
�

Computer Science

OS / Middleware for Cyber-Physical 
Systems

Richard West

Boston University
Boston, MA

richwest@cs.bu.edu

Cyber-Physical Systems (CPS)

� New innovations needed for software infrastructures
� Communication, computation & physical system aspects 

to be considered

� Example applications:
� Coordinated vehicle/traffic management systems
� Tele-medicine
� Intelligent homes for appliance management and energy-

efficiency (electricity, gas, heating etc)

OS / Middleware Support

� COTS Systems
� There has been a push for their use for the past 5-10 

years to support specialist apps
� Problems? 

� Semantic gap between app needs and service 
provisions of system

� Benefits?
� Cost savings, code reuse, reduced development time, 

well-tested basis for new applications/services
� BUT…

� Should we continue this path of enhancing COTS 
systems or are the CPS goals too challenging for 
existing technologies?

Example System Structure

Applications

System Libraries (libc)

System Call Interface

Hardware

Architecture-Dependent Code

I/O Related Process Related

Scheduler

Memory Management

IPC

File Systems

Networking

Device Drivers

M
o

du
le

s

Current System Problems

� Problems with current systems?
� Inadequate APIs – application mismatch

� Agnostic services – e.g., no real-time guarantees when 
needed, scheduling policies for fairness rather than 
predictability

� Inadequate extensibility – geared towards drivers rather 
than app-specific services

� Need new interfaces to underlying system services to match 
application demands
� Possibly retro-fit existing systems with APIs / 

mechanisms to support extension technologies

Challenges

� Cyber-Physical Systems pose challenges in:
� Design of composable application-specific services that 

behave safely, securely, efficiently, predictably 
� Design of underlying system / infrastructure to support 

such services

� Hardware and software issues affect both the above
� More on this later…



�

What about Virtualization?

� Stephen Hand et al (Xen, Cambridge U.) – HotOS paper:
� Are VMs micro-kernels done right?

� Right now, virtualization is a means to provide isolation 
amongst other VMs/apps
� Useful for legacy systems/apps to co-exist on same 

physical platform BUT…
� No significant communication between VMs unlike 

client/server communication in micro-kernels
� Coarse-grained solution to safety / security
� No resource / service guarantees

Basic Goals

� Basic goals:
� Service composition / customization
� Safety / security

� Access rights, capabilities
� Who should be allowed to deploy services and where?

� Predictability / efficiency
� real-time, latency, throughput guarantees etc
� Resource monitoring, management, QoS

� Communication protocols
� System structure

� API between underlying system and application
� Interactions between hardware and software
� Hardware abstraction / heterogeneity

Interactions Between Hardware & Software

� Leveraging architectural features in “best” way, e.g.:
� L2 shared caches
� Hyper-threading 
� Multi-core architectures
� Tagged TLBs for protection
� Interrupt-vectoring to app-specific trusted services

Heterogeneity

� Physical systems may have diverse computational and 
resource characteristics
� Different processor architectures, memory capacities, 

cache configurations, I/O devices, interconnects
� One vision:

� Build a base software system deployed across hardware 
platforms that offers resource multiplexing and 
communication between higher-level 
applications/services

� Have hardware or a software compiler take a common-
language (or byte-code) base software and target it for 
given platform

A Common Platform Alliance

� OS developers provide base code and services in a 
hardware-independent manner
� A target compiler for a given platform produces hardware-

enhanced binary image of base OS (like a very small 
microkernel)

� Additional services are isolated and communicate using 
“best” approach according to compiler for target platform, 
the features of that platform and the requirements of 
services/applications
� e.g., services may be isolated using hardware 

segmentation/paging if available, or even compiler 
generated run-time software checks to enforce 
memory safety if hardware protection is unavailable

Example: Intelligent Home Network

� www.epa.gov/ne/pr/2004/jan/040110.html
� Study suggested that by replacing 5 most used light-

bulbs w/ energy efficient bulbs in every US household 
could reduce electricity usage by 800 billion KWh per 
year
� Equivalent to $60/yr per homeowner or output from 21 

power plants per year
� Would reduce one trillion pounds of greenhouse gases 

that cause global warming



�

Example (continued)

� Intelligent home network could support services to monitor 
electricity (and other resources e.g., gas) throughout the day
� Services could suggest ways to more efficiently spread 

energy usage over 24 hours, rather than at set hours 
when demand is excessive
� Over-riding control of appliance usage
� Possibly enforce resource quota or re-channeling of 

resource (here, electricity) distribution amongst homes 
according to a shared service policy

� GOAL: lowering overall resource consumption while 
meeting individual objectives

Example (continued)

� Who should be allowed to deploy specific services and 
where?
� Perhaps not homeowners except to configure basic 

parameters of existing services or to upgrade services
� Service providers could be 3rd parties relative to system 

developers

� To what extent can users control / influence service 
provisions to other customers?
� Perhaps they shouldn’t be allowed to do this at all
� Perhaps they should be allowed to do this to some 

degree if it is for the global good
� The socialist view – if I share my resources will you 

repay the favor when needed?

Vehicle Control / Traffic Management Example

� Coordinated in-vehicle traffic management system
� Allow in-car services to communicate congestion hot-

spots to other vehicles, or even to over-ride user-
responsiveness when emergency braking is required 
etc…

Questions?

� What limitations does the existing (architectural, intellectual etc) 
separation between X and Y place on our ability to develop CPS? How 
could we redesign X and Y to remove those limitations…?

� Mismatch between app-needs and agnostic service provisions
� TCP, IP networks not real-time, have bandwidth/latency 

mismatches with certain apps
� OS services: scheduling, paging misaligned with demands of 

apps
� Again, need extensibility here…a breakdown of the barriers 

between coarse-grained services and components
� Possibly user-configurable and implementable protocols and 

services
� Methods to activate those services in keeping with QoS (real-

time, latency etc) requirements
� Methods to safely and securely isolate X and Y
� Leverage of hardware features in meeting these goals

Questions? (continued)

� Are there opportunities to co-design, hybridize, or otherwise 
combine parts of the current state of the art in ways that 
overcome existing limitations, without requiring us to re-start  
from too primitive a basis?

� Could build new base software architecture for safe, 
predictable and efficient resource multiplexing to higher-
level services and VMs
� Could allow for existing software to run above this 

base layer
� Could retro-fit existing systems to support better 

extensibility for user-configurable services, isolation and 
invocation
� Provide improved APIs


