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Background



Drako GTE




● Electric vehicles, ADAS, IVI, V2X driving up 
cost and complexity of electronics

● Modern luxury vehicles have 50-150 ECUs
source: Strategy Analytics, IHS Markit

● Global ECU market $63.6 billion (2018)
source: grandviewresearch.com

● Electronic share of total vehicle cost is rising 
exponentially

  

Vehicle Growth in Electronics

E
LE

C
T
R

O
N

IC
 S

H
A

R
E
 O

F 
T
O

TA
L 

V
E
H

IC
LE

 C
O

S
T

source: Statista 2017



● Electric vehicles, ADAS, IVI, V2X driving up 
cost and complexity of electronics

● Modern luxury vehicles have 50-150 ECUs
source: Strategy Analytics, IHS Markit

● Global ECU market $63.6 billion (2018)
source: grandviewresearch.com

● Electronic share of total vehicle cost is rising 
exponentially

  

Vehicle Growth in Electronics

E
LE

C
T
R

O
N

IC
 S

H
A

R
E
 O

F 
T
O

TA
L 

V
E
H

IC
LE

 C
O

S
T

source: Statista 2017

How do we
reverse the trend?
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Automotive Software Complexity

Growth in automotive electronics has given rise to growth in software complexity
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Fuel injection

Airbags, ABS,
 OBD

Infotainment, 
traction 

& stability 
control

Driver aids, 
connectivity

Advanced 
Driver Assistance 

Systems
(ADAS)

Fully electric, 
autonomous 
& connected 

vehicles

ECUs
<10k lines of code

100M+ lines 
of code

Software Explosion

Software growth driven by increased vehicle functionality + increased ECU count

  



ADAS – SAE 6 Levels of Driving Automation

  

0 1 2
No 

Automation
Driver 

Assistance
Single automated
function e.g., active 
cruise control

Manual control

Partial
Automation

Automated steering
and acceleration; 
Human can take 
control

         Human monitors the driving environment 

Based on: https://www.synopsys.com/automotive/autonomous-driving-levels.html



ADAS – SAE 6 Levels of Driving Automation

  

0 1 2 3 4 5
No 

Automation
Driver 

Assistance
Single automated
function e.g., active 
cruise control

Manual control

Partial
Automation

Automated steering
and acceleration; 
Human can take 
control

Conditional
Automation

Environmental 
Detection; Human 
override required

High
Automation

Vehicle performs all
driving tasks under
specific 
circumstances;
Requires geofencing 
and human override 
is still possible

Full
Automation

Vehicle performs
all driving tasks 
under all conditions, 
without human 
interaction

         Human monitors the driving environment  Automated system monitors the driving environment 

Based on: https://www.synopsys.com/automotive/autonomous-driving-levels.html
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AUTOMOTIVE DOMAIN

● 8  16  32 bit microcontrollers→ 16→ 32 bit microcontrollers → 16→ 32 bit microcontrollers
● Mostly single core, single function
● Typically 10s-100s MHz
● NXP/Freescale PowerPC, Infineon …
● Integrated CAN, GPIOs, ADCs

Simple RTOS
● OSEK, FreeRTOS, Tresos, ECOS ...  

Hardware & OS Evolution 

PC DOMAIN

● 64-bit CPUs, integrated GPUs
● Multicore, multiple tasks
● GHz clock speed, hardware virtualization
● Intel & AMD x86, ARM Cortex-A
● USB, PCIe, Ethernet, WiFi

Complex General Purpose OS
● Windows, Mac OS, Linux



Automotive System Challenges 

Reduce electronic costs

● Replace ECUs with fewer hardware components
● e.g., multicore industrial PC

● Consolidate ECU functions as software tasks
● Easier to update, reconfigure, extend

● => Need for functional consolidation



Automotive System Challenges 

Reduce electronic costs

● Replace ECUs with fewer hardware components
● e.g., multicore industrial PC

● Consolidate ECU functions as software tasks
● Easier to update, reconfigure, extend

=> Need for functional consolidation

Address emerging real-time I/O needs

● Combined low-latency & high bandwidth data processing
● Google’s self-driving car (2013) ~ 1GB/s data
● A.D. Angelica: http://www.kurzweilai.net/googles-self-driving-car-gathers-nearly-1-gbsec



Automotive System Challenges 

Reduce electronic costs

● Replace ECUs with fewer hardware components
● e.g., multicore industrial PC

● Consolidate ECU functions as software tasks
● Easier to update, reconfigure, extend

=> Need for functional consolidation

Address emerging real-time I/O needs
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Automotive System Challenges 

Functional Consolidation => Need new vehicle OS

● Manage 100s of tasks on multiple cores
● Handle real-time low & high bandwidth I/O
● Provide safety, security and predictability
● Support mixed-criticality, fast boot, power management

Prohibitive complexity to write new OS from scratch

● Combine real-time with legacy code 
● e.g. small RTOS + Linux 
● Symbiotic solution  

 



Vehicle Vulnerabilities 
 

 

Airbags
Failed or inadvertent
deployment (ASIL D)

Antilock Brakes
Failed or delayed braking

(ASIL D)

Power Steering
(ASIL D)

Powertrain
Unwanted 

acceleration
(ASIL D)

Headlights
(ASIL B)

Brake lights
(ASIL B)

Active Cruise Control
(ASIL C)

Instrument Cluster
(ASIL B)

Rear lights
(ASIL A)

Functional Safety (e.g., ISO26262) + Cybersecurity (e.g., ISO21434)

● ASIL classification based on Hazard Analysis and Risk Assessment
● ASIL = Exposure [E0-4] x Controllability [C0-3] x Severity [S0-3]

Example:



Vehicle Vulnerabilities 
 

 

Airbags
Failed or inadvertent
deployment (ASIL D)

Antilock Brakes
Failed or delayed braking

(ASIL D)

Power Steering
(ASIL D)

Powertrain
Unwanted 

acceleration
(ASIL D)

Headlights
(ASIL B)

Brake lights
(ASIL B)

Active Cruise Control
(ASIL C)

Instrument Cluster
(ASIL B)

Rear lights
(ASIL A)

Wi-Fi, Cellular, FM/AM radio, 
TPMS, Remote Keyless Entry,

Bluetooth

Remote Surface Attacks

Functional Safety (e.g., ISO26262) + Cybersecurity (e.g., ISO21434)

● ASIL classification based on Hazard Analysis and Risk Assessment
● ASIL = Exposure [E0-4] x Controllability [C0-3] x Severity [S0-3]

Lane Keep Assist, 
Lane Departure Warning, 

Collision Avoidance

ADAS Failures

e.g. Miller & Valasek, 2014 Jeep 
Cherokee CAN attack via
Uconnect IVI Head Unit

CAN Attacks

Example:



Moving Forward: DriveOS
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Software
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Hardware Software

ECUs
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Automotive 

PC

Hardware

Drako 
DriveOS 
Vehicle

Traditional 
Vehicle

DriveOS supports traditional hardware functions as software tasks running on a 
multicore virtualized platform

Software

100M+
Lines of Code

DRAKO DriveOS

Reduced
Code

Complexity

Hardware Software

[Off-board]
Cloud Compute & 

Storage + OTA Updates
[On-board]

Backup

ECUs



DRAKO DriveOS I/O
USB-centric solution: works with legacy devices + supports higher bandwidth future needs
 

I/O controller

Secure* USB: 
high bandwidth, low latency

Secure* CAN bus for 
legacy devices

USB: Host-to-host comms 

DriveOS Primary + 
Backup machines

Legacy CAN device 

High bandwidth USB device 

*Secure access to USB + CAN mediated by trusted I/O sandbox in DriveOS



Reference Design: DRAKO GTE DriveOS 

Drako DriveOS 
Intel PC

Battery 
Management

Fast 
Charging

ADAS

Suspension 
Control

Body 
Control

Infotainment

Instrument 
Cluster

Powertrain 
Control

Cloud 
ConnectivityThermal Control



Hardware Layer (Direct Access)

DRAKO DriveOS Reference Stack

Hardware Layer: CPUs, Memory, I/O (Direct Access)

Functional 
Safety

Battery & 
Thermal

ADAS

Secure V2X Communication Layer

Linux/Android
GPOS

Chassis
Powertrain & 
I/O Services

RTOS (Quest)

Cloud Services Layer

Instrument 
Cluster

Infotainment

VCPU +
USB Scheduler

Real Time 
Device

I/O

Connected
Services

Legacy 
Device

I/O
Secure Separation Kernel (Quest-V)

Real Time Secure Shared Memory Communication



Quest-V

CAN-IO Gateway

Fault
Mgmt

Power
MgmtHVAC VCU

Body
Control

BMS

ShmcommCAN-IOlibPthreadsVCPU API

DRAKO DriveOS Functional Overview

USB 2/3.x Host Controller 
(CAN, LIN, GPIO, ADC, Cameras, LIDAR, IMU, …), UART

USB2 eHCI Host Controller (Touchscreen), Graphics, Bluetooth, WiFi, Cellular, Audio, Storage, UART

Secure Shared Memory
Communication

Quest RTOS

Quest-V



Quest-V Separation Kernel (VEE’14, ACM TOCS’16)

Sandbox M

Monitor

Sandbox 1

VCPU

.  .  .

Monitor

Sandbox 2

VCPU VCPU

Monitor

Communication

VCPU VCPU
Sandbox

Address
Space

ThreadIO Devices IO Devices IO Devices

PCPUs

● Monitors partition CPU cores, RAM, I/O devices among sandboxed guests
● Monitors have small trusted compute base – no runtime resource management 

Memory PCPUs Memory PCPUs Memory



Quest-V Separation Kernel (VEE’14, ACM TOCS’16)

● Partitioning hypervisor – statically partitions resources
● Separation kernel – distributed collection of sandboxed components, indistinguishable 

from separate private machines for each component 

Sandbox MSandbox 1

.  .  .

Sandbox 2

VCPU VCPU

Communication

VCPU
Sandbox

Address
Space

ThreadIO Devices IO Devices IO Devices

PCPUs Memory PCPUs Memory PCPUs Memory

Linux



Quest RTOS (RTAS’11)

VCPUs are first-class entities within the RTOS 
● Budgeted real-time execution of threads and interrupts 

 
● Tasks  Main VCPUs (Sporadic servers: budget & period)→ 16→ 32 bit microcontrollers
● Interrupts  IO VCPUs (PIBS: derive budget & period from Main VCPU)→ 16→ 32 bit microcontrollers  

Main VCPUs

IO VCPUs

Threads

PCPUs (Cores)

Address
 Space

Priority Inheritance
Bandwidth Preserving
Servers (PIBS)

Real-time IO

IOVCPU_CLASS_USB
IOVCPU_CLASS_NET
IOVCPU_CLASS_GPIO

...



VCPU Control Flow

                                                                                                             

                                                                                                                                                        Main VCPU
                                              (Sporadic Server)

(1) Blocking I/O System Call                                

Device

(2) Program Device                                                                                     (3) Device Interrupt

IO VCPU
(PIBS)

(4) Top Half wakes
up IO VCPU

(5) IO VCPU wakes up Main VCPU

Top Half 
Interrupt
Handler

Device
Driver

Userspace

Kernel



VCPU Scheduling (RTAS’11)

Sandbox with 1 PCPU, n Main VCPUs (SS), and m IO VCPUs (PIBS)

● Ci = Budget Capacity of Main VCPU, Vi

● Ti = Replenishment Period of Vi

● Uj = Utilization factor for I/O VCPU, Vj

● Utilization bound feasibility test (with rate-monotonic scheduling of VCPUs):

∑
i=0

n−1
Ci
Ti

+∑
j=0

m−1

(2−Uj)⋅Uj≤n⋅( n√2−1)



Single x86 Multicore PC 
Solution

Map all services to a 
single industrial automotive PC

Real-time
I/O via 
Tuned Pipes

Yocto Linux

DriveOS 
Communication 
Kernel Plugin

HDMI

Instrument Cluster

D
X

11
00

In-vehicle 
Infotainment ADAS

HW Adapter HW Adapter 

DVI

USB-CAN-IO Stack

Quest RTOS

CAN-IO Gateway

USB-CAN-IO I/F 

Cincoze DX1100



Tuned Pipes (RTSS’18)

Like POSIX pipes but guarantee throughput and delay on communication
● Simpson’s 4-slot (asynchronous) & FIFO (synchronous) buffering

Boomerang I/O subsystem in Quest-V supports real-time pipelines 
across Quest RTOS and legacy OSes

● Rate match tasks in pipeline to avoid blocking or missed data
● Quest appears as a real-time virtual device interface to Linux/Android

Task

Task Pipe

Main
VCPU

Handler

Device Pipe

IO
VCPU



DriveOS: Example OpenPilot ADAS + IC + IVI (EMSOFT’21)

Chassis / Body 
CAN Channel

Powertrain 
CAN Channel

Shared memory 
channels

 IC & IVI Msgs

 ADAS Sensing

ADAS Actuation

Control Input

Control Output

Quest RTOS* Yocto Linux

DriveOS on DX1100

USB-CAN-IO 
Gateway

Longitudinal Feed-forward 
PI Controller

IC + IVI

OpenPilot
ADAS

1

2

3

4

5

6

Latency path        to        ? 1 6

Low criticality I/O
(Maps, Music, OTA 

updates,...)

*Compare with Linux-only system with PREEMPT_RT 
& SCHED_DEADLINE tasks 



DriveOS: OpenPilot Control Loop Latency (EMSOFT’21)

● ADAS Control Loop End-to-end Latency in presence of background Linux tasks

  

Target bound = 10ms

*Both Linux cases use PREEMPT_RT. Optimized Linux maps USB interrupts to separate core
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Conclusions

Now is the time to look to alternative hardware + OS automotive solutions

DriveOS uses hardware virtualization for real time temporal and spatial isolation 
of software functions

+ Multicore PC-class platform replaces ECUs with software tasks
+ USB-centric I/O control
+ Symbiosis between RTOS & legacy OS
+ Real-time I/O & task pipeline processing

Fast startup of critical services on PC-class hardware (RTAS’22)



© 2020 Drako Motors

Key Points

● Functional consolidation to drive down costs of electronics
 

● Centralized software stack to reduce hardware + code complexity

● Must consider OS challenges
– More than just supporting driverless & connected cars
– ML is great for object detection but an RTOS is needed to avoid objects!

● Real-time I/O is critical



Related Work
Automotive Company / System Operating System Features

DRAKO DriveOSTM Quest RTOS, Quest-V Separation Kernel + 
Yocto Linux / Android

Centralized; Quest/Linux/Android sandboxes
IC, IVI, HVAC, Powertrain,ADAS, etc
Simulink Multi-OS Support

Toyota Entune 3.0 (Future: Arene) Automotive Grade Linux (Arene: Apex.OS) Infotainment (Arene will support autonomy)

BMW OS7 and OS8 (iX) Greenhills Integrity RTOS + Linux [Linux] Infotainment, IC
[RTOS] RT vehicle control functions

Polestar + Google Automotive Android Infotainment

Nvidia Drive OS Nvidia Hypervisor, QNX Neutrino RTOS, Linux ADAS, Linux + QNX SDK

Ford Sync 3 QNX (current); Android (future) Microkernel, RTOS, Infotainment

TTTech Car.OS Supports AUTOSAR, Linux, QNX + others
Centralized; IC, IVI, ADAS, HVAC, Powertrain

Mercedes Benz MB.OS Centralized; RTOS + Linux support
IVI, Powertrain, ADAS, Body Control, HVAC

Tesla Linux + FSD (Full Self Driving) Infotainment (AMD for Model 3 & Y), ADAS



Questions?



Extra Details



System Software Safety 
Temporal and Spatial Isolation

● Ensure critical tasks are free from interference from less critical tasks

Timing and Functional Safety
● Ensure timing-critical tasks meet deadlines
● Functionally correct output values for given inputs

Correct Information Exchange
● No loss, duplication or corruption of data

Memory Safety
● No buffer overruns, stack under/overflow, invalid memory addressing

IO Safety
● Controlled access to IO devices

 



System Security 
Integrity

● Avoid attacker compromizing critical functionality
● e.g., Miller & Valasek, 2014 Jeep Cherokee CAN attack via remote access to IVI 

● Resource partitioning and access only via secure interfaces
● Validate arguments to functional interfaces 

 
Confidentiality

● Avoid leaking sensitive data (CAN packets, personal information, app data,...)
● Encrypt data or enforce information flow policies
● Eliminate side channels (e.g., via caches – possibly use cache/page coloring)
● Use containerization for critical components

Access Rights
● Avoid user gaining elevated accesses to resources beyond allowed rights

● e.g., CVE-2019-5736 Breaking out of Docker via RunC
● Enforce a capability mechanism on access to resources
● Digitally sign software images 

 



Today’s ECU Vehicle Network
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DRAKO DriveOS

Leverage the Quest-V separation kernel
- Open Source
- Partitions CPU cores, RAM, I/O devices among guests 

Co-locate Quest RTOS with Linux and Android guests on same hardware

Real-time interface for device I/O
+ Processing moved to PC
+ I/O via e.g. USB-CAN or custom control-class interface 

© 2020 Drako Motors

DriveOSTM

(PC)

I/O
Controller Hub
(Basic MCU)

Sensors &
Actuators

USB-CAN

Low-bandwidth I/O

Sensors
(e.g., cameras)

Sensors &
Actuators

USB-UVC

High-bandwidth I/O



Example: Quest-V for DriveOS

 

VMM

      Linux Kernel
VMM

G
ue

st
 U

se
rs

pa
ce

H
ar

dw
ar

e

Shared
Memory

Libraries and Runtime

Linux Applications
Real-time Control, 

Sensor Data Processing 
and Actuation

Core 1 … i Core (i+1) … m

Cincoze DX1100 Industrial PC

RAM RAM

USB, CAN
(LIDAR, Cameras, IMU,...)

Non-RT Devices

RTOS



Cache Partitioning (Spatial and Temporal Isolation)

● Shared caches controlled using color-aware 
memory allocator [COLORIS – PACT'14]

● Quest-V uses EPTs to map guest physical to
machine physical addresses

● Last-level cache occupancy prediction based 
● on h/w performance counters

● local (core) + global (all core) 
cache hits and misses between scheduling points 
[Book Chapter, OSR'11, PACT'10]

Physical 
Address

p bits

Offset

Index

Tag Color bits

Cache
address
space

Physical 
memory

...

...
...

…
…

.



Quest RTOS – USB Scheduling (RTAS’13)

USB 2/3.x Bus scheduler

Each periodic request represented as a tuple (wi, ti)
● wi – time to send transaction i
● ti – time interval of transaction i

Given set of n tuples {(w1,t1), (w2,t2),…,(wn,tn)}, is there an assignment of USB
transactions to 125uS microframes, such that no frame is over-committed?

A request assigned to microframe f is also assigned to microframe f+n*ti, n ∈ N

Using variant of first-fit decreasing packing algorithm, shown to outperform Linux
● Sort by decreasing wi (largest first)
● First pick request based on smallest ti, breaking ties with largest wi



Quest RTOS – USB Scheduling (RTAS’13)

● Consider all permutations of 1 to 5 requests
● Intervals: 2, 4, 8, 16 microframes
● Packet Sizes: 32, 64,…,1024 bytes
● Quest ≈ 150 thousand failed schedules
● Linux ≈ 95 million failed schedules 

# 
F

ai
le

d 
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ed

ul
es



Boomerang Inter-OS Task Pipeline Example (RTAS’20)

Boomerang tuned pipe path 
(1) spans Quest + Linux + 
USB-CAN

Boomerang tuned pipe path 
(2) spans Quest + USB-CAN



DriveOS: Boomerang Results

Boomerang sub-system in DriveOS meets communication timing guarantees
A Linux SMP (multicore) OS with real-time extensions cannot perform I/O predictably

En
d 

to
 e

nd
 d

el
ay

 (m
s)

En
d 

to
 e

nd
 d

el
ay

 (m
s)

Packet ID Packet ID

Pipeline 1 (dual core) Pipeline 2 (single core)



Jumpstart Power Management (RTAS’22)

● PC hardware requires Firmware POST, bootloader, device & service initialization to boot OS
● DriveOS uses Jumpstart ACPI S3 suspend-to-RAM & resume-from-RAM for low latency restart 

of critical tasks (e.g., CAN gateway services) 

   

         VMM

      
Linux Kernel

        VMM

G
ue

st
 U

se
rs

pa
ce

H
ar

d
w

ar
e

Shared
Memory

Libraries and Runtime

Linux Applications
Real-time Control, 

Sensor Data Processing 
and Actuation

Core 1 … i Core (i+1) … m

DX1100

RAM RAM

USB, CAN
(LIDAR, Cameras, IMU,...)

Non-RT Devices

Jumpstart Jumpstart



Jumpstart Power Management (RTAS’22)

● Jumpstart services span all guests
● RTOS coordinates suspension but enables parallel reboot

● Potential for ACPI S4 suspend-to-disk using non-volatile memory (e.g., Intel Optane)
● Eliminates system power usage during suspension

  

Jumpstart reduces 
DriveOS boot delay

Better than 
standalone Linux!



DriveOS: Screenshot 1/4



DriveOS: Screenshot 2/4



DriveOS: Screenshot 3/4

https://illmatics.com/Remote%20Car%20Hacking.pdf
https://unit42.paloaltonetworks.com/breaking-docker-via-runc-explaining-cve-2019-5736/


DriveOS: Screenshot 4/4



Simulink Multi-OS Modeling and Code Generation

● Model-based design for Multi-OS target
● Automatic support for nested ELF binaries with inter-sandbox RPC bindings



Shared memory inter-
task/sandbox communication

CAN-bus Management

Time management

Quest(-V) Simulink Blocks



Example: Quest HVAC CAN       Shared Memory Logic



Configurable Parameters:
1. Target Sandbox:
2. Task Budget (C ) 
3. Execution Period (T)  

A VCPU is bound to an 
automotive function via the 
output signal link of the 
vcpusetup block

Set up new channel or 
connect to an existing one

Mapping a Function to a Quest VCPU
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