
Computer Science

An Efficient End-host Architecture for 
Cluster Communication Services

Xin Qi, Gabriel Parmer and Richard West 



Computer Science

Introduction

� General-purpose systems provide a general set of 
abstractions that allow for a good combination of 
� Fairness between processes
� Simple abstraction of the base hardware to all  

application processes

� With generality, fine grained control is sacrificed
� Copying of data via kernel for network stack
� Networking core cannot be easily extended  

with new protocols 

� High performance applications may demand more than 
these generic abstractions can provide
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Contributions

� High performance networking using �user-level sandboxing�
� Zero copy
� Eliminates scheduling overheads

� Safe abstraction
� Kernel controls access rights to user-level sandbox 

services
� Regulated access to I/O devices is guaranteed

� Example usages:
� Efficient middleware routing of high bandwidth/low 

latency data streams
� A proxy server handing remote procedure calls
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User-level Sandboxing

� Provides user-level environment for the execution of service 
extensions

� Separate kernel from app-specific code

� Use only page-level hardware protection
� Approach does not require specific hardware protection 

features, such as segmentation and tagged TLBs

� Extension code only activated by the kernel via upcalls

� Sandbox extensions can be executed in the context of any
process to avoid scheduling overheads
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Hardware Support for Memory-
safe Extensions 
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User-level Sandboxing 
Implementation

� Modify address spaces of all processes to contain one or 
more shared pages of virtual addresses
� Shared pages used for sandbox

� Normally inaccessible at user-level
� Kernel upcalls toggle sandbox page protection bits & 

perform TLB invalidation on corresponding page(s)

� Current x86 approach
� 2x4MB superpages
� Modified dietlibc supports most normal functionality
� ELF loader to map code into sandbox
� Support sandboxed threads that can block on syscalls
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Hardware Support for Memory-
safe Extensions 
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Invoking Sandbox Extensions

� Fast Upcalls
� Leverage SYSEXIT/SYSENTER on x86

� Support Traditional IRET approach also

� Kernel Events
� Generic interface supports delivery of events to specific 

extensions
� Each extension has its own stack & thread structure
� Events can be queued -- like POSIX.4 (real time) signals
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User-level Networking

� Issues involved in building a high performance customizable 
user-level networking stack:
� Memory Management

� A slab allocator that has a-priori knowledge of objects 
such as packet descriptors

� Kernel Bypassing
� An abstraction for passing control to an extension for 

interrupt time (asynchronous) processing
� NIC interaction

� Support DMA transfers of packet data to / from 
sandboxed extension code
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User-level Networking

� UML (User Mode Linux) used as the basis for network 
service extensions, by providing:
� memory allocation
� a modular device interface
� a fully functional, modular networking stack 

� A well defined set of communication channels between 
kernel and sandbox to pass memory location for packet 
arrival and transmission 
� High speed DMA to user level is only possible because 

sandbox exists in every process virtual address space
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User-level Networking

� Demultiplexing packets
� Some technologies rely on programmable NICs which 

have a-priori knowledge of the destination of incoming 
packets

� All incoming packets must still be allocated and 
transferred to sandbox area 

� A light-weight classifier can be written either in the kernel 
or sandbox

� Sandbox networking scheme is not intended for efficient 
processing of all packets
� We focus on efficient communication for sandbox 

extensions
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User-level Networking
--(Asynchronous Mode)
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User-level Networking
--(Synchronous Mode)
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Experimental Results

� Example customized service extension: Relay Socket
� To bind a pair of sockets together 
� For efficient forwarding of packets at transport layer

� UDP Forwarding
� Comparison of networking implementations
� Transfer time jitter

� TCP Forwarding
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Experiment Environment
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UDP forwarding (1/2)

� UML in user process vs. UML in sandbox
� An improvement of 130% with no background threads
� With more background threads, sandbox agent does not suffer 

scheduling delays and therefore maintains high throughput
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UDP forwarding (2/2)

� User-level vs. Kernel-level vs. Sandbox Networking
� Sandbox networking is comparable to kernel approach with no 

background threads
� Throughput remains constant irrespective of background threads
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Transfer Time Jitter

� Low jitter is important for QoS-constrained (e.g. multimedia) applications
� Near constant jitter is demonstrated by the sandboxed networking

scheme
� other two approaches show larger and more variable jitter as the

number of background threads increases
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TCP Forwarding 

� UML in user space vs. sandbox
� Using wget to get 1GB file from Apache server via intermediate node
� 30% improvements in throughput using SCHED_OTHER
� Prioritizing the sandbox thread using SCHED_RR yields more than 

50% higher throughput irrespective of background threads
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Microbenchmarks

4800Kernel Packet Processing time 

6360Sandbox Packet Processing time

1370Null Fast Upcall

Cost in CPU CyclesOperation
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Conclusions

� Efficient networking stack in a �user-level sandbox�
� Higher throughput and lower jitter than traditional 

middleware services implemented in process-private 
address spaces

� In many cases, our architecture enables user-level 
services to outperform equivalent kernel-based services 
that require scheduling

� User-level sandboxing scheme allows extension code to:
� Safely and efficiently access lower-level abstractions 

(e.g., interrupt time execution, network hardware)
� Execute without scheduling process-private address 

spaces
� Easy to debug and implement new services.
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Future Work

� Type safe language support / software-based fault isolation

� Binary rewriting techniques to avoid patching host kernel for 
sandbox support


