
Online Cache Modeling for
Commodity Multicore Processors

Richard West, Puneet Zaroo,

Carl A. Waldspurger and Xiao Zhang

Contact: richwest@cs.bu.edu

Computer Science

The “Big Picture”

VMVM VM VM
. . .

VM

.
PCPUPCPU

Shared LLC

PCPUPCPU

Socket

Cores/HTs

.
PCPUPCPU

Shared LLC

PCPUPCPU

Socket

Cores/HTs
Interconnect

Application
threads

VCPU VCPU VCPU. . .

Proliferation of CMPs

• Chip Multiprocesors (CMPs) have multiple cores
on same chip

• CMP cores usually share last-level cache (LLC)
and compete for memory bus bandwidth

• Competition for microarchitectural resources by
co-running workloads can lead to highly-variable
performance
– Potential for poor performance isolation

The Software Challenge

• CMPs manage shared h/w resources (e.g.,
cache space, memory bandwidth) in opaque
manner to s/w

• Software systems cannot easily optimize for
efficient resource utilization or QoS without
improved visibility and control over h/w
resources
– e.g., Cache conflict misses can incur several

hundred clock cycle penalties for off-chip
memory stalls

Hardware Solutions

• Provide performance isolation using cache
partitioning
– Optimal partition size?

– Utility of cache space to a workload?

• Hardware-assisted miss-ratio (and miss-rate)
curves (MRCs)
– not applicable to commodity multicore

processors

Improved Cache Management

• Expose state of shared caches (and other
microarchitectural resources) to OS / hypervisor

– Fairer / more efficient co-scheduling
– Reduced resource contention

– How do we do this on commodity CMPs?

Current Software Solutions

• Page coloring
– Can reduce cache conflicts
– Recoloring pages can be expensive for

varying working set sizes and workloads

• S/W-generated MRCs
– Existing solutions require special h/w support

• e.g., RapidMRC uses SDAR on POWER5

– Potentially high overhead
• e.g., RapidMRC takes > 80ms on POWER5

Our Approach

• Online cache modeling for commodity CMPs

• Leverage commonly-available hardware
performance counters
– Construct cache occupancy estimators for

individual workloads competing for cache
– Construct cache performance curves (MRCs)

using occupancy predictions
– Low-cost and online

Basic Occupancy Model

• Leverage two performance events:
– local misses to thread τ l: ml

– misses by every other thread τ o sharing

– cache: mo

– Misses drive cache line fills
• Assume C cache lines accessed uniformly at

random
• E’ = E + (1 – E/C)·ml – (E/C)·mo

• E’ = updated occupancy of τ l,, E = old value

Extended Occupancy Model

• Basic approach assumes uniform cache-line
access

• Set associativity and LRU line replacement
breaks this assumption

• Add support for likelihood of line reuse
– Use cache hit information

Extended Occupancy Model

• Uses four performance events:
– As for basic model plus

• Local hits (hl) and hits by all other threads (ho)

• Now:

E’ = E·(1-mopl) + (C-E) ·mlpo -- Equation 1

pl is probability miss falls on line for τ l

Po is probability miss falls on line for τ o

Reuse Frequency

• Approximate LRU with LFU:

– Model cacheline reuse by τ l and τ o,

respectively, as:

 rl = (hl + ml) /E

 ro = (ho + mo) / (C – E)

Approximating LRU Effects

• Model evictions due to misses inversely
proportional to reuse frequencies:

 po / pl = rl / ro

• Given a miss must fall on some line:

pl·E + po·(C-E) = 1

Can calculate pl and po and substitute into

Equation 1

Occupancy Experiments

• Used Intel’s CMPSched$im
– Binary execution of SPEC workloads
– Modeled 2- and 4-core CMPs

• 32KB 4-way per-core L1
• 4MB 16-way shared L2
• 64 byte cache line size

– Sample perf counters every 1ms
– Average occupancies over 100 ms intervals

Occupancy Results

mcf

Quadcore – 4 co-runners (3 shown)

art00 wupwise00

Occupancy Results

Quadcore – 10 co-runners (3 shown)

mcf wupwise00art00

Model tolerant of over-committed situations.

Cache Performance Curves

• Modeled performance (MPKI, MPKR, MPKC,
CPKI,…) as function of cache occupancy

• Implemented CAFÉ scheduling framework in
VMware ESX Server
– 4-core 2.0 GHz Intel Xeon E5535 w/ 4GB

RAM and 4MB L2 cache per 2-cores
– Update workload occupancies every 2ms

using basic model (2 perf ctrs)
• 320 cycles overhead for occupancy update fn

Online Generation of Utility Curves

• Curve Types
– Miss-ratio curve, y-axis being Misses-Per-Kilo-Instructions

– Miss-rate curve, y-axis being Misses-Per-Kilo-Cycles
– CPKI curve, y-axis being Cycles-Per-Kilo-Instructions

• Implementation issues
– Monotonicity enforcement

– Lack of updates across entire cache
– Duty-cycle modulation enforcement

– MPKC curves sensitive to memory
bandwidth contention

mcf running under different amounts of memory read bandwidth

MRC Results

• Quantized into 8 occupancy buckets
• Configurable interval for curve generation

frequency (here, several seconds)
• Expect monotonicity

– Higher cache occupancy, fewer misses per
instruction

– Except on phase changes
• Monotonic enforcement algorithm updates MRC

readings in order of bucket reference (highest to
lowest)

• 6 apps on 2 cores sharing L2, each in a single-CPU VM

• Using page-coloring measurement as comparison baseline

Online MRC: Accuracy

• Running mcf with different co-runners

Before monontonic enforcement After monotonic enforcement

Online MRC: Case Study

• Guidance to improve fairness
– CPU time compensation based on estimated

performance degradation due to CMP resource
contention

• Guidance to improve performance
– Smart scheduling placement based on predicted

cache space allocation among co-runners

Application of Utility Curves

Future Work

• Application of occupancy prediction to hardware-
aided cache partitioning / enforcement

• Investigate techniques to improve coverage of
cache space (0-100%) for utility curve
generation
– Co-runner interference control
– MRCs at different tie granularities

• Online phase change detection

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

