




- predictability
- Inadequate extensibility geared towards drivers rather than app-specific services
- Need new interfaces to underlying system services to match application demands
 - Possibly retro-fit existing systems with APIs / mechanisms to support extension technologies

Challenges

Cyber-Physical Systems pose challenges in:

 Design of composable application-specific services that behave safely, securely, efficiently, predictably

IPC

- Design of underlying system / infrastructure to support such services
- Hardware and software issues affect both the above More on this later...

1

What about Virtualization?

- Stephen Hand et al (Xen, Cambridge U.) HotOS paper:
 Are VMs micro-kernels done right?
 - Right now, virtualization is a means to provide isolation amongst other VMs/apps
 - Useful for legacy systems/apps to co-exist on same physical platform BUT...
 - No significant communication between VMs unlike client/server communication in micro-kernels
 - Coarse-grained solution to safety / security
 - No resource / service guarantees

Basic Goals

Basic goals:

- Service composition / customization
- Safety / security
 - Access rights, capabilities
 - Who should be allowed to deploy services and where?
- Predictability / efficiency
 - real-time, latency, throughput guarantees etc
 - Resource monitoring, management, QoS
- Communication protocols
- System structure
 - API between underlying system and application
 - Interactions between hardware and software
 - Hardware abstraction / heterogeneity

Interactions Between Hardware & Software

- Leveraging architectural features in "best" way, e.g.:
 L2 shared caches
 - Lz shared cache
 - Hyper-threading
 - Multi-core architectures
 - Tagged TLBs for protection
 - Interrupt-vectoring to app-specific trusted services

Heterogeneity

- Physical systems may have diverse computational and resource characteristics
 - Different processor architectures, memory capacities, cache configurations, I/O devices, interconnects
- One vision:
 - Build a base software system deployed across hardware platforms that offers resource multiplexing and communication between higher-level applications/services
 - Have hardware or a software compiler take a commonlanguage (or byte-code) base software and target it for given platform

A Common Platform Alliance

- OS developers provide base code and services in a hardware-independent manner
 - A target compiler for a given platform produces hardwareenhanced binary image of base OS (like a very small microkernel)
 - Additional services are isolated and communicate using "best" approach according to compiler for target platform, the features of that platform and the requirements of services/applications
 - e.g., services may be isolated using hardware segmentation/paging if available, or even compiler generated run-time software checks to enforce memory safety if hardware protection is unavailable

Example: Intelligent Home Network

www.epa.gov/ne/pr/2004/jan/040110.html

- Study suggested that by replacing 5 most used lightbulbs w/ energy efficient bulbs in every US household could reduce electricity usage by 800 billion KWh per year
 - Equivalent to \$60/yr per homeowner or output from 21 power plants per year
 - Would reduce one trillion pounds of greenhouse gases that cause global warming

Example (continued)

- Intelligent home network could support services to monitor electricity (and other resources e.g., gas) throughout the day
 - Services could suggest ways to more efficiently spread energy usage over 24 hours, rather than at set hours when demand is excessive
 - Over-riding control of appliance usage
 - Possibly enforce resource quota or re-channeling of resource (here, electricity) distribution amongst homes according to a shared service policy
 - GOAL: lowering overall resource consumption while meeting individual objectives

Example (continued)

- Who should be allowed to deploy specific services and where?
 - Perhaps not homeowners except to configure basic parameters of existing services or to upgrade services
 - Service providers could be 3rd parties relative to system developers
- To what extent can users control / influence service provisions to other customers?
 - Perhaps they shouldn't be allowed to do this at all
 - Perhaps they should be allowed to do this to some degree if it is for the global good
 - The socialist view if I share my resources will you repay the favor when needed?

Vehicle Control / Traffic Management Example

- Coordinated in-vehicle traffic management system
 - Allow in-car services to communicate congestion hotspots to other vehicles, or even to over-ride userresponsiveness when emergency braking is required etc...

Questions?

- What limitations does the existing (architectural, intellectual etc) separation between X and Y place on our ability to develop CPS? How could we redesign X and Y to remove those limitations...?
 - Mismatch between app-needs and agnostic service provisions
 TCP, IP networks not real-time, have bandwidth/latency mismatches with certain apps
 - OS services: scheduling, paging misaligned with demands of apps
 - Again, need extensibility here...a breakdown of the barriers between coarse-grained services and components
 - Possibly user-configurable and implementable protocols and services
 - Methods to activate those services in keeping with QoS (realtime, latency etc) requirements
 - Methods to safely and securely isolate X and Y
 - Leverage of hardware features in meeting these goals

Questions? (continued)

- Are there opportunities to co-design, hybridize, or otherwise combine parts of the current state of the art in ways that overcome existing limitations, without requiring us to re-start from too primitive a basis?
 - Could build new base software architecture for safe, predictable and efficient resource multiplexing to higherlevel services and VMs
 - Could allow for existing software to run above this base layer
 - Could retro-fit existing systems to support better extensibility for user-configurable services, isolation and invocation
 - Provide improved APIs