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Cyber-Physical Systems (CPS)

� New innovations needed for software infrastructures
� Communication, computation & physical system aspects 

to be considered

� Example applications:
� Coordinated vehicle/traffic management systems
� Tele-medicine
� Intelligent homes for appliance management and energy-

efficiency (electricity, gas, heating etc)

OS / Middleware Support

� COTS Systems
� There has been a push for their use for the past 5-10 

years to support specialist apps
� Problems? 

� Semantic gap between app needs and service 
provisions of system

� Benefits?
� Cost savings, code reuse, reduced development time, 

well-tested basis for new applications/services
� BUT…

� Should we continue this path of enhancing COTS 
systems or are the CPS goals too challenging for 
existing technologies?
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Current System Problems

� Problems with current systems?
� Inadequate APIs – application mismatch

� Agnostic services – e.g., no real-time guarantees when 
needed, scheduling policies for fairness rather than 
predictability

� Inadequate extensibility – geared towards drivers rather 
than app-specific services

� Need new interfaces to underlying system services to match 
application demands
� Possibly retro-fit existing systems with APIs / 

mechanisms to support extension technologies

Challenges

� Cyber-Physical Systems pose challenges in:
� Design of composable application-specific services that 

behave safely, securely, efficiently, predictably 
� Design of underlying system / infrastructure to support 

such services

� Hardware and software issues affect both the above
� More on this later…
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What about Virtualization?

� Stephen Hand et al (Xen, Cambridge U.) – HotOS paper:
� Are VMs micro-kernels done right?

� Right now, virtualization is a means to provide isolation 
amongst other VMs/apps
� Useful for legacy systems/apps to co-exist on same 

physical platform BUT…
� No significant communication between VMs unlike 

client/server communication in micro-kernels
� Coarse-grained solution to safety / security
� No resource / service guarantees

Basic Goals

� Basic goals:
� Service composition / customization
� Safety / security

� Access rights, capabilities
� Who should be allowed to deploy services and where?

� Predictability / efficiency
� real-time, latency, throughput guarantees etc
� Resource monitoring, management, QoS

� Communication protocols
� System structure

� API between underlying system and application
� Interactions between hardware and software
� Hardware abstraction / heterogeneity

Interactions Between Hardware & Software

� Leveraging architectural features in “best” way, e.g.:
� L2 shared caches
� Hyper-threading 
� Multi-core architectures
� Tagged TLBs for protection
� Interrupt-vectoring to app-specific trusted services

Heterogeneity

� Physical systems may have diverse computational and 
resource characteristics
� Different processor architectures, memory capacities, 

cache configurations, I/O devices, interconnects
� One vision:

� Build a base software system deployed across hardware 
platforms that offers resource multiplexing and 
communication between higher-level 
applications/services

� Have hardware or a software compiler take a common-
language (or byte-code) base software and target it for 
given platform

A Common Platform Alliance

� OS developers provide base code and services in a 
hardware-independent manner
� A target compiler for a given platform produces hardware-

enhanced binary image of base OS (like a very small 
microkernel)

� Additional services are isolated and communicate using 
“best” approach according to compiler for target platform, 
the features of that platform and the requirements of 
services/applications
� e.g., services may be isolated using hardware 

segmentation/paging if available, or even compiler 
generated run-time software checks to enforce 
memory safety if hardware protection is unavailable

Example: Intelligent Home Network

� www.epa.gov/ne/pr/2004/jan/040110.html
� Study suggested that by replacing 5 most used light-

bulbs w/ energy efficient bulbs in every US household 
could reduce electricity usage by 800 billion KWh per 
year
� Equivalent to $60/yr per homeowner or output from 21 

power plants per year
� Would reduce one trillion pounds of greenhouse gases 

that cause global warming
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Example (continued)

� Intelligent home network could support services to monitor 
electricity (and other resources e.g., gas) throughout the day
� Services could suggest ways to more efficiently spread 

energy usage over 24 hours, rather than at set hours 
when demand is excessive
� Over-riding control of appliance usage
� Possibly enforce resource quota or re-channeling of 

resource (here, electricity) distribution amongst homes 
according to a shared service policy

� GOAL: lowering overall resource consumption while 
meeting individual objectives

Example (continued)

� Who should be allowed to deploy specific services and 
where?
� Perhaps not homeowners except to configure basic 

parameters of existing services or to upgrade services
� Service providers could be 3rd parties relative to system 

developers

� To what extent can users control / influence service 
provisions to other customers?
� Perhaps they shouldn’t be allowed to do this at all
� Perhaps they should be allowed to do this to some 

degree if it is for the global good
� The socialist view – if I share my resources will you 

repay the favor when needed?

Vehicle Control / Traffic Management Example

� Coordinated in-vehicle traffic management system
� Allow in-car services to communicate congestion hot-

spots to other vehicles, or even to over-ride user-
responsiveness when emergency braking is required 
etc…

Questions?

� What limitations does the existing (architectural, intellectual etc) 
separation between X and Y place on our ability to develop CPS? How 
could we redesign X and Y to remove those limitations…?

� Mismatch between app-needs and agnostic service provisions
� TCP, IP networks not real-time, have bandwidth/latency 

mismatches with certain apps
� OS services: scheduling, paging misaligned with demands of 

apps
� Again, need extensibility here…a breakdown of the barriers 

between coarse-grained services and components
� Possibly user-configurable and implementable protocols and 

services
� Methods to activate those services in keeping with QoS (real-

time, latency etc) requirements
� Methods to safely and securely isolate X and Y
� Leverage of hardware features in meeting these goals

Questions? (continued)

� Are there opportunities to co-design, hybridize, or otherwise 
combine parts of the current state of the art in ways that 
overcome existing limitations, without requiring us to re-start  
from too primitive a basis?

� Could build new base software architecture for safe, 
predictable and efficient resource multiplexing to higher-
level services and VMs
� Could allow for existing software to run above this 

base layer
� Could retro-fit existing systems to support better 

extensibility for user-configurable services, isolation and 
invocation
� Provide improved APIs


