6


