
Computer Science

An Efficient End-host Architecture for
Cluster Communication Services

Xin Qi, Gabriel Parmer and Richard West

Computer Science

Introduction

� General-purpose systems provide a general set of
abstractions that allow for a good combination of
� Fairness between processes
� Simple abstraction of the base hardware to all

application processes

� With generality, fine grained control is sacrificed
� Copying of data via kernel for network stack
� Networking core cannot be easily extended

with new protocols

� High performance applications may demand more than
these generic abstractions can provide

Computer Science

Contributions

� High performance networking using �user-level sandboxing�
� Zero copy
� Eliminates scheduling overheads

� Safe abstraction
� Kernel controls access rights to user-level sandbox

services
� Regulated access to I/O devices is guaranteed

� Example usages:
� Efficient middleware routing of high bandwidth/low

latency data streams
� A proxy server handing remote procedure calls

Computer Science

User-level Sandboxing

� Provides user-level environment for the execution of service
extensions

� Separate kernel from app-specific code

� Use only page-level hardware protection
� Approach does not require specific hardware protection

features, such as segmentation and tagged TLBs

� Extension code only activated by the kernel via upcalls

� Sandbox extensions can be executed in the context of any
process to avoid scheduling overheads

Computer Science

Hardware Support for Memory-
safe Extensions

. . . Process-private
address space

Sandbox region
(shared virtual address space)

Kernel Level

User Level

P1 P2 Pn

Extension for P2

Kernel events make
sandbox region

user-level accessible

e.g., user-level network stack

. . . Process-private
address space

Sandbox region
(shared virtual address space)

Kernel Level

User Level

P1 P2 Pn

Extension for P2

Kernel events make
sandbox region

user-level accessible

e.g., user-level network stack

Computer Science

User-level Sandboxing
Implementation

� Modify address spaces of all processes to contain one or
more shared pages of virtual addresses
� Shared pages used for sandbox

� Normally inaccessible at user-level
� Kernel upcalls toggle sandbox page protection bits &

perform TLB invalidation on corresponding page(s)

� Current x86 approach
� 2x4MB superpages
� Modified dietlibc supports most normal functionality
� ELF loader to map code into sandbox
� Support sandboxed threads that can block on syscalls

Computer Science

Hardware Support for Memory-
safe Extensions

Process 1 Process 2Physical Memory

Private
address
space

Mapped Data

Mapped Data

Extension
Stacks

Extension
Code

+
read-only data

Sandbox
public
area

Protected
area

Sandbox
public
area

Protected
area

4MB

4MB

Process 1 Process 2Physical Memory

Private
address
space

Mapped Data

Mapped Data

Extension
Stacks

Extension
Code

+
read-only data

Sandbox
public
area

Protected
area

Sandbox
public
area

Protected
area

4MB

4MB

Computer Science

Invoking Sandbox Extensions

� Fast Upcalls
� Leverage SYSEXIT/SYSENTER on x86

� Support Traditional IRET approach also

� Kernel Events
� Generic interface supports delivery of events to specific

extensions
� Each extension has its own stack & thread structure
� Events can be queued -- like POSIX.4 (real time) signals

Computer Science

User-level Networking

� Issues involved in building a high performance customizable
user-level networking stack:
� Memory Management

� A slab allocator that has a-priori knowledge of objects
such as packet descriptors

� Kernel Bypassing
� An abstraction for passing control to an extension for

interrupt time (asynchronous) processing
� NIC interaction

� Support DMA transfers of packet data to / from
sandboxed extension code

Computer Science

User-level Networking

� UML (User Mode Linux) used as the basis for network
service extensions, by providing:
� memory allocation
� a modular device interface
� a fully functional, modular networking stack

� A well defined set of communication channels between
kernel and sandbox to pass memory location for packet
arrival and transmission
� High speed DMA to user level is only possible because

sandbox exists in every process virtual address space

Computer Science

User-level Networking

� Demultiplexing packets
� Some technologies rely on programmable NICs which

have a-priori knowledge of the destination of incoming
packets

� All incoming packets must still be allocated and
transferred to sandbox area

� A light-weight classifier can be written either in the kernel
or sandbox

� Sandbox networking scheme is not intended for efficient
processing of all packets
� We focus on efficient communication for sandbox

extensions

Computer Science

User-level Networking
--(Asynchronous Mode)

Kernel

Tx Ring

User Level

Sandbox

1

2

3

Sandbox Memory Manager

4

6

Rx Ring

8

9

Network Driver

5

Network Interface Card (NIC)

11

1210

SBnet Driver

Sandbox Network Stack

Sandbox App

7

Kernel

Tx Ring

User Level

Sandbox

1

2

3

Sandbox Memory Manager

4

6

Rx Ring

8

9

Network Driver

5

Network Interface Card (NIC)

11

1210

SBnet Driver

Sandbox Network Stack

Sandbox App

SBnet Driver

Sandbox Network Stack

SBnet Driver

Sandbox Network Stack

Sandbox App

7

Computer Science

User-level Networking
--(Synchronous Mode)

Kernel

Tx Ring

User Level

Sandbox
Networking

Stack
Sandbox

1

2

3

Sandbox Memory Manager

4

6 8

Driver
Queue

Sandbox
App

Rx Ring

7

SBnet
Driver

9

10

11

Network Driver

5

Network Interface Card (NIC)

13

1412

Kernel

Tx Ring

User Level

Sandbox
Networking

Stack
Sandbox

1

2

3

Sandbox Memory Manager

4

6 8

Driver
Queue

Sandbox
App

Rx Ring

7

SBnet
Driver

9

10

11

Network Driver

5

Network Interface Card (NIC)

13

1412

Computer Science

Experimental Results

� Example customized service extension: Relay Socket
� To bind a pair of sockets together
� For efficient forwarding of packets at transport layer

� UDP Forwarding
� Comparison of networking implementations
� Transfer time jitter

� TCP Forwarding

Computer Science

Experiment Environment

Kernel
Level

Control / Data
Channels

Sandbox Region

User
Level

SPAs
(e.g., routing agents)

BA

Kernel
Level

Control / Data
Channels

Sandbox Region

User
Level

C

Socket Relayer

Kernel Relayer

Sandbox Relayer

httpd Iperfwget Iperf

Computer Science

UDP forwarding (1/2)

� UML in user process vs. UML in sandbox
� An improvement of 130% with no background threads
� With more background threads, sandbox agent does not suffer

scheduling delays and therefore maintains high throughput

0

50

100

150

200

250

0 1 2 4 8 16

Number of Background Threads

T
hr

ou
gh

pu
t (

M
bp

s)

UML in user process UML in sandbox

0

50

100

150

200

250

0 1 2 4 8 16

Number of Background Threads

T
hr

ou
gh

pu
t (

M
bp

s)

UML in user process UML in sandbox

Computer Science

UDP forwarding (2/2)

� User-level vs. Kernel-level vs. Sandbox Networking
� Sandbox networking is comparable to kernel approach with no

background threads
� Throughput remains constant irrespective of background threads

0

100

200

300

400

500

600

700

0 1 2 4 8 16 24

Number of Background Threads

T
hr

ou
gh

pu
t (

M
bp

s)

Socket Kernel Sandbox

0

100

200

300

400

500

600

700

0 1 2 4 8 16 24

Number of Background Threads

T
hr

ou
gh

pu
t (

M
bp

s)

Socket Kernel Sandbox

Computer Science

Transfer Time Jitter

� Low jitter is important for QoS-constrained (e.g. multimedia) applications
� Near constant jitter is demonstrated by the sandboxed networking

scheme
� other two approaches show larger and more variable jitter as the

number of background threads increases

���������	

�� ���	���	

��

0

20

40

60

80

100

120

0 4 16

Number of Background Threads

Ji
tte

r
in

 tr
an

sf
er

 ti
m

e
(u

-s
ec

on
ds

)

Sandbox Kernel Socket

0

20

40

60

80

100

120

0 4 16

Number of Background Threads

Ji
tte

r
in

 tr
an

sf
er

 ti
m

e
(u

-s
ec

on
ds

)

Sandbox Kernel Socket

0

100

200

300

400

500

600

700

800

900

1000

0 4 16

Number of Background Threads

Ji
tte

r
in

 tr
an

sf
er

 t
im

e(
u

-s
ec

on
ds

)

Sandbox Kernel Socket

0

100

200

300

400

500

600

700

800

900

1000

0 4 16

Number of Background Threads

Ji
tte

r
in

 tr
an

sf
er

 t
im

e(
u

-s
ec

on
ds

)

Sandbox Kernel Socket

Computer Science

TCP Forwarding

� UML in user space vs. sandbox
� Using wget to get 1GB file from Apache server via intermediate node
� 30% improvements in throughput using SCHED_OTHER
� Prioritizing the sandbox thread using SCHED_RR yields more than

50% higher throughput irrespective of background threads

0

20

40

60

80

100

120

0 1 2 4 8

Number of background threads

T
h

ro
u

g
h

p
u

t(
M

b
p

s)

UML in user process UML in sandbox(Normal) UML in sandbox(RR)

Computer Science

Microbenchmarks

4800Kernel Packet Processing time

6360Sandbox Packet Processing time

1370Null Fast Upcall

Cost in CPU CyclesOperation

Computer Science

Conclusions

� Efficient networking stack in a �user-level sandbox�
� Higher throughput and lower jitter than traditional

middleware services implemented in process-private
address spaces

� In many cases, our architecture enables user-level
services to outperform equivalent kernel-based services
that require scheduling

� User-level sandboxing scheme allows extension code to:
� Safely and efficiently access lower-level abstractions

(e.g., interrupt time execution, network hardware)
� Execute without scheduling process-private address

spaces
� Easy to debug and implement new services.

Computer Science

Future Work

� Type safe language support / software-based fault isolation

� Binary rewriting techniques to avoid patching host kernel for
sandbox support

